CN107949261B - 一种电磁波吸收材料及其制备方法 - Google Patents

一种电磁波吸收材料及其制备方法 Download PDF

Info

Publication number
CN107949261B
CN107949261B CN201711132144.2A CN201711132144A CN107949261B CN 107949261 B CN107949261 B CN 107949261B CN 201711132144 A CN201711132144 A CN 201711132144A CN 107949261 B CN107949261 B CN 107949261B
Authority
CN
China
Prior art keywords
layer
absorber layer
electromagnetic wave
wave absorbing
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711132144.2A
Other languages
English (en)
Other versions
CN107949261A (zh
Inventor
陈淑文
胡仁超
满其奎
谭果果
常春涛
王新敏
李润伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201711132144.2A priority Critical patent/CN107949261B/zh
Publication of CN107949261A publication Critical patent/CN107949261A/zh
Application granted granted Critical
Publication of CN107949261B publication Critical patent/CN107949261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15391Elongated structures, e.g. wires

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种电磁波吸收材料,包含反射背衬层和至少一层的吸收体层,所述吸收体层包含等间距网格状正交排布的铁磁性非晶丝材。同时公开了所述的电磁波吸收材料的制备方法,包括:(1)将铁磁性非晶丝材等间距网格状正交排布,并利用粘结剂附着于基体表面或内部制备得到单层吸收体层;(2)依次构建反射背衬层和吸收体层。本发明利用铁磁性非晶丝材形成的网格间距和吸收体层层间距变化进行结构调控,从而实现电磁波的高效吸收。

Description

一种电磁波吸收材料及其制备方法
技术领域
本发明涉及电磁波吸收材料领域,具体地涉及一种轻质高效电磁波吸收材料及其制备方法。
背景技术
随着现代信息传递和处理速度的不断提升,大量电磁波辐射导致电磁波与电子器件间的干扰问题日益严重,不可避免对信息安全和人体健康造成危害。而微波吸收材料是通过将入射的电磁波转换为热能损耗掉或者改变电磁波相位使其干涉相消两种手段实现吸波的。目前X波段(8-12GHz)广泛应用于军事和民用空间通讯、探测卫星,对国家安全和社会发展具有重大意义,因而开发X波段防电磁干扰和吸波材料显得尤为迫切。
采用铁磁性非晶丝作为吸波剂可以突破传统吸波材料吸波效能低、面密度大的缺点。此外,磁性非晶丝除了有良好的吸波能力外,对结构材料起到承载强化的作用,因此将其均匀分散在具有承载加工能力材料中做成结构型吸波材将不增加多余的体积和质量,这在军事和民用领域均有重大应用前景。
国内外对于铁磁性非晶丝作为电磁波吸波材料吸收剂鲜有报道,如公开号为CN101740143 A的中国发明专利文献公开了一种含有非晶纤维的电磁波吸收材料及其制备方法,该电磁波吸收材料包括非晶纤维作为吸波组分且为短切纤维,通过筛分的方式将非晶纤维无序散布在基体材料。
而公开号为CN 101901660 A的中国发明专利文献公开了一种含有非晶丝材的电磁波吸收材料及其制备方法,该专利采用的是连续玻璃包覆非晶丝,通过绕线的方式将非晶丝材单根等间距平行排列在基体材料上。
公开号为CN 106288961 A的中国发明专利文献公开了一种可以利用外场对材料吸波性能进行调谐的智能吸波织物,该吸波织物中含有玻璃包非晶纤维,玻璃包非晶纤维直接混入基体材料。
以上现有技术非晶丝均未引入结构设计理念,制备方法单一,无法实现对吸收峰位置和强度的有效调控。
发明内容
针对现有技术的不足,本发明的目的在于提供一种X波段高效轻质电磁波吸收材料及其制备方法。
本发明的具体技术方案如下:
一种电磁波吸收材料,包含反射背衬层和至少一层吸收体层,所述吸收体层包含等间距正交排列构成的铁磁性非晶丝材。
所述的铁磁性非晶丝材为玻璃包覆铁磁性非晶丝和铁磁性非晶裸丝中的至少一种,所述铁磁性非晶裸丝的组成如式(I)所示:
CoaFebBcSidNbe (I)
其中,20≤a≤70,20≤b≤70,15≤c≤35,1≤d≤10,1≤e≤9,且a+b+c+d+e=100,a、b、c、d、e为对应原子的原子百分比。
所述的铁磁性非晶丝材的直径≤70μm。作为优选,所述的铁磁性非晶丝材的直径为10~60μm。由于形状各向异性和高频交变磁场下趋肤效应的存在,电磁波集中仅作用于铁磁性非晶丝材表面,铁磁性非晶丝材直径的增加不利于有效磁导率和共振频率的提升。
所述的铁磁性非晶丝材形成的网格间距为1~3.5mm。铁磁性非晶丝材形成的网格间距会影响电磁波吸收材料的反射损耗值,可以通过调节网格间距来调控实现电磁波的高效吸收,作为优选,铁磁性非晶丝材形成的网格间距为1.8~3.0mm,进一步优选,铁磁性非晶丝材形成的网格间距为2.0~2.8mm。
所述的反射背衬层的材料为导电金属。作为优选,所述反射背衬层的材料为铜箔、铝箔和银箔中的一种或其任意组合。
吸收体层的层数会影响电磁波吸收材料的吸波性能,作为优选,所述吸收体层的层数为1~2层。
当吸收体层为单层时,反射背衬层和吸收体层的间距为0~1mm,此间距下X波段最低反射损耗值≤-5dB;反射背衬层和吸收体层的间距会影响电磁波吸收材料的反射损耗值,作为优选,反射背衬层和吸收体层的间距为0.1~0.6mm;进一步优选,反射背衬层和吸收体层的间距为0.1~0.3mm,该范围内电磁波吸收材料的吸波性能最好,X波段最低反射损耗值≤-15dB。
当吸收体层的层数为2时,与反射背衬层相邻的为第一吸收体层,反射背衬层和第一吸收体层的间距为0~0.7mm,反射背衬层和第一吸收体层的间距会影响电磁波吸收材料的反射损耗值,作为优选,反射背衬层和第一吸收体层的间距为0~0.3mm,进一步优选,反射背衬层和第一吸收体层的间距为0~0.1mm。
当吸收体层的层数为2时,第一吸收体层和第二吸收体层的间距为0~0.8mm。吸收体层的层间距对电磁波吸收材料的吸波性能有重要影响,作为优选,第一吸收体层和第二吸收体层的间距为0~0.4mm;进一步优选,第一吸收体层和第二吸收体层的间距为0~0.1mm,在该范围内,电磁波吸收材料的反射损耗值最佳。
优选地,所述电磁波吸收材料由反射背衬层和单层吸收体层组成,吸收体层包含网格间距为2.4mm的等间距网格状正交排布的铁磁性非晶丝材,反射背衬层和吸收体层的间距为0.1~0.3mm,在该条件下,X波段最低反射损耗值≤-15dB。
优选地,所述电磁波吸收材料由反射背衬层、第一吸收体层和第二吸收体层依次组成,第一吸收体层和第二吸收体层分别包含网格间距为2.4mm和2.8mm的等间距网格状正交排布的铁磁性非晶丝材,第一吸收体层紧贴反射背衬层的表面,第一吸收体层和第二吸收体层的间距为0~0.2mm,在该条件下,X波段最低反射损耗值≤-11dB。
优选地,所述电磁波吸收材料由反射背衬层、第一吸收体层和第二吸收体层依次组成,第一吸收体层和第二吸收体层分别包含网格间距为2.4mm和2.8mm的铁磁性非晶丝材,反射背衬层和第一吸收体层的间距为0~0.3mm,第一吸收体层和第二吸收体层紧密贴合,随着反射背衬层和第一吸收体层的间距增加,反射损耗曲线由开始的单吸收峰向双吸收峰转变。
本发明还提供了一种上述电磁波吸收材料的制备方法,包括:
(1)将铁磁性非晶丝材等间距网格状正交排布,并利用粘结剂附着于基体表面或内部制备得到单层吸收体层;
(2)依次构建反射背衬层和吸收体层。
其中,铁磁性非晶裸丝采用熔融抽丝法制备;玻璃包覆铁磁性非晶丝是根据Taylor-Ulirovsky原理,通过玻璃包覆合金的熔融拉丝法制备得到。
步骤(1)中,所述的基体为硅胶、丁苯橡胶、聚氨酯、聚酯薄膜等。
与现有技术相比,本发明具有以下主要优点:
(1)所述铁磁性非晶丝材在X波段获得较强吸波效能,电磁波吸收率能达到99%;(2)所述铁磁性非晶丝材的面密度和厚度远小于现有技术,面密度≤0.2kg/m2,厚度≤0.4mm;(3)所述铁磁性非晶丝材能与结构材料结合,满足材料吸波和承载的双重功效;(4)利用铁磁性非晶丝材形成的网格间距和电磁波吸收体层层间距变化进行结构调控,从而实现电磁波的高效吸收。
附图说明
图1为本发明所得电磁波吸收材料的结构示意图;
图2为实施例1中不同网格间距条件下电磁波吸收材料的反射损耗值。
具体实施方式
以下实施例中,反射损耗随频率变化的测试方法如下:
测试仪器:N5225A矢量网络分析仪
测试方法:使用波导法测试吸波材料的反射损耗值,矩形波导的型号为国际标WR90,测试频率范围为8.20-12.5GHz,尺寸为22.86*10.16mm。
本发明所得电磁波吸收材料的结构示意图如图1所示,其中,吸收体层中铁磁性非晶丝材形成的网格间距为d,第一吸收体层和第二吸收体层的间距为t1,第一吸收体层和反射背衬层的间距为t2
铁磁性非晶裸丝的制备
将纯度99.9%以上的Co、Fe、Si、Fe-B、Fe-Nb合金按Co63Fe4B22.4Si5.6Nb5原子百分比配比,采用熔融抽丝法制备得到直径为60μm的铁磁性非晶裸丝。该体系铁磁性非晶裸丝具有优异的软磁性能,在400A/m的外场强度下饱和磁感应强度为0.54T,且兼具高的磁导率和磁各向异性。
实施例1
将得到的铁磁性非晶裸丝连续性等间距网格状正交排布,并利用双面胶附着于单层耐高温聚酯薄膜(PET膜)表面制成单层吸收体层。
单层吸收体层与反射背衬层(金属铜箔)紧密结合,通过调整吸收体层中铁磁性非晶裸丝形成的网格间距d构建不同的电磁波吸收材料,测试不同网格间距条件下电磁波吸收材料的反射损耗值,结果如图2所示。结果表明:随着网格间距d的增大,电磁波吸收材料的最强吸收峰强度(即最低反射损耗值)先增强后减弱,当d值为2.4mm时,最低反射损耗值达到-5.8dB。
实施例2
将组成为Co63Fe4B22.4Si5.6Nb5的铁磁性非晶裸丝按照间距d为2.4mm连续性等间距网格状正交排布,并利用双面胶附着于单层PET膜表面制成单层吸收体层,对应铁磁性非晶裸丝的面密度为0.103kg/m2
通过调整吸收体层与反射背衬层(金属铜箔)的间距t2构建不同的电磁波吸收材料,测试不同间距条件下电磁波吸收材料的反射损耗值,其中间距t2的变化值分别为0、0.1、0.2、0.3、0.4、0.5和0.6mm。具体反射损耗参数见表1:
表1
间距t<sub>2</sub>(mm) 0 0.1 0.2 0.3 0.4 0.5 0.6
最强吸收峰位置(GHz) 10.5 10.4 10.2 10.0 9.8 9.6 9.5
最低反射损耗值(dB) -5.8 -15 -24.6 -17.4 -8.5 -6.8 -6.3
由表1可知,随着吸收体层与反射背衬层间距的增加,最强吸收峰的位置往低频移动,而对应的最强吸收峰强度出现先增强后减弱的趋势。当吸收体层与反射背衬层的间距为0.2mm时,最强吸收峰位置在10.2GHz,最低反射损耗值为-24.6dB。
实施例3
将实施例2制备的单层吸收体层作为第一吸收体层;
将组成为Co63Fe4B22.4Si5.6Nb5的铁磁性非晶裸丝按照间距d为2.8mm连续性等间距网格状正交排布,并利用双面胶附着于单层PET膜表面制成第二吸收体层,对应铁磁性非晶裸丝的面密度为0.082kg/m2
将第一吸收体层紧贴于反射背衬层的表面(即二者间距为0),通过调整第一吸收体层与第二吸收体层的间距t1构建不同的电磁波吸收材料,测试不同间距条件下的反射损耗值,其中间距t1的变化值分别为0、0.1、0.2、0.3和0.4mm。具体反射损耗参数见表2:
表2
间距t<sub>1</sub>(mm) 0 0.1 0.2 0.3 0.4
最强吸收峰位置(GHz) 9.7 9.6 9.4 9.1 8.8
最低反射损耗值(dB) -29.7 -16.5 -11.3 -8.2 -6.8
由表2可知,随着第一吸收体层与第二吸收体层的间距t1的增加,最佳吸收峰位置向低频移动,对应最强吸收峰强度呈现下降趋势。当第一吸收体层与第二吸收体层的间距为0mm,即第一吸收体层与第二吸收体层紧密贴合,最强吸收峰位置在9.7GHz,最强吸收峰强度为-29.7dB。
实施例4
本实施例电磁波吸收材料中,反射背衬层、第一吸收体层和第二吸收体层的组成与实施例3相同。
根据实施例3的结果,选取t1为0mm作为第一吸收体层与第二吸收体层的间距,即第一吸收体层与第二吸收体层紧密贴合,再通过调整第一吸收体层与反射背衬层的间距t2构建不同的电磁波吸收材料,测试不同间距条件下的反射损耗值,其中间距t2的变化值分别为0、0.1、0.2、0.3和0.4mm。具体反射损耗参数见表3:
表3
间距t<sub>2</sub>(mm) 0 0.1 0.2 0.3 0.4
最强吸收峰1位置(GHz) 9.7 9.6 9.4 9.0 8.6
最强吸收峰1对应的最低反射损耗值(dB) -29.7 -13.9 -11.5 -7.8 -6.5
最强吸收峰2位置(GHz) / 10.5 10.4 10.1 9.9
最强吸收峰2对应的最低反射损耗值(dB) / -3.2 -4.7 -6.8 -5.3
由表3可知,随着第一吸收体层与反射背衬层的间距t2增加,反射损耗曲线由开始的单吸收峰向双吸收峰转变,最佳吸收峰1位置向低频移动,对应最强吸收峰强度同样呈下降趋势;最佳吸收峰2位置同样向低频移动,而对应最强吸收峰强度呈现先上升后下降的趋势。当第一吸收体层与反射背衬层的间距t2为0.3mm,最强吸收峰1位置在9.0GHz,最强吸收峰1强度(最低反射损耗值)为-7.8dB;最强吸收峰2位置在10.1GHz,最强吸收峰2强度(最低反射损耗值)为-6.8dB。

Claims (4)

1.一种电磁波吸收材料,其特征在于,所述的电磁波吸收材料由反射背衬层、第一吸收体层和第二吸收体层依次组成,反射背衬层和第一吸收体层的间距为0.1~0.4mm,第一吸收体层和第二吸收体层的间距为0mm;所述吸收体层包含等间距网格状正交排布的组成为Co63Fe4B22.4Si5.6Nb5的铁磁性非晶裸丝。
2.根据权利要求1所述的电磁波吸收材料,其特征在于,所述的铁磁性非晶裸丝的直径为10~60μm。
3.根据权利要求1所述的电磁波吸收材料,其特征在于,所述的铁磁性非晶裸丝形成的网格间距为1.8~3.0mm。
4.一种根据权利要求1~3任一项所述的电磁波吸收材料的制备方法,其特征在于,包括:
(1)将铁磁性非晶裸丝等间距网格状正交排布,并利用粘结剂附着于基体表面或内部制备得到单层吸收体层;
(2)依次构建反射背衬层和吸收体层。
CN201711132144.2A 2017-11-15 2017-11-15 一种电磁波吸收材料及其制备方法 Active CN107949261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711132144.2A CN107949261B (zh) 2017-11-15 2017-11-15 一种电磁波吸收材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711132144.2A CN107949261B (zh) 2017-11-15 2017-11-15 一种电磁波吸收材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107949261A CN107949261A (zh) 2018-04-20
CN107949261B true CN107949261B (zh) 2020-03-03

Family

ID=61932348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711132144.2A Active CN107949261B (zh) 2017-11-15 2017-11-15 一种电磁波吸收材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107949261B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740143A (zh) * 2009-12-02 2010-06-16 安泰科技股份有限公司 含有非晶纤维的电磁波吸收材料及其制备方法
CN101901660A (zh) * 2009-12-02 2010-12-01 安泰科技股份有限公司 含有非晶丝材的电磁波吸收材料及其制备方法
CN103317141A (zh) * 2013-06-17 2013-09-25 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3372117B2 (ja) * 1994-12-08 2003-01-27 ユニチカ株式会社 磁気マーカー及びその製造方法
DE19533362A1 (de) * 1995-09-09 1997-03-13 Vacuumschmelze Gmbh Längsgestreckter Körper als Sicherungsetikett für elektromagnetische Diebstahlsicherungssysteme
JP4128721B2 (ja) * 2000-03-17 2008-07-30 株式会社東芝 情報記録物品
KR100874689B1 (ko) * 2008-09-08 2008-12-18 두성산업 주식회사 방열, 전자파 차폐, 및 전자파와 충격 흡수 특성이 향상된 롤 타입 복합 시트 및 그 제조 방법
JP2014017421A (ja) * 2012-07-10 2014-01-30 Shinnippon Denpa Kyushutai:Kk アモルファス合金粉末これを用いた電磁波吸収シート材
CN104786589A (zh) * 2014-01-17 2015-07-22 北京恒维科技有限公司 一种可调谐型吸波材料
CN104327797B (zh) * 2014-10-14 2016-03-16 中国工程物理研究院化工材料研究所 一种半碳化酞菁铁吸波剂的制备方法与所得吸波剂及其应用
CN105744818A (zh) * 2016-02-03 2016-07-06 中电海康集团有限公司 一种柔性磁屏蔽和抗辐照薄膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740143A (zh) * 2009-12-02 2010-06-16 安泰科技股份有限公司 含有非晶纤维的电磁波吸收材料及其制备方法
CN101901660A (zh) * 2009-12-02 2010-12-01 安泰科技股份有限公司 含有非晶丝材的电磁波吸收材料及其制备方法
CN103317141A (zh) * 2013-06-17 2013-09-25 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Electromagnetic and microwave-absorbing properties of Co-based amorphous wire and Ce2Fe17N3-d composite》;Renchao Hu,Guoguo Tan,Xisheng Gu,Shuwen;《Journal of Alloys and Compounds》;20170928;第256页第2部分实验部分-第259页第4部分结论部分,附图1-7 *

Also Published As

Publication number Publication date
CN107949261A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
CN104993249B (zh) 单通带双侧吸波复合超材料及其天线罩和天线系统
EP1675217B1 (en) Electromagnetic radiation absorber based on magnetic microwires
CN109411892A (zh) 双频带吸波频率选择表面系统及设计方法、飞行器
CN109862769A (zh) 一种超薄超宽谱的吸波材料及其制备方法
CN107785668B (zh) 一种毫米波电磁波吸收材料及其制备方法和应用
CN102291970A (zh) 单、多频段微波吸收器
CN109586039A (zh) 一种吸/透特性石墨烯频选复合超材料周期结构及天线罩
CN107946761A (zh) 一种基于带通型频率选择表面的铁基吸波体
EP3813195B1 (en) Electromagnetic wave-absorbing metamaterial
CN101552043A (zh) 周期结构的铁磁性薄膜吸波材料
Lee et al. Enhanced microwave absorption properties of graphene/FeCoNi composite materials by tuning electromagnetic parameters
Lei et al. A flexible metamaterial based on liquid metal patterns embedded in magnetic medium for lightweight microwave absorber
CN107949261B (zh) 一种电磁波吸收材料及其制备方法
CN103296484A (zh) 一种宽频吸波的人工电磁材料
KR20130060898A (ko) 전자파 차폐필름
CN114204279A (zh) 一种电阻加载方形环超宽带吸波结构
CN111641044B (zh) 一种柔性电磁超材料及其制备方法
Xuesong et al. Investigation into wideband electromagnetic stealth device based on plasma array and radar-absorbing materials
CN202104003U (zh) 单、多频段微波吸收器
CN204156097U (zh) 加载集总元件的宽带吸波材料
CN106413362A (zh) 基于石墨烯网栅与透明导电薄膜的双向吸波透明电磁屏蔽器件
CN109219335B (zh) 宽频带吸波片及其制作方法
JP2012094764A (ja) 電磁波吸収材及びその製造方法
Wang et al. Microstructure and electromagnetic characteristics of BaTiO3/Ni hybrid particles prepared by electroless plating
JP5479614B2 (ja) 電磁波吸収体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant