EP0762354A1 - Längsgestreckter Körper als Sicherungsetikett für elektromagnetische Diebstahlsicherungssysteme - Google Patents

Längsgestreckter Körper als Sicherungsetikett für elektromagnetische Diebstahlsicherungssysteme Download PDF

Info

Publication number
EP0762354A1
EP0762354A1 EP96113005A EP96113005A EP0762354A1 EP 0762354 A1 EP0762354 A1 EP 0762354A1 EP 96113005 A EP96113005 A EP 96113005A EP 96113005 A EP96113005 A EP 96113005A EP 0762354 A1 EP0762354 A1 EP 0762354A1
Authority
EP
European Patent Office
Prior art keywords
strip
elongated body
body according
amorphous
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96113005A
Other languages
English (en)
French (fr)
Other versions
EP0762354B1 (de
Inventor
Giselher Dr. Herzer
Gerd Rauscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP0762354A1 publication Critical patent/EP0762354A1/de
Application granted granted Critical
Publication of EP0762354B1 publication Critical patent/EP0762354B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2405Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used
    • G08B13/2408Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used using ferromagnetic tags
    • G08B13/2411Tag deactivation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2428Tag details
    • G08B13/2437Tag layered structure, processes for making layered tags
    • G08B13/244Tag manufacturing, e.g. continuous manufacturing processes
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2428Tag details
    • G08B13/2437Tag layered structure, processes for making layered tags
    • G08B13/2442Tag materials and material properties thereof, e.g. magnetic material details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15391Elongated structures, e.g. wires

Definitions

  • the invention relates to an elongated body for electromagnetic anti-theft or identification systems with a strip made of amorphous material, which is magnetized in a removal zone with an alternating magnetic field by Barkhausen jumps when magnetization is reversed when certain threshold values of the magnetic field are reached and thereby triggers characteristic voltage pulses in an interrogation coil.
  • a ferromagnetic wire is already known from DE-A 29 33 337, which contains two layers braced against one another and which experiences a sudden change in magnetism due to a Barkhausen jump in an alternating field when certain threshold values are exceeded or undershot.
  • this wire can be used as a security strip for alarm systems.
  • the Barkhausensprung results in a characteristic signal that can be recognized, for example, by evaluating harmonics in a query coil and that cannot be confused with signals from other magnetic parts.
  • this known ferromagnetic wire requires relatively high field strengths, for whose generation relatively high alternating fields are necessary, for example, in an interrogation zone at the exit of a shop.
  • efforts are made to use the lowest possible fields, on the one hand to be able to make the query zone sufficiently wide and on the other hand to keep health risks for people passing through the query zone as low as possible.
  • a composite body By using certain soft and hard magnetic materials that are braced against each other, a composite body has become known from DE-C-38 24 075, which can be used as a strip for theft protection or identification systems and manages with a low amplitude of an interrogating alternating field.
  • the hard magnetic component of this composite body with impulse behavior can be used to deactivate the theft protection strip by magnetizing and thus saturating the soft magnetic part. The deactivated strip can then be transported through the interrogation zone without triggering an alarm.
  • a strip for anti-theft systems should also be suitable for low-priced goods, it is necessary to provide a strip that is as simple as possible and is therefore relatively cheap.
  • a strip has become known, for example, from US 4,298,268. It is proposed here to provide a strip of amorphous material, since the amorphous material has an extraordinarily high permeability and there is therefore also only a low risk of confusion with other soft magnetic objects.
  • the amorphous strips were heat-treated in a longitudinal field to increase the permeability.
  • a very steep magnetic reversal curve is achieved (induction depending on the field strength), but not the particularly steep impulses that can be achieved with a pulse wire that is suddenly magnetized by Barkhausen jumps and regardless of the rate of field change.
  • the present invention solves the problem of providing a strip for anti-theft or identification systems that manages with low switching field strengths, has a defined impulse behavior due to sudden magnetic reversal as a result of jumps in Barkhausen and is inexpensive to produce and also generates a sufficiently high, characteristic signal even with relatively short strips .
  • a strip which consists of an amorphous material with a cobalt content of at least 20 at% and receives its property for pulsed magnetic reversal through a heat treatment to adjust the magnetic anisotropy in the case of current-carrying strips, and that Current through the strip in connection with the temperature and the duration of the heat treatment is adjusted so that there is a ratio of remanent induction to saturation induction between 0.2 and 0.9.
  • an amorphous strip made of an alloy based on cobalt and which has been heat-treated according to the invention especially when adhering to certain values of remanent induction for saturation induction, triggers particularly high pulse voltages in the interrogation coil, which are triggered due to the periodic magnetic reversal of the strip and the Barkhausen jumps triggered with it.
  • the use of such amorphous strips allows relatively short theft protection strips (less than 50 mm) and nevertheless results in sufficiently high pulse voltages, which in turn trigger characteristic evaluable harmonics in the interrogation coil.
  • the behavior of the strip according to the invention can be improved if the strip is not only produced from the amorphous band, but the strip consists of this amorphous band and an associated soft-magnetic material which is continuously magnetized.
  • the amorphous strip according to the invention has a much smaller coercive field strength. It has been found that a particularly effective increase in the pulse height can be achieved if a soft magnetic material is provided whose coercive field strength is below 30 mA / cm and if the cross section multiplied by the saturation induction is higher than the remanent flow of the strip with pulse behavior. This can be achieved if one uses an amorphous or nanocrystalline alloy and provides a sufficient cross section for the soft magnetic strip. It is particularly advantageous if the length of the soft magnetic strip is chosen to be greater than that of the strip with impulse behavior.
  • a permanent magnet connected to the strip according to the invention can also be used to achieve an asymmetrical signal, that is to say a sudden magnetic reversal in the case of different ones Threshold values of the magnetic field, depending on the direction of magnetization, is triggered. This is explained in more detail for pulse wires in EP-B 156 016.
  • the material for the strip consists of an alloy which satisfies the formula Co a Ni b (Fe, Mn) c (Si, B, X) d , where in at%:
  • alloys of the composition in at.% Are: suitable for use as anti-theft strips according to the invention.
  • an amorphous band from the alloy composition mentioned under 1) has been used.
  • the ratio of the remanent induction Jr to the saturation induction Js was measured on 150 mm long strips in order to exclude the influence of the demagnetizing effect.
  • an amorphous tape (or also a wire) is first produced as usual by rapid quenching from the melt.
  • FIG. 1 An example of a heat treatment according to the invention is provided in FIG. 1.
  • a supply reel 1 with the amorphous ribbon arrives via a tensor roller 2 to a first pair of rollers 3, which is connected to a power source 5 via a line 4.
  • the amorphous band 6 After passing through the first pair of rollers, the amorphous band 6 enters an oven 7, in which it is surrounded by a shielding tube 8 made of electrically conductive or magnetically soft material, in order to keep external field influences away.
  • a shielding tube 8 made of electrically conductive or magnetically soft material
  • the first pair of rollers 3 and a second pair of rollers 11 not only serve to supply the current from the current source 5, but can also be used by appropriate drive to set a certain tension in the amorphous band 6.
  • the current supplied from the current source 5 to the amorphous band 6 can also be used to heat the band 6, but primarily serves to generate a magnetic part which surrounds the amorphous band inside.
  • the tape now has the properties required for use as strips for anti-theft and identification systems, so that the strips according to the invention are cut from them can be produced.
  • amorphous tape is sufficient for use in anti-theft systems, tapes or wires with different reactions have to be arranged in a strip for the purpose of identifying goods, or several strips have to be connected to the identified goods.
  • the shape of the magnetization curve which is defined, for example, by the remanence ratio, defined by the quotient from the remanence induction Jr to the saturation induction Js (each measured in Tesla) is essential for the pulse height when using the amorphous wire with a Barkhausensprung effect for strips of theft protection or identification systems. , can be described. It has surprisingly been found that neither flat loops nor rectangular loops with a correspondingly higher remanence ratio are advantageous for the pulse formation in this application.
  • the parameters (longitudinal field, current through the strip and strip tension) must be set during the heat treatment so that a remanence ratio between 0.2 and 0 , 9, preferably between 0.3 and 0.7.
  • various heat treatments were carried out, which resulted in different remanence ratios.
  • the ratio of maximum transverse field to longitudinal field in the range from 1 to 10 must be observed during the heat treatment.
  • Fig. 5 for comparison of the strip according to the invention with a strip whose pulse behavior is determined by internal stresses (US 4,660,025), the pulse voltage U and the field strength H are plotted over time t in seconds if the field strength H is corresponding Curve H1 continuously increased.
  • Curve U1 shows the tension that results when using an amorphous wire that has a length of 90 mm and a diameter of 0.13 mm, compared to the voltage curve corresponding to curve U2 when using an amorphous tape according to the invention with the Dimensions: width: 2 mm, thickness: 23 ⁇ m and the same length of 90 mm.
  • the peak voltage of the pulse occurs in the amorphous band according to the invention at a higher field strength, but there is a substantially higher voltage pulse and a steep edge when the voltage rises.
  • the measurements show that the voltage pulse in the amorphous band according to the invention is approximately 120 mV, while a maximum voltage amplitude of 30 mV could be achieved with the amorphous wire.
  • Particularly advantageous alloys for the intended application result when a cobalt content between 60 and 85 at .-% is provided and when the iron / manganese content, which determines the magnetostriction constant, is in the range from 1 to 10 at .-% is chosen that a magnetostriction as low as possible, preferably below ⁇ 4 x 10 -6 .
  • X denotes either one or more of the transition metals of groups IIIB-VIB such as. B. Nd, Mo, Ta, W, V etc. and / or one or more elements of the main groups IIIA-VA, such as. B. C, P, Ge.
  • Permanent magnets can not only change the response field strength depending on the magnetic reversal direction, but - as with known soft magnetic strips - it is also possible to saturate the strips with a slightly stronger permanent magnet and thus switch off the pulse behavior. In this way, a deactivatable security strip can be obtained.
  • Advantageous dimensions for the amorphous tape which is contained in the strip according to the invention either alone or together with other materials, result in a length of up to 100 mm if a width of up to 5 mm and a thickness of max. 50 microns for the tape or the diameter of the wire is provided.
  • shorter strips are also possible with a sufficient pulse height.
  • the advantageous dimensions with a length of up to 60 mm are that a width of up to 3 mm and a strip thickness of up to 40 ⁇ m are used.
  • strips with lengths of less than 40 mm can also be produced.
  • the shorter the stripe the higher the switching field strength.
  • a wire is used instead of a band, this can be reduced after the production by rapid solidification by mechanical deformation in cross section and also changed by z.
  • the signal level can be increased by arranging longitudinal strips made of a soft magnetic material at the ends of short tempered strips, ie for strip lengths between 20 and 40 mm. This increases the signal level by a factor of 10. In the case of unannealed bands, the signal level is increased by approximately 1 to 2 times.
  • the distance between the strips should not be less than 10mm.
  • the maximum pulse height that is to say the optimal position, depends in particular on the strip length of the amorphous strip and the dimensions of the soft magnetic strips.
  • a significant signal increase is also achieved by arranging two soft magnetic strips at the respective ends of the amorphous band above and below.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computer Security & Cryptography (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Burglar Alarm Systems (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Zur Diebstahlsicherung oder Warenerkennung mit elektromagnetischen Wechselfeldern in einer Abtragezone wird ein Streifen vorgeschlagen, der bei Ummagnetisierung durch Barkhausensprünge ein Impulsverhalten besitzt, das charakteristische Oberwellen erzeugt und die Verwechslung mit anderen weichmagnetischen Materialien in der Abfragezone weitgehend ausschließt. Erfindungsgemäß wird ein amorphes Band oder ein amorpher Draht mit mindestens 20 at.-% Kobalt-Gehalt verwendet, nachdem eine Wärmebehandlung bei stromdurchflossenem Band durchgeführt wurde, so daß sich ein Verhältnis der Remanenzinduktion zur Sättigungsinduktion zwischen 0,2 und 0,9 ergibt. <IMAGE>

Description

  • Die Erfindung betrifft einen längsgestreckten Körper für elektromagnetische Diebstahlsicherungs- oder Identifikationssysteme mit einem Streifen aus amorphem Material, der bei Ummagnetisierung in einer Abtragezone mit einem magnetischen Wechselfeld durch Barkhausensprünge bei Erreichen bestimmter Schwellwerte des Magnetfeldes plötzlich ummagnetisiert wird und dadurch in einer Abfragespule charakteristische Spannungsimpulse auslöst.
  • Aus DE-A 29 33 337 ist bereits ein ferromagnetischer Draht bekannt, der zwei gegeneinander verspannte Schichten enthält und der in einem Wechselfeld bei Über- bzw. Unterschreiten bestimmter Schwellwerte eine plötzliche Ummagnetisierung durch einen Barkhausensprung erfährt. Unter anderem kann dieser Draht als Sicherungsstreifen für Alarmsysteme verwendet werden. Bedingt durch den Barkhausensprung ergibt sich ein charakteristisches Signal, das beispielsweise durch Auswertung von Oberwellen in einer Abfragespule erkannt werden kann und das mit Signalen anderer magnetischer Teile nicht verwechslungsfähig ist. Allerdings erfordert dieser bekannte ferromagnetische Draht relativ hohe Feldstärken, zu deren Erzeugung beispielsweise in einer Abfragezone am Ausgang eines Geschäftes relativ hohe Wechselfelder notwendig sind. Hier ist man jedoch bestrebt, möglichst niedrige Felder anzuwenden, um einerseits die Abfragezone genügend breit machen zu können und um andererseits Gesundheitsgefährdungen für die Abfragezone durchschreitende Personen möglichst gering zu halten.
  • Durch Verwendung bestimmter weich- und hartmagnetischer Materialien, die gegeneinander verspannt werden, ist aus DE-C- 38 24 075 ein Verbundkörper bekannt geworden, der als Streifen für Diebstahlsicherungs- oder Identifikationssysteme eingesetzt werden kann und mit niedriger Amplitude eines abfragenden Wechselfeldes auskommt. Die hartmagnetische Komponente dieses Verbundkörpers mit Impulsverhalten kann ausgenutzt werden, um eine Deaktivierung des Diebstahlsicherungsstreifens durch Aufmagnetisierung und damit Sättigung des weichmagnetischen Teils vorzunehmen. Der deaktivierte Streifen kann dann ohne Auslösung eines Alarms durch die Abfragezone transportiert werden.
  • Da ein Streifen für Diebstahlsicherungssysteme auch für niederpreisige Waren geeignet sein soll, ist es erforderlich, einen Streifen vorzusehen, der möglichst einfach aufgebaut und damit relativ billig ist. Ein solcher Streifen ist beispielsweise aus US 4 298 268 bekannt geworden. Hier wird vorgeschlagen, einen Streifen aus amorphem Material vorzusehen, da das amorphe Material eine außergewöhnlich hohe Permeabilität hat und so ebenfalls eine nur geringe Verwechslungsgefahr mit anderen weichmagnetischen Gegenständen besteht. Zusätzlich ist dort vorgeschlagen worden, durch Anbringen kristalliner Bereiche innerhalb des amorphen Bandes Bereiche mit höherer Koerzitivität zu schaffen, die bei Aufmagnetisierung wieder zur Deaktivierung des Streifens beitragen können. Hierdurch ergibt sich der Vorteil, daß zur Deaktivierung nicht zusätzlich ein hartmagnetischer Werkstoff in den Streifen eingearbeitet werden muß. Allerdings hat es sich herausgestellt, daß es in der Praxis schwierig ist, kristalline Bereiche mit ausreichender Koerzitivfeldstärke einzustellen und daß man relativ lange Streifen benötigt, um ein einigermaßen sicheres Ansprechen der Überwachungsanlage zu gewährleisten.
  • Weiterhin wurden zur Erhöhung der Permeabilität die amorphen Streifen in einem Längsfeld wärmebehandelt. Dabei erreicht man eine sehr steile Ummagnetisierungskurve (Induktion in Abhängigkeit von der einwirkenden Feldstärke), aber nicht die besonders steilen Impulse, wie man sie mit einem Impulsdraht, der durch Barkhausensprünge plötzlich und unabhängig von der Feldänderungsgeschwindigkeit ummagnetisiert wird, erzielen kann.
  • Es ist weiterhin aus US 4 660 025 bekannt geworden, für Diebstahlsicherungssysteme einen Streifen aus einem amorphen Band zu verwenden, der keine Wärmebehandlung erfahren hat und - bedingt durch den Herstellungsprozess - durch rasche Abschreckung aus dem schmelzflüssigen Zustand innere Spannungen aufweist. Die inneren Spannungen in dem Draht oder Band verursachen bei der Ummagnetisierung wiederum Barkhausensprünge, so daß sich damit der gleiche Effekt wie beim Impulsdraht ergibt. Zusätzlich erhält man den Vorteil, daß Streifen mit niedrigen Kosten herstellbar sind, die außerdem eine nur geringe Feldstärke des Abfragewechselfeldes benötigen. Nachteil der zuletzt genannten Anordnung ist es jedoch, daß die Streifen sehr spannungsempfindlich sind und schon durch leichte Verformungen sich die inneren Spannungen und damit die auftretenden Barkhausensprünge bei der Ummagnetisierung verändern, so daß die Überwachunganlage zur Erkennung des Streifens entweder unempfindlich eingestellt werden muß, was Fehlalarme durch andere magnetische Materialien zuläßt, oder daß bei empfindlicher Einstellung der Überwachungseinrichtung nicht alle für die Diebstahlsicherung verwendeten Streifen einen Alarm auslösen.
  • Aus Journal of Magnetism and Magn. Mat. 133 (1994) S. 86 - 89 ist es nun bekannt geworden, gezielt ein Ummagnetisierungsverhalten in einem amorphen Band zu erzeugen, daß Barkhausensprünge beinhaltet. Dies gilt sogar für amorphe Materialien, die eine Magnetostriktion nahe Null haben, wie dies beispielsweise bei kobalthaltigen amorphen Bändern der Fall ist. Diese magnetostriktionsfreien amorphen Bänder haben gegenüber den magnetostriktionsbehafteten Bändern den Vorteil, daß sie auch bei Verbiegung und auch im gebogenen Zustand weitgehend ihre magnetischen Eigenschaften beibehalten, so daß der Streifen nicht unbedingt eine langgestreckte gerade Form beibehalten muß und sich besser an die zu schützende oder zu identifizierende Warenform anpassen kann.
  • Die vorliegende Erfindung löst nun die Aufgabe, einen Streifen für Diebstahlsicherungs- oder Identifikationssysteme bereitzustellen, der mit niedrigen Schaltfeldstärken auskommt, ein definiertes Impulsverhalten durch plötzliche Ummagnetisierung infolge von Barkhausensprüngen aufweist und preiswert herstellbar ist und auch bei relativ kurzen streifen ein genügend hohes, charakteristisches Signal erzeugt.
  • Die Lösung besteht darin, daß ein streifen verwendet wird, der aus einem amorphen Material mit einem Kobalt-Anteil von mindestens 20 at-% besteht und seine Eigenschaft zur impulsförmigen Ummagnetisierung durch eine Wärmebehandlung zur Einstellung der magnetischen Anisotropie bei stromdurchflossenem Streifen erhält, und daß der Strom durch den Streifen in Verbindung mit der Temperatur und der Behandlungsdauer der Wärmebehandlung so eingestellt wird, daß sich ein Verhältnis von Remanenzinduktion zu Sättigungsinduktion zwischen 0,2 und 0,9 ergibt.
  • Es hat sich herausgestellt, daß ein erfindungsgemäß wärmebehandelter amorpher Streifen aus einer Legierung auf Kobaltbasis, insbesondere bei Einhaltung bestimmter Werte von Remanenzinduktion zur Sättigungsinduktion besonders hohe Impulsspannungen in der Abfragespule auslöst, die sich durch die periodische Ummagnetisierung des Streifens und die damit ausgelösten Barkhausensprünge ergeben. Erfindungsgemäß wurde erkannt, daß die Verwendung derartiger amorpher Streifen relativ kurze Diebstahlsicherungsstreifen (unter 50 mm) zuläßt und sich trotzdem genügend hohe Impulsspannungen ergeben, die wiederum charakteristische auswertbare Oberwellen in der Abfragespule auslösen.
  • Verbessern läßt sich das Verhalten des erfindungsgemäßen Streifens, wenn man den Streifen nicht nur aus dem amorphen Band herstellt, sondern der Streifen aus diesem amorphen Band und einem damit verbundenen weichmagnetischen Material, das sich kontinuierlich ummagnetisiert, besteht.
  • Es ergibt sich dann eine ähnliche Wirkungsweise, wie sie in EP-B 309 679 für einen Impulsdraht aus zwei miteinander verspannten Materialien beschrieben ist. Im Gegensatz zu dem bekannten Impulsdraht besitzt der erfindungsgemäße amorphe Streifen eine sehr viel kleinere Koerzitivfeldstärke. Es hat sich herausgestellt, daß eine besonders wirkungsvolle Erhöhung der Impulshöhe erreichbar ist, wenn man ein weichmagnetisches Material vorsieht, dessen Koerzitivfeldstärke unterhalb von 30 mA/cm liegt und wenn der Querschnitt multipliziert mit der Sättigungsinduktion höher ist als der Remanenzfluß des Streifens mit Impulsverhalten. Dies ist erreichbar, wenn man eine amorphe oder nanokristalline Legierung verwendet und einen ausreichenden Querschnitt für den weichmagnetischen Streifen vorsieht. Besonders vorteilhaft ist es dabei, wenn man die Länge des weichmagnetischen Streifens größer wählt, als diejenige des Streifens mit Impulsverhalten.
  • Wie bei üblichen Impulsdrähten kann man bei dem erfindungsgemäßen Streifen durch einen damit verbundenen Dauermagneten auch erreichen, daß ein asymmetrisches Signal, also eine plötzliche Ummagnetisierung bei unterschiedlichen Schwellwerten des Magnetfeldes, abhängig von der Magnetisierungsrichtung, ausgelöst wird. Dies ist für Impulsdrähte in EP-B 156 016 näher erläutert.
  • Besonders vorteilhaft ist es, wenn das Material für den Streifen aus einer Legierung besteht, die der Formel Coa Nib (Fe,Mn)c (Si,B,X)d genügt, wobei in at-%:
  • a = 20-85; b = 0-50; c = 0-15 und d = 15-30, wobei a + b + d + c
    Figure imgb0001
    einschließlich üblicher Verunreinigungen gleich 100 und X eines oder mehrere der Übergangsmetalle der Gruppen IIIB-VIB, insbesondere Nb, Mo, Ta, W, V, und/oder eines oder mehrere Elemente der Hauptgruppen IIIA-VA, insbesondere C, P, Ge bezeichnet. Insbesondere sind Legierungen der Zusammensetzung in at.%:
    Figure imgb0002
    für die Verwendung als Diebstahlsicherungsstreifen nach der Erfindung geeignet.
  • Beispielsweise ist ein amorphes Band aus der unter 1) genannten Legierungszusammensetzung verwendet worden. Dieser Streifen hatte die Abmessungen 1,0 x 0,023 mm, eine Curietemperatur von Tc = 485°C und eine Sättigungsinduktion von 1,0 T. Ein solcher Streifen mit einer Länge von 40 mm wurde mit einer maximalen Feldstärke von H = 1,2 A/cm ausgesteuert und die dabei erzeugten Impulse wurden in einer Abfragespule mit 200 Windungen ermittelt. Das Verhältnis der Remanenzinduktion Jr zur Sättigungsinduktion Js wurde an 150 mm langen Streifen gemessen, um den Einfluß des Entmagnetisierungseffektes auszuschließen. Hierbei ergaben sich folgende Werte:
    Ergebnis Verfahrensparameter HLF{(A/cm} Zugspannung {MPa}
    U{mV} Jr/Js T{°C} t{s} I{mA}
    31 0,41 300 25 450 0,5 45
    20 0,58 300 25 200 0,5 45
    4 0,14 300 25 525 0,5 45
    12 0,65 300 25 450 5 45
  • Verwendet man relativ kurze Längen von unter 50 mm, so muß zur Verringerung des Entmagnetisierungseffektes des Streifens ein entsprechend geringerer Querschnitt verwendet werden, damit trotzdem eine ausreichende Signalhöhe erreicht wird. Zur Herstellung des Bandes wird zunächst ein amorphes Band (oder auch ein Draht) wie üblich durch Schnellabschreckung aus der Schmelze hergestellt.
  • In Fig. 1 ist ein Beispiel für eine Wärmebehandlung nach der Erfindung vorgesehen. Von einer Vorratsspule 1 mit dem amorphen Band gelangt dieses über eine Tensorwalze 2 zu einem ersten Rollenpaar 3, das über eine Leitung 4 mit einer Stromquelle 5 verbunden ist. Nach Durchlaufen des ersten Rollenpaares gelangt das amorphe Band 6 in einen Ofen 7, in dem es durch ein Abschirmrohr 8 aus elektrisch leitendem bzw. magnetisch weichem Material umgeben ist, um äußere Feldeinflüsse fernzuhalten.
  • Im Innern des Abschirmrohres 8 befindet sich eine Spule 9, die an eine Spannungsquelle 10 angeschlossen ist und ein auf das amorphe Band 6 einwirkendes Längsfeld erzeugt. Das erste Rollenpaar 3 und ein zweites Rollenpaar 11 dienen nicht nur der Zuführung des Stromes aus der Stromquelle 5, sondern können außerdem durch entsprechenden Antrieb dazu verwendet werden, eine bestimmte Zugspannung in dem amorphen Band 6 einzustellen.
  • Der aus der Stromquelle 5 dem amorphen Band 6 zugeführte Strom kann mit zur Erwärmung des Bandes 6 ausgenutzt werden, dient aber in erster Linie zur Erzeugung eines das amorphe Bandinnere kreisförmig umgebenden Magnetteides. Nachdem das Band den Ofen 7 verlassen hat, durchläuft es das zweite Rollenpaar 11 und gelangt dann auf eine Aufwickelspule 12. Jetzt hat das Band die für den Einsatz als Streifen für Diebstahlsicherungs- und Identifikationssysteme erforderlichen Eigenschaften, so daß aus ihm durch Ablängen die erfindungsgemäßen Streifen hergestellt werden können.
  • Es ist auch möglich, auf eine Abschirmung gegenüber äußeren Feldern ganz oder teilweise zu verzichten und beispielsweise das vorhandene Erdfeld als Längsfeld auszunutzen. Bei bestimmten Materialien kann es auch ausreichen, wenn während der Wärmebehandlung nur das zirkulare, durch den Stromfluß erzeugte Feld auf das Band oder den Draht wirkt, aus dem dann die Streifen hergestellt werden. Insbesondere bei Legierungen mit positiver Magnetostriktion läßt sich der durch das Längsfeld bewirkte Effekt auch durch eine Zugspannung des Bandes während der Wärmebehandlung erzeugen. Selbstverständlich kann man auch gleichzeitig ein Längsfeld und eine Zugspannung verwenden.
  • Während man zum Einsatz in Diebstahlsicherungssystemen mit einem amorphen Band auskommt, sind für Zwecke der Identifikation von Waren unterschiedlich reagierende Bänder oder Drähte in einem Streifen anzuordnen, oder es sind mehrere Streifen mit der identifizierten Ware zu verbinden.
  • Für das genannte Ausführungsbeispiel zeigt Fig. 2 die Impulshöhe U in mV abhängig von dem das amorphe Band 6 durchfließenden Strom I in mA. Zur Erzielung einer möglichst hohen Impulshöhe in einer Abfragespule ist es erforderlich, bestimmte Werte für das Längsfeld einzustellen, die allerdings von dem Strom aus der Stromquelle 5 und von dem Querschnitt des amorphen Bandes 6 abhängen.
  • Fig. 3 zeigt für den Fall, daß ein Strom I = 450 mA durch das amorphe Band 6 fließt, daß sich das amorphe Band 25 sec in dem Ofen 7 aufhält und daß in dem Ofen eine Temperatur von T = 300°C herrscht, die Höhe des gemessenen Impulses (Spannung U in mV) gegenüber der Feldstärke H(LF) des Längsfeldes in A/cm.
  • Wesentlich für die Impulshöhe bei der Anwendung des amorphen Drahtes mit Barkhausensprung-Effekt für Streifen von Diebstahlsicherungs- oder Identifikationssystemen ist die Form der Magnetisierungskurve, die sich beispielsweise durch das Remanenzverhältnis, definiert durch den Quotienten aus Remanenzinduktion Jr zur Sättigungsinduktion Js (jeweils gemessen in Tesla), beschreiben läßt. Es hat sich überraschenderweise herausgestellt, daß weder flache Schleifen noch rechteckige Schleifen mit entsprechend höherem Remanenzverhältnis für die Impulsbildung bei dieser Anwendung vorteilhaft sind. Obgleich das Optimum der Impulshöhe in geringem Maße auch von dem verwendeten Material und den Abmessungen des Streifens abhängt, müssen bei der Wärmebehandlung die Parameter (Längsfeld, Strom durch das Band und Bandspannung) so eingestellt werden, daß sich ein Remanenzverhältnis zwischen 0,2 und 0,9 , vorzugsweise zwischen 0,3 und 0,7 ergibt. Für das Ausführungsbeispiel entsprechend Fig. 3 wurden dazu verschiedene Wärmebehandlungen durchgeführt, die unterschiedliche Remanenzverhältnisse zur Folge hatten.
  • Das Ergebnis ist in Fig. 4 dargestellt. Es zeigt, daß bei diesem untersuchten Streifen ein Optimum von 30 mV bei einem Remanenzverhältnis von etwa 0,4 gefunden wurde.
  • Um das Remanenzverhältnis zu beeinflussen, muß man bei der Wärmebehandlung das Verhältnis von Querfeld, das sich durch den Strom im Band ergibt, zum angelegten Längsfeld variieren. Das durch den Strom auf das Band einwirkende Querfeld nimmt in der Bandmitte den Wert Null an und steigt dann linear bis zum Maximum an der Bandoberfläche.
  • Um das besonders vorteilhafte Remanenzverhältnis zwischen 0.3 und 0.7 zu erreichen, muß man das Verhältnis von maximalem Querfeld zu Längsfeld im Bereich von 1 bis 10 bei der Wärmebehandlung einhalten.
  • In Fig. 5 ist nun zum Vergleich des erfindungsgemäßen Streifens mit einem Streifen, dessen Impulsverhalten durch innere Spannungen bestimmt ist (US 4 660 025), die Impulsspannung U und die Feldstärke H über der Zeit t in sec aufgetragen, wenn man die Feldstärke H entsprechend Kurve H1 kontinuierlich erhöht. Dabei zeigt die Kurve U1 die Spannung, die sich bei Verwendung eines amorphen Drahtes ergibt, der eine Länge von 90 mm und einen Durchmesser von 0,13 mm besitzt, im Vergleich zu dem Spannungsverlauf entsprechend der Kurve U2 bei Verwendung eines erfindungsgemäßen amorphen Bandes mit den Abmessungen: Breite: 2 mm, Dicke: 23 µm und der gleichen Länge von 90 mm. Man sieht, daß die Spitzenspannung des Impulses bei dem erfindungsgemäßen amorphen Band bei einer höheren Feldstärke auftritt, sich aber ein wesentlich höherer Spannungsimpuls und eine steile Flanke beim Anstieg der Spannung ergibt. Die Messungen zeigen, daß der Spannungsimpuls bei dem erfindungsgemäßen amorphen Band etwa 120 mV beträgt, während mit dem Amorphdraht eine maximale Spannungsamplitude von 30 mV erzielbar war.
  • Besonders vorteilhafte Legierungen für die vorgesehene Anwendung ergeben sich, wenn ein Kobalt-Anteil zwischen 60 und 85 at.-% vorgesehen wird und wenn der Eisen/Mangan-Anteil, der die Magnetostriktionskonstante bestimmt, im Bereich von 1 bis 10 at.-% so gewählt ist, daß sich eine möglichst niedrige Magnetostriktion, vorzugsweise unter ±4 x 10-6 ergibt.
  • Zur Ermittlung vorteilhafter Legierungen für den vorliegenden Anwendungsfall sind Legierungen auszuwählen, die der folgenden Formel genügen: Coa Nib (Fe,Mn)c (Si,B,X)d mit in at.-%:
    a = 20 - 85; b = 0 - 50; c = 0 - 15 und d = 15 - 30, wobei a + b + d + c = 100
    Figure imgb0003
    ist. Dabei bezeichnet X entweder eines oder mehrere der Übergangsmetalle der Gruppen IIIB-VIB wie z. B. Nd, Mo, Ta, W, V etc. und/oder eines oder mehrere Elemente der Hauptgruppen IIIA-VA, wie z. B. C, P, Ge.
  • Durch Dauermagnete läßt sich nicht nur die Ansprechfeldstärke abhängig von der Ummagnetisierungsrichtung verändern, sondern es ist - wie bei bekannten weichmagnetischen Streifen - auch möglich, durch einen etwas stärkeren Dauermagneten, den Streifen zu sättigen und so das Impulsverhalten auszuschalten. Hierdurch kann ein deaktivierbarer Sicherungsstreifen erhalten werden.
  • Vorteilhafte Abmessungen für das amorphe Band, das in dem erfindungsgemäßen Streifen entweder allein oder zusammen mit anderen Materialien enthalten ist, ergeben sich bei einer Länge bis zu 100 mm, wenn eine Breite bis 5 mm und eine Dicke mit max. 50 µm für das Band bzw. den Durchmesser des Drahtes vorgesehen wird. Es sind aber auch kürzere Streifen bei noch ausreichender Impulshöhe möglich. Hier liegen die vorteilhaften Abmessungen bei einer Länge bis zu 60 mm darin, daß man eine Breite bis zu 3 mm und eine Banddicke bis höchstens 40 µm verwendet.
  • Mit diesen Abmessungen lassen sich auch Streifen mit Längen unter 40 mm herstellen. Vorteilhafterweise stellt man die Schaltfeldstärke um so höher ein, je kürzer der Streifen ist. Sie kann beispielsweise bei einem Streifen bis 40 mm maximal 1,5 A/cm, bei einem Streifen von bis zu 60 mm maximal 1,0 A/cm und bei einem Streifen von bis zu 100 mm maximal 0,75 A/cm betragen.
  • Falls anstelle eines Bandes ein Draht verwendet wird, kann dieser nach der Herstellung durch Rascherstarrung durch mechanisches Verformen im Querschnitt vermindert und auch verändert werden, indem z. B. ein flachgewalzter Draht mit rechteckigem oder elliptischem Querschnitt angewendet wird.
  • In einer Weiterbildung der vorliegenden Erfindung kann die Signalhöhe gesteigert werden, indem bei getemperten Bändern für kurze Streifenlängen, das heißt für Streifenlängen zwischen 20 und 40mm, an deren Enden Längsstreifen aus einem weichmagnetischen Material angeordnet werden. Dadurch wird eine Steigerung der Signalhöhe bis zum Faktor 10 erreicht. Bei ungetemperten Bändern wird die Signalhöhe um ungefähr das 1- bis 2-fache gesteigert.
  • Der Abstand zwischen den Streifen sollte 10mm nicht unterschreiten. Die maximale Impulshöhe, das heißt die optimale Position hängt im einzelnen von der Streifenlänge des amorphen Bandes und den Abmessungen der weichmagnetischen Streifen ab.
  • Ein guter direkter Kontakt zwischen den amorphen Bändern und den weichmagnetischen Streifen ist unabdingbar, wobei ein Außendruck durch einen Klebestreifen ausreicht.
  • Ebenfalls wird eine deutliche Signalanhebung erreicht, indem jeweils zwei weichmagnetische Streifen an den jeweiligen Enden des amorphen Bandes oberhalb und unterhalb angeordnet werden.

Claims (24)

  1. Längsgestreckter Körper für elektromagnetische Diebstahlsicherungs- oder Identifikationssysteme mit einem Streifen aus amorphem Material, der bei Ummagnetisierung in einer Abfragezone mit einem magnetischen Wechselfeld durch Barkhausensprünge bei Erreichen bestimmter Schwellwerte des Magnetfeldes plötzlich ummagnetisiert wird und dadurch in einer Abtragespule charakteristische Spannungsimpulse auslöst, dadurch gekennzeichnet , daß ein Streifen verwendet wird, der aus einem amorphen Material mit einem Kobalt-Anteil von mindestens 20 at-% besteht und seine Eigenschaft zur impulsförmigen Ummagnetisierung durch eine Wärmebehandlung zur Einstellung der magnetischen Anisotropie bei stromdurchflossenem Streifen erhält, und daß der Strom durch den Streifen in Verbindung mit der Temperatur und der Behandlungsdauer der Wärmebehandlung so eingestellt wird, daß sich ein Verhältnis von Remanenzinduktion zu Sättigungsinduktion zwischen 0,2 und 0,9 ergibt.
  2. Verfahren zur Herstellung eines Streifens nach Anspruch 1, dadurch gekennzeichnet , daß ein durch Rascherstarrung hergestelltes, amorphes Band (6) in einem Ofen (7) mit Längsfeld bei in Längsrichtung durch das Band (6) fließendem Strom wärmebehandelt wird.
  3. Verfahren zur Herstellung eines Streifens nach Anspruch 1 oder 2, dadurch gekennzeichnet , daß ein durch Rascherstarrung hergestelltes, amorphes Band (6) in einem Ofen (7) unter Zugspannung bei in Längsrichtung durch das Band (6) fließendem Strom wärmebehandelt wird.
  4. Verfahren nach Anspruch 2 bis 3, dadurch gekennzeichnet , daß das Band erst nach der Wärmebehandlung in einzelne Streifen geschnitten wird.
  5. Längsgestreckter Körper nach Anspruch 1, dadurch gekennzeichnet , daß ein Streifen verwendet wird, dessen Verhältnis von Remanenzinduktion zu Sättigungsinduktion im Bereich von 0.3 bis 0.7 liegt.
  6. Längsgestreckter Körper nach Anspruch 1, dadurch gekennzeichnet , daß das Material für den Streifen aus einer Legierung besteht, die der Formel CoaNib(Fe,Mn)c(Si,B,X)d genügt, wobei in at-%:
    a = 20-85; b = 0-50; c = 0-15 und d = 15-30, wobei a + b + d + c
    Figure imgb0004
    einschließlich üblicher Verunreinigungen gleich 100 und X eines oder mehrere der Übergangsmetalle der Gruppen IIIB-VIB, insbesondere Nb, Mo, Ta, W, V und/oder eines oder mehrere Elemente der Hauptgruppen IIIA-VA, insbesondere C, P, Ge bezeichnet.
  7. Längsgestreckter Körper nach Anspruch 6, dadurch gekennzeichnet , daß der Kobalt-Anteil der für den Streifen verwendeten Legierung größer als 40 at-% ist.
  8. Längsgestreckter Körper nach Anspruch 6, dadurch gekennzeichnet , daß der Kobalt-Anteil der für den Streifen verwendeten Legierung größer als 60 at-% ist.
  9. Längsgestreckter Körper nach Anspruch 6, dadurch gekennzeichnet , daß in der Legierung für den Streifen Eisen und/oder Mangan im Bereich von 1 bis 10 at-% enthalten ist.
  10. Längsgestreckter Körper nach Anspruch 1, dadurch gekennzeichnet, daß er aus einem Streifen aus amorphem Material mit impulsförmigem Ummagnetisierungsverhalten und einem oder mehreren zweiten weichmagnetischen Streifen, deren Magnetisierungsrichtung sich bei Ummagnetisierung kontinuierlich umkehrt, besteht.
  11. Längsgestreckter Körper nach Anspruch 10, dadurch gekennzeichnet , daß zur Erhöhung der Impulshöhe ein weichmagnetisches Material verwendet wird, dessen Koerzitivfeldstärke unterhalb von 30 mA/cm liegt und daß der Querschnitt multipliziert mit der Sättigungsinduktion höher ist als der Remanenzfluß des Streifens mit Impulsverhalten.
  12. Längsgestreckter Körper nach Anspruch 10 oder 11, dadurch gekennzeichnet , daß die Länge des weichmagnetischen Streifens größer als diejenige des Streifens mit Impulsverhalten ist und daß der weichmagnetische Streifen so angeordnet ist, daß er den Streifen mit Impulsverhalten an beiden Enden überragt.
  13. Längsgestreckter Körper nach Anspruch 1, dadurch gekennzeichnet, daß er aus einem oder mehreren Streifen besteht, die aus Legierungen mit einer Magnetostriktion unter ± 4 x 10-6 bestehen, so daß das Ummagnetisierungsverhalten bestehen bleibt, wenn er mechanischen Spannungen ausgesetzt wird.
  14. Längsgestreckter Körper nach Anspruch 3, dadurch gekennzeichnet, daß er einen amorphen Streifen mit Impulsverhalten enthält, der aus einer Legierung mit einer positiven Magnetostriktion besteht.
  15. Längsgestreckter Körper nach Anspruch 1, dadurch gekennzeichnet , daß er aus einem amorphen Streifen mit impulsförmigem Ummagnetisierungsverhalten und einem mit dem Streifen verbundenen hartmagnetischen Körper zur Vormagnetisierung besteht, dessen Magnetfeld so dimensioniert ist, daß sich abhängig von der Magnetisierungsrichtung des Streifens durch das Wechselfeld in der Abfragezone unterschiedliche Schwellwerte (Schaltfeldstärken) für die impulsförmige Ummagnetisierung einstellen.
  16. Längsgestreckter Körper nach Anspruch 1, 10 oder 15, dadurch gekennzeichnet, daß er zusätzlich mindestens einen Dauermagnet enthält, der im aufmagnetisierten Zustand eine Deaktivierung durch Sättigung des amorphen Bandstückes bewirkt.
  17. Längsgestreckter Körper nach Anspruch 1, dadurch gekennzeichnet, daß der verwendete amorphe Streifen eine Länge von bis zu 100 mm, eine Breite < 5 mm und eine Dicke mit maximal 50 µm besitzt.
  18. Längsgestreckter Körper nach Anspruch 1, dadurch gekennzeichnet , daß der verwendete amorphe Streifen eine Länge bis zu 60 mm, eine Breite bis zu 3 mm und eine Banddicke bis höchstens 40 µm aufweist.
  19. Längsgestreckter Körper nach Anspruch 1, dadurch gekennzeichnet , daß der verwendete amorphe Streifen eine Länge bis zu 40 mm, eine Breite bis 3 mm und eine Banddicke bis zu 40 µm aufweist.
  20. Längsgestreckter Körper nach Anspruch 17, dadurch gekennzeichnet , daß die Schaltfeldstärke unter 0,75 A/cm liegt.
  21. Längsgestreckter Körper nach Anspruch 18, dadurch gekennzeichnet , daß die Schaltfeldstärke unter 1,0 A/cm liegt.
  22. Längsgestreckter Körper nach Anspruch 19, dadurch gekennzeichnet , daß die Schaltfeldstärke unter 1,5 A/cm beträgt.
  23. Längsgestreckter Körper nach Anspruch 1, dadurch gekennzeichnet , daß als amorpher Streifen ein Draht mit rundem oder elliptischem Querschnitt verwendet wird.
  24. Verfahren zur Herstellung eines Streifens für einen längsgestreckten Körper nach Anpruch 1 bis 3, dadurch gekennzeichnet , daß der Strom durch den Streifen bei der Wärmebehandlung im Verhältnis zum einwirkenden Längsfeld so eingestellt wird, daß das Verhältnis von maximalem Querfeld zu Längsfeld im Bereich von 1 bis 10 liegt.
EP96113005A 1995-09-09 1996-08-13 Längsgestreckter Körper als Sicherungsetikett für elektromagnetische Diebstahlsicherungssysteme Expired - Lifetime EP0762354B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19533362A DE19533362A1 (de) 1995-09-09 1995-09-09 Längsgestreckter Körper als Sicherungsetikett für elektromagnetische Diebstahlsicherungssysteme
DE19533362 1995-09-09

Publications (2)

Publication Number Publication Date
EP0762354A1 true EP0762354A1 (de) 1997-03-12
EP0762354B1 EP0762354B1 (de) 2000-11-15

Family

ID=7771697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96113005A Expired - Lifetime EP0762354B1 (de) 1995-09-09 1996-08-13 Längsgestreckter Körper als Sicherungsetikett für elektromagnetische Diebstahlsicherungssysteme

Country Status (6)

Country Link
US (1) US5757272A (de)
EP (1) EP0762354B1 (de)
JP (1) JPH09148117A (de)
DE (2) DE19533362A1 (de)
DK (1) DK0762354T3 (de)
ES (1) ES2152463T3 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949598A2 (de) * 1998-04-08 1999-10-13 Meto International GmbH Element für die elektronische Artikelsicherung
US7979173B2 (en) * 1997-10-22 2011-07-12 Intelligent Technologies International, Inc. Autonomous vehicle travel control systems and methods
EP2021752A4 (de) * 2006-05-09 2015-03-18 Thermal Solutions Inc Temperatursensoren mit magnetelement
CN104882239A (zh) * 2015-06-03 2015-09-02 山东大学 一种使Fe78Si9B13非晶饱和磁化强度提高和矫顽力降低的方法
CN112008053A (zh) * 2020-08-27 2020-12-01 燕山大学 一种合金的制备装置及电流施加方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2216897A1 (en) * 1996-09-30 1998-03-30 Unitika Ltd. Fe group-based amorphous alloy ribbon and magnetic marker
DE19653428C1 (de) * 1996-12-20 1998-03-26 Vacuumschmelze Gmbh Verfahren zum Herstellen von Bandkernbändern sowie induktives Bauelement mit Bandkern
US6254695B1 (en) * 1998-08-13 2001-07-03 Vacuumschmelze Gmbh Method employing tension control and lower-cost alloy composition annealing amorphous alloys with shorter annealing time
DE19918589A1 (de) * 1999-04-23 2000-10-26 Vacuumschmelze Gmbh Magnetischer Markierstreifen und Verfahren zur Herstellung eines magnetischen Markierstreifens
JP4128721B2 (ja) * 2000-03-17 2008-07-30 株式会社東芝 情報記録物品
GB2374084A (en) * 2001-04-03 2002-10-09 Fourwinds Group Inc Alloys having bistable magnetic behaviour
US6830634B2 (en) * 2002-06-11 2004-12-14 Sensormatic Electronics Corporation Method and device for continuous annealing metallic ribbons with improved process efficiency
ES2238913B1 (es) * 2003-10-09 2006-11-01 Micromag 2000, S.L. Microhilo amorfo y metodo para su fabricacion.
EP1724708B1 (de) * 2005-04-26 2016-02-24 Amotech Co., Ltd. Magnetisches Blech für RFID-Antenne und ihr Herstellungsverfahren
US7771545B2 (en) * 2007-04-12 2010-08-10 General Electric Company Amorphous metal alloy having high tensile strength and electrical resistivity
JP5351956B2 (ja) * 2008-04-18 2013-11-27 メトグラス・インコーポレーテッド 遠隔温度検知デバイス及びそれに関連する遠隔温度検知方法
EP2269017A4 (de) * 2008-04-18 2013-09-25 Metglas Inc Temperatursensor und diesbezügliches ferntemperaturerfassungsverfahren
CN108072777A (zh) * 2016-11-15 2018-05-25 刘伟华 防窃电装置
CN107949261B (zh) * 2017-11-15 2020-03-03 中国科学院宁波材料技术与工程研究所 一种电磁波吸收材料及其制备方法
US20200029396A1 (en) * 2018-06-12 2020-01-23 Carnegie Mellon University Thermal processing techniques for metallic materials
CN116313357B (zh) * 2023-05-11 2023-07-28 广汽埃安新能源汽车股份有限公司 一种非晶纳米晶软磁合金、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614203A (ja) * 1984-06-19 1986-01-10 Hitachi Metals Ltd Co基アモルフアス磁心およびその熱処理方法
US4660025A (en) * 1984-11-26 1987-04-21 Sensormatic Electronics Corporation Article surveillance magnetic marker having an hysteresis loop with large Barkhausen discontinuities
WO1988003699A1 (en) * 1986-11-03 1988-05-19 Allied Corporation Near-zero magnetostrictive glassy metal alloys for high frequency applications
JPS63240003A (ja) * 1987-03-27 1988-10-05 Kaneo Mori 非晶質金属細線及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802854A (en) * 1973-03-19 1974-04-09 Akad Wissenschaften Ddr Process for forming magnetic metal deposits on a flexible base for use as information data carrier product thereof
US4298862A (en) * 1979-04-23 1981-11-03 Allied Chemical Corporation Amorphous antipilferage marker
DE2933337A1 (de) * 1979-08-17 1981-03-26 Robert Bosch Gmbh, 70469 Stuttgart Geber zur erzeugung von elektrischen impulsen durch spruenge in der magnetischen polarisation sowie verfahren zur herstellung desselben
JPS58213857A (ja) * 1982-06-04 1983-12-12 Takeshi Masumoto 疲労特性に優れた非晶質鉄基合金
US4823113A (en) * 1986-02-27 1989-04-18 Allied-Signal Inc. Glassy alloy identification marker
DE3729418A1 (de) * 1987-09-03 1989-03-16 Vacuumschmelze Gmbh Spulenkern fuer eine induktive, frequenzunabhaengige schaltvorrichtung
DE3824075A1 (de) * 1988-07-15 1990-01-18 Vacuumschmelze Gmbh Verbundkoerper zur erzeugung von spannungsimpulsen
US5568125A (en) * 1994-06-30 1996-10-22 Sensormatic Electronics Corporation Two-stage annealing process for amorphous ribbon used in an EAS marker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614203A (ja) * 1984-06-19 1986-01-10 Hitachi Metals Ltd Co基アモルフアス磁心およびその熱処理方法
US4660025A (en) * 1984-11-26 1987-04-21 Sensormatic Electronics Corporation Article surveillance magnetic marker having an hysteresis loop with large Barkhausen discontinuities
WO1988003699A1 (en) * 1986-11-03 1988-05-19 Allied Corporation Near-zero magnetostrictive glassy metal alloys for high frequency applications
JPS63240003A (ja) * 1987-03-27 1988-10-05 Kaneo Mori 非晶質金属細線及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARAGONESES P ET AL: "INFLUENCE OF THE THERMAL TREATMENTS AND MECHANICAL STRESS ON THE MAGNETIC BISTABLE BEHAVIOUR IN A CO-SI-B AMORPHOUS WIRE", IEEE TRANSACTIONS ON MAGNETICS, vol. 29, no. 6, 1 November 1993 (1993-11-01), pages 3475 - 3477, XP000429386 *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 141 (E - 406) 24 May 1986 (1986-05-24) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 046 (E - 711) 2 February 1989 (1989-02-02) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7979173B2 (en) * 1997-10-22 2011-07-12 Intelligent Technologies International, Inc. Autonomous vehicle travel control systems and methods
EP0949598A2 (de) * 1998-04-08 1999-10-13 Meto International GmbH Element für die elektronische Artikelsicherung
DE19815583A1 (de) * 1998-04-08 1999-10-14 Meto International Gmbh Element für die elektronische Artikelsicherung oder für die Sensortechnik
EP0949598A3 (de) * 1998-04-08 2000-11-22 Meto International GmbH Element für die elektronische Artikelsicherung
US6259368B1 (en) 1998-04-08 2001-07-10 Meto International Gmbh Element for securing articles electronically or for sensor technology
EP2021752A4 (de) * 2006-05-09 2015-03-18 Thermal Solutions Inc Temperatursensoren mit magnetelement
CN104882239A (zh) * 2015-06-03 2015-09-02 山东大学 一种使Fe78Si9B13非晶饱和磁化强度提高和矫顽力降低的方法
CN112008053A (zh) * 2020-08-27 2020-12-01 燕山大学 一种合金的制备装置及电流施加方法
CN112008053B (zh) * 2020-08-27 2021-09-17 燕山大学 一种合金的制备装置及电流施加方法

Also Published As

Publication number Publication date
JPH09148117A (ja) 1997-06-06
US5757272A (en) 1998-05-26
EP0762354B1 (de) 2000-11-15
ES2152463T3 (es) 2001-02-01
DE59606138D1 (de) 2000-12-21
DK0762354T3 (da) 2001-02-05
DE19533362A1 (de) 1997-03-13

Similar Documents

Publication Publication Date Title
EP0762354B1 (de) Längsgestreckter Körper als Sicherungsetikett für elektromagnetische Diebstahlsicherungssysteme
DE3509160C2 (de) Markierungselement für ein System zur Überwachung von Gegenständen
DE3541536C2 (de)
DE69835961T2 (de) Verfahren zum glühen von amorphen bändern und etikett für elektronisches überwachungssystem
DE69732117T2 (de) Magnetomechanisches elektronisches Warenüberwachungsetikett mit niedriger körzivität magnetisch polarisiertem Element
DE3229334C2 (de) Verfahren zur Auswahl von Anzeigeelementen für die Verwendung in einem Diebstahlerfassungssystem
DE3837129A1 (de) Marker zur verwendung bei einer artikel-ueberwachungsanlage und verfahren zur herstellung des markers
EP0226812B1 (de) Deaktivierbares Sicherungsetikett für Diebstahlsicherungssysteme
DE69827258T2 (de) Amorphe, magnetostriktive legierung mit niedrigem kobaltgehalt und glühverfahren
DE29620769U1 (de) Metallglaslegierungen für mechanisch Resonanz erzeugende Markierungsüberwachungssysteme
DE69208882T2 (de) Verfahren zur Veränderung der Resonanzcharakteristik eines Legierungsmetallstreifens und Verwendung eines solchen Streifens als Marker
DE3824075C2 (de)
EP0871945B1 (de) Anzeigelement für die verwendung in einem magnetischen diebstahlsicherungssystem
EP0939943A1 (de) Anzeigeelement für die verwendung in einem magnetischen diebstahlsicherungssystem
EP0446638A1 (de) Deaktivierbarer Diebstahlsicherungsstreifen
DE69830477T2 (de) Magnetostriktives element mit optimierter polarisationsfeldabhängiger resonanzfrequenzcharakteristik
EP0789340B1 (de) Sicherungselement für die elektronische Artikelsicherung
EP1047032B1 (de) Magnetischer Markierstreifen und Verfahren zur Herstellung eines magnetischen Markierstreifens
EP0949598A2 (de) Element für die elektronische Artikelsicherung
DE69837528T2 (de) Magnetisches etikett
DE2920084A1 (de) Impulsgeber fuer die abfrage durch ummagnetisierung
DE60007781T2 (de) Deaktivierungselement für magnetische überwachungsmarker und herstellungsverfahren
DE2839046C2 (de)
DE60123756T2 (de) Magnetischer markierer und seine herstellung
EP0447793B1 (de) Deaktivierbares Sicherungsetikett

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB IE IT NL SE

17P Request for examination filed

Effective date: 19970404

17Q First examination report despatched

Effective date: 19991004

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IE IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001115

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20001115

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59606138

Country of ref document: DE

Date of ref document: 20001221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2152463

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010215

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20001115

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20050825

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050829

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20060824

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070813

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140924

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606138

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301