EP0759686A2 - Procédé et circuit pour commander une lampe - Google Patents

Procédé et circuit pour commander une lampe Download PDF

Info

Publication number
EP0759686A2
EP0759686A2 EP96112922A EP96112922A EP0759686A2 EP 0759686 A2 EP0759686 A2 EP 0759686A2 EP 96112922 A EP96112922 A EP 96112922A EP 96112922 A EP96112922 A EP 96112922A EP 0759686 A2 EP0759686 A2 EP 0759686A2
Authority
EP
European Patent Office
Prior art keywords
lamp
circuit arrangement
information
arrangement according
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96112922A
Other languages
German (de)
English (en)
Other versions
EP0759686A3 (fr
Inventor
Franz Bernitz
Andreas Huber
Günther Hirschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0759686A2 publication Critical patent/EP0759686A2/fr
Publication of EP0759686A3 publication Critical patent/EP0759686A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • H05B41/2882Load circuits; Control thereof the control resulting from an action on the static converter
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/382Controlling the intensity of light during the transitional start-up phase
    • H05B41/388Controlling the intensity of light during the transitional start-up phase for a transition from glow to arc

Definitions

  • the invention relates to a method and a circuit arrangement for operating an electric lamp according to the preamble of patent claim 1 and according to patent claim 7.
  • Lamps in particular discharge lamps, require so-called ballasts for their operation.
  • the ballasts are each designed for a specific lamp type and can therefore only be used for this lamp type.
  • Each lamp type therefore requires a ballast specific to the lamp type.
  • a control circuit arrangement for a power circuit arrangement for the pulsed operation of a discharge lamp has already been proposed in an older German patent application P 44 13 826 of the applicant of the present patent application.
  • This control circuit arrangement which can be constructed using a microcontroller, enables the color temperature and the color rendering index to be adjusted independently of one another, as well as power regulation, without the color temperature being significantly influenced.
  • the control circuit arrangement proposed in the earlier patent application thus enables different operating modes of the same lamp.
  • the invention is based on the object of specifying a method and a circuit arrangement of the type mentioned at the outset which enable universal use, regardless of a specific lamp type.
  • a first embodiment of the method or the circuit arrangement is characterized in that the lamp type of the lamp which is respectively switched on is automatically recognized and the operation of this lamp takes place without intervention by an operator.
  • a photometric operating state of the lamp and / or an electrical operating state of the lamp and / or thermodynamic operating state of the lamp can be recognized, this operating state being clearly assigned to exactly one lamp type.
  • circuit arrangement according to the invention Due to the universal applicability of the circuit arrangement according to the invention, the need for the development, manufacture and storage of lamp-type ballasts is eliminated, so that the circuit arrangement according to the invention is characterized by relatively low costs.
  • a second embodiment of the method according to the invention or the circuit arrangement according to the invention, in which information (INF1), which designates the lamp type, can be input into the circuit arrangement, is distinguished by the advantage of inexpensive production.
  • the manufacturer can already enter the first information, for example.
  • the universally applicable circuits, which are manufactured in an identical manner, can thus be specified in a simple manner for a specific lamp type.
  • the invention not only creates a method and a circuit arrangement which enable universal use, regardless of a specific lamp type, but also enables the invention to operate a specific lamp in different operating modes.
  • an independent adjustability of the color temperature and the color rendering index as well as a power regulation or control can be provided without the color temperature being significantly influenced.
  • the different modes of operation can be set by an operator in a simple manner by operating an input device (EXSW2), possibly with a remote control transmitter.
  • a sensor can be provided which detects a photometric operating state of the lamp and / or an electrical operating state of the lamp and / or a thermodynamic operating state of the lamp, this operating state being clearly assigned to exactly one lamp type.
  • the circuit arrangement according to the invention can also be designed without a separate sensor; in this case, operating voltages and / or operating currents of the switched-on lamp or variables derived therefrom (for example the impedance of the lamp) are recorded in the power electronics circuit part (SNT) of the circuit arrangement according to the invention and the corresponding one Information (INF1), which designates the lamp type of the lamp in question, is fed to the control device.
  • SNT power electronics circuit part
  • the above-mentioned second embodiment of the circuit arrangement according to the invention has a (first) input device (EXSW1), via which the lamp-type information (INF1) is entered into the circuit arrangement.
  • This input device is designed, for example, in such a way that it detects mechanical, optical or electrical lamp-specific codes which are arranged on the lamp.
  • another advantage of this embodiment of the circuit arrangement according to the invention is that operating errors are excluded and correct detection of the information indicating the lamp type is ensured.
  • the circuit arrangement shown in FIG. 1 has a memory MEM, a control device MP, a control signal generator SG and controllable power electronics SNT and a first sensor SENS1, which can be integrated in the power electronics SNT.
  • the circuit arrangement according to the invention is connected to an energy or voltage source PS via an ON / OFF switch EXSWO, the source PS supplying the circuit components of the circuit arrangement.
  • a second sensor SENS2 is connected between the power electronics SNT and the switch EXSWO, which detects characteristic data (e.g. magnitude of the voltage, mains frequency) of the source PS and forms a signal S2 which designates this - country-specific - source characteristic data and the formation of information INF3 by the Control device MP is used. Possibly the sensor SENS2 can directly form the information INF3.
  • the information INF3 can also be input into the control device MP by an input device EXSW3.
  • the circuit arrangement is connected to an electric lamp L. It can also be connected to several lamps, in particular of the same lamp type.
  • This lamp L is, for example, a discharge lamp from Osram GmbH, Kunststoff / Germany, which can belong to different lamp types from different lamp families.
  • lamp families that can be operated within the scope of the method according to the invention or that can be operated with the circuit arrangement according to the invention are high-pressure discharge lamps, low-pressure discharge lamps, incandescent lamps (including halogen incandescent lamps).
  • the family of high-pressure discharge lamps includes lamps from Osram with the product names POWERSTAR HQI (metal halide lamp); OSRAM COLORSTAR DSX (high pressure sodium Xexon lamp), VIALOX NAV DE LUXE (high pressure sodium lamp) and SOX (high pressure sodium lamp). These lamps, each with the same product name, form a "subfamily".
  • POWERSTAR HQI metal halide lamp
  • OSRAM COLORSTAR DSX high pressure sodium Xexon lamp
  • VIALOX NAV DE LUXE high pressure sodium lamp
  • SOX high pressure sodium lamp
  • Each "subfamily" generally consists of several lamp types: the OSRAM COLORSTAR DSX subfamily consists of the lamp types DSX T 80, DSX2 T 80, DSX2 E 80 (see Osram, lighting program '94 / 95, 199 K 01 D 494 MKWI , Pages 6.06 and 6.07). These lamp types differ in their operating voltages and operating currents and operating performance as well as in their mechanical design.
  • memory MEM in association with the lamp types for which the circuit arrangement according to the invention can be used, data are stored which denote operating voltages or operating currents (amplitudes / frequencies) for the operation of the lamps which can be connected to the circuit arrangement, or data which denote control signal sequences.
  • the power electronics SNT or the signal generator SG upstream of the power electronics SNT are controlled with these control signal sequences.
  • This data is entered by the manufacturer into the memory MEM, which can be integrated in the control device MP. 8 schematically shows an example of the structure of this data stored in the memory MEM.
  • control device MP read out by the control device MP and, in cooperation with the signal generator SG connected downstream of the control device, are processed into control signals which control the power electronics SNT and thus generate the operating voltages or operating currents of the lamp L corresponding to the data.
  • the control device MP retrieves the data of a specific lamp type from the memory MEM after the type of the lamp L which has been switched on has been detected with the cooperation of the first sensor SENS1.
  • the circuit arrangement can also have a second input device EXSW 2, which is used to input a second piece of information INF2 serves.
  • This second information INF2 denotes one of several different operating modes of the same lamp L.
  • the control device MP is formed in particular by a microprocessor.
  • the control program assigned to this control device is shown in FIG. 3 for the operation of the circuit arrangement shown in FIG. 1 and is described with reference to this figure.
  • a microprocessor from SGS Thomson with the product designation ST6210 or ST6260 is used.
  • the circuit arrangement can have a control signal generator SG, which is connected downstream of the control device MP and converts signals emitted by the latter into signals with which the controllable power electronics SNT is controlled.
  • a control signal generator SG which is connected downstream of the control device MP and converts signals emitted by the latter into signals with which the controllable power electronics SNT is controlled.
  • provision can be made for the power electronics SNT to be driven directly by signals which are formed by the control device MP.
  • controllable power electronics SNT An embodiment of the controllable power electronics SNT is shown in FIG. 5 and is described with reference to this figure.
  • the sensor SENS1 shown in FIG. 1 is coupled to the lamp L.
  • the sensor SENS1 is connected to the lines that connect the power electronics to the lamp.
  • the sensor can not only detect electrical operating parameters U L , I L of the lamp, but alternatively or additionally, for example, detect photometric and / or thermodynamic operating parameters of the lamp.
  • the signal S1 formed by the sensor SENS1, which denotes, for example, a voltage U L (lamp type DSX T 80: 100 volts; lamp type DSX2 T 80: 60 volts) on the lamp L, which at a defined point in time (t 60 sec) after the supply of a current I1 (3 amperes eff; FIG. 3A) is detected, the control device MP is supplied.
  • the control device MP converts the signal S1 into information INF1 and accesses the memory MEM, it being checked whether a reference data RS1 is stored in the memory for the signal S1.
  • a plurality of reference data of a tolerance range are preferably stored in the memory MEM in order to take into account deviations specific to the lamp type (manufacturing tolerances, tolerances due to the lamp geometry (tolerances due to different installation of the lamp in lamps)). If the check shows that a reference data RS1 or signal for the signal S1 in the memory. If a plurality of reference data are stored, the control device recognizes the lamp type of the lamp L and forms the associated information INF1, which designates exactly one lamp type, namely the lamp type of the lamp L.
  • the test reveals that there is no reference data RS1 or signal for the signal S1 in the memory. If no reference data are stored, then either the current operation can be aborted or the lamp L can be operated in a special manner, which is suitable for lamps of different lamp types.
  • the advantage of a sensor SENS1, which detects electrical values of the lamp, compared to a sensor SENS1, which detects other lamp values (e.g. photometric, thermodynamic values, optical and / or mechanical codes on the lamp body), is that the connecting lines shown in Figure 1 between the sensor and the connection points between the lamp L and the power electronics MP can be routed within the circuit arrangement, while a connecting line EC between the lamp body and the sensor is to be routed outside the circuit arrangement.
  • the electrical values recorded in the power electronics are lamp type-specific values of the lamp which it forms in response to a voltage U1 applied when the lamp is started up or to a current I1 supplied when the lamp is started up.
  • the electrical values recorded in the power electronics can also be values (e.g. internal operating voltages) of the power electronics themselves, which are also lamp type-specific values of the lamp.
  • FIG. 6 exemplary embodiments for a plurality of such sensors for detecting lamp-type information are shown and are described with reference to this figure.
  • the circuit arrangement according to the invention shown in FIG. 2 represents a second embodiment and differs from the first embodiment in that the second embodiment does not have a first sensor SEN1 (FIG. 1), but rather an input device EXSW 1 which is used to input the lamp type first information INF1 is used.
  • This circuit arrangement can also have a second input device EXSW 2, which is used to input a second piece of information INF2.
  • This second information denotes INF2 an operation of the lamp.
  • the second input device EXSW2 can be formed by a remote control transmitter.
  • the circuit arrangement according to the second embodiment can also have the third input device EXSW 3, which is used to input the third information INF3.
  • This third piece of information INF3 denotes, for example, a country-specific supply voltage (amplitude / frequency), that is to say a value of the voltage of the source PS to which the circuit arrangement is connected.
  • circuit components MEM, SG and SNT in this second embodiment may be the same as the corresponding circuit components in the first embodiment shown in FIG. 1.
  • the control program assigned to the control device MP (FIG. 2) is designed to be less complex than the corresponding control program for a circuit arrangement according to FIG. 1: While in the circuit arrangement according to FIG. 1, the information INF1 indicating the lamp type is to be determined using the first sensor SENS1, in FIG Circuit arrangement according to Figure 2 this information INF1 entered by the input device EXSW1 and is in a simpler manner from the control device MP detectable.
  • the corresponding first lamp type-independent control program module PMOD1.2 (FIG. 4), which is still to be described, can thus be designed with less complexity than the first lamp type-independent control program module PMOD1.1 (FIG. 3A) for a circuit arrangement with the first sensor SENS1.
  • FIGS. 3 and 4 The flowcharts of a control program of a first and a second embodiment of the method according to the invention are now explained below with reference to FIGS. 3 and 4.
  • the first embodiment of the method according to the invention is carried out using a circuit device according to FIG. 1 and the second embodiment of the method according to the invention is carried out using a circuit arrangement according to FIG. 2.
  • the control program provided for the commissioning of lamps of different lamp types has, in particular, a lamp program-independent first program module PMOD1.1 or PMOD1.2. Furthermore, several lamp-specific PMOD2 program modules are provided for the operation of lamps of different lamp types. If, for example, the method according to the invention or the circuit arrangement according to the invention is designed for the operation of four different lamp types, the control program contains, in addition to the one lamp type-independent first program module PMOD1.1 or PMOD1.2, four different lamp type-specific second program modules PMOD2. In addition, the control program can have third program modules PMOD3. These third program modules are used to operate a particular lamp in different operating modes. A third program module is provided for each mode of operation of a lamp of a certain lamp type.
  • the switch is closed, the source PS is coupled to the power electronics SNT and at the same time the control device MP is supplied with the operating voltage.
  • the control device MP supplies the signal generator SG or the power electronics SNT with a first control signal sequence SEQ1 (FIG. 8).
  • This control signal sequence is independent of the lamp type and causes the power electronics SNT to supply a predeterminable first voltage U1 or a predefinable first current I1 to the lamp L.
  • the lamp L In response to the applied voltage U1 or in response to the supplied current I1, the lamp L forms a lamp-specific operating parameter within a predefinable time (“waiting time” t1), which is detected by the sensor SENS1. Accordingly, the first program module PMOD1.1 is designed such that after the waiting time t1 the output signal S1 of the sensor SENS1 is queried.
  • the control device now compares the output signal S1 with the lamp type-specific reference data REF-S1 1 ,..., REF-S1 n stored in the memory MEM (FIG. 8) and in this way determines the lamp type of the lamp L (to which a first piece of information INF1 is assigned is).
  • the control device then carries out method steps which are defined by a second program module PMOD2 of the control program which is assigned to the respective reference data REF-S1.
  • the control device MP accesses the control signal sequence data stored in the memory device MEM (for example SEQ2 in FIG. 8) and feeds it to the signal generator SG or the power electronics SNT, so that the lamp L has the voltage U2 or the current I2 for production of the steady state is supplied.
  • control signal sequence data are called up in succession, so that different voltages or currents are supplied to the lamp at different times in order to produce the steady-state operating state of the lamp L.
  • the switching device EXSWO When the switching device EXSWO is opened, the source PS is decoupled from the circuit, so that the operation of the lamp ends.
  • the circuit arrangement queries the second input device EXW2 and, depending on the switch position of EXSW2, forms the second information INF2 for a lamp L, whose lamp type has already been determined (INF1). As already described, provision can also be made for the second information INF2 to be entered explicitly.
  • a certain third program module PMOD3 is activated.
  • the associated control sequence data SEQ2, (FIG. 8, line with INF2 1 ) or time-shifted control sequence data SEQ2.1, SEQ2.2, SEQ2.n are retrieved from the memory MEM and supplied to the control signal generator SG or the power electronics SNT.
  • the aforementioned control sequence data each define an operating mode of a lamp type which is determined by the first information INF1 1 .
  • the power electronics SNT supplies the operating voltage U2X (U 2 , FIG. 8) or the operating current I2X (I 2 , FIG. 8) to the lamp. In this way, stationary operation is established. It can in turn be provided that several control signal sequences are called up one after the other in time, so that different voltages or currents are supplied to the lamp at different times in order to finally produce the stationary operating state of the lamp.
  • the input device EXSW2 is queried periodically in order to detect any change (new second information INF2).
  • FIG. 4 shows a first lamp module-independent program module (PMOD1.2) for a circuit arrangement according to FIG. 2, which has a first input device EXSW1 instead of a first sensor SENS1.
  • PMOD1.2 first lamp module-independent program module
  • the control device MP queries the input device EXSW1 and determines the corresponding lamp type on the basis of the switch position or on the basis of the information INF1 explicitly entered by EXSW1.
  • control device turns off the second program module PMOD 2 that is assigned to the lamp type in accordance with the information INF1.
  • the respective circuit arrangement also contains a second input device EXSW2, the third program module PMOD3 (FIG. 3B) is selected.
  • FIG. 5 shows the configuration of a circuit arrangement according to FIG. 2, but this circuit arrangement does not have the input device EXSW3 for inputting, for example, country-specific supply voltage values.
  • the circuit or functional blocks shown in FIG. 2 are also shown in FIG. 5.
  • the value e.g. for C1: 150 nF
  • the specification the type, the size, the manufacturer and the order number are given for each component .
  • This circuit arrangement is designed for different lamp types DSX2, 80, DSX2 50, DSX T 80 and DSX2 E 80 (cf. the "Lighting program '94 / 95" from Osram cited above).
  • the first input device EXSW1 (FIG. 5A) is realized in that a wire jumper is installed or not installed by the manufacturer.
  • a pin S1-16 is on the GND circuit ground, which corresponds to the lamp type DSX2 80. If pin S1-16 is not connected to the GND circuit, this corresponds to lamp type DSX2 50. By assigning pin S1-15, lamp types DSX T 80 and DSX2 E 80 are selected.
  • the second input device EXSW2 (FIG. 5B) is realized in that an external switching element, which is coupled to the source PS, is arranged on an external terminal "C", which is connected to the control device MP via R4 and R5 and J2-23 to form a current that is supplied to the control device MP.
  • "Open terminal C” means a first mode of operation of the lamp, while “closed terminal C” means a second mode of operation of the lamp.
  • control device MP is formed by a microprocessor from SGS Thomson and by a clock frequency generator (X100, C106, C105).
  • the necessary operating or reference voltage for MP is formed by IC103, C115, C114, C109 and C110.
  • the memory MEM is already integrated in the microprocessor used.
  • the signal generator SG is essentially formed by four comparators IC105A - IC105D and by three CMOS-Schmitt triggers IC102D - IC102F. The comparators adjust the output signals from MP (5 volts) to the level (15 volts) that is necessary to control the power switches T1, T2, Q2, Q3 in the power electronics SNT.
  • the components P100, R119, C117 and IC102E form a square-wave voltage oscillator, which is blanked via the diode D107 as well as C119 and R120. This oscillator frequency is switched via IC105D, D108 and C116 via MP.
  • the controllable power electronics SNT essentially corresponds to the arrangement for the pulsed operation of discharge lamps described in the earlier German patent application (P 44 13 826) already mentioned.
  • the power electronics SNT has the function blocks mains input or radio interference suppression filter EF, harmonic correction filter (power factor corrector) PFC, 2 half-bridge arrangements HB1, HB2 and supply voltage block.
  • the radio interference filter EF has a known conventional structure and is therefore not described in detail.
  • the filter PFC contains a rectifier bridge D1-D4 and a step-up converter Q1, L3 and D5 of known design and generates a stabilized DC voltage of 420V at its output.
  • the half-bridge arrangement includes a first half-bridge with two MOS-FET transistors Q2, Q3 connected in series in parallel with the output of the filter PFC to generate a simmer phase.
  • the two transistors Q2, Q3 are controlled by means of a driver from IC2, which is connected to the signal generator SG (via pins I2-4, J2-6).
  • a second half bridge HB2 with two power transistors T1, T2 and free-wheeling diodes D6, D7 connected in series is connected in parallel with the first half bridge HB1. These two transistors are controlled by means of a driver LC1, which is connected to the signal generator SG via the pins J2-22 and J2-20.
  • a current-limiting inductance for Simmer operation is connected between the center tap M2 of the two MOS-FET transistors for the simmer phase and the center tap M1 of the power transistors T1, T2.
  • a current-limiting inductance L5 for the pulse phase and the lamp L is connected in series between the center tap M1 of the power transistors T1, T2 and the center tap M3 of the two electrolytic capacitors C1, C2.
  • the pulse ignition circuit consists of a series connection of a capacitor C7, a winding L5 'and a switching spark gap FS1. This is connected on the one hand to the positive input of the double half-bridge HB1-HB2 and via a resistor R7 and a switch T8 to the negative input (circuit ground GND) of the double half-bridge.
  • the ignition voltage is fed into the lamp by attaching the additional winding L5 'to the current-limiting inductor L5.
  • the double half-bridge HB1-HB2 makes it possible to tap a voltage (31, FIG. 12) proportional to the lamp voltage via a capacitor C11 and the resistors R21 and R210 and via the diode D104, C118 and R122 at the center tap M1 when the transistors T1, T2 are switched off, ie the simmer phase is active.
  • This voltage is fed directly to the control device MP.
  • a lamp L is connected to the power electronics SNT (terminals JL1-5, JL1-6); in principle, however, it is also possible to design the circuit arrangement according to FIGS. 1 and 2 for a plurality of lamps.
  • the sensor SENS2 is formed by the component R128 of the power electronics SNT. Resistor R128 taps the controller output voltage of block PFC, which is a measure of the operating conditions of the source PS.
  • FIG. 6 shows various exemplary embodiments of a first sensor SENS1, which is used in a circuit arrangement according to FIG. 1.
  • This sensor can be formed, for example, by a photo element PD, as is shown schematically in FIG. 6A.
  • a photodiode from Texas Instruments with the designation TIL 81 is used.
  • the sensor can, for example, also be formed by electrical resistors R3 and / or R1, R2, as is shown schematically in FIG. 6B.
  • a voltage proportional to the lamp current I L is generated at R3.
  • the sensor can be formed, for example, by a thermal sensor TS, as is shown schematically in FIG. 6C.
  • the TS sensor is formed by a commercially available nickel-chrome-nickel thermocouple (e.g. from Vacuumschmelze).
  • the first input device EXSW1 for entering lamp-type information for a circuit arrangement according to FIG. 2 can be designed as a conventional circuit element or in such a way that individual lamp-type codes arranged on the lamp are detected. Examples of this are shown in FIGS. 7A and 7B.
  • FIG. 7A schematically shows cams N which are arranged on the lamp base and, owing to their number and arrangement, form a coding which is individual to the lamp type. With the help of the cams N, electrical sensors are actuated in the lamp holder, which form the first information INF1.
  • FIG. 7B schematically shows electrical contacts C which are arranged on the lamp base and which, owing to their number and arrangement, form a coding specific to the lamp type.
  • the contacts C are tapped in the lamp holder and directly form the first information INF1.
  • Optical codes e.g. be arranged in the form of a bar code, as used in the prior art for labeling goods.
  • 6D shows such a bar code for the lamp type DSX T 80.
  • FIG. 8 shows a structure of data for controlling the lamp in association with information that specifies the lamp type and is stored in the memory MEM.
  • the data are divided into groups: a) lamp-type-specific reference data REF-S1, b) first, lamp-type-specific information INF1, c) second information INF2, d) third information, which designate different operating modes for each lamp type, and e) control sequence data SEQ, which in general form are specified, and in brackets voltage values U or current values I, the corresponding voltages or currents being supplied to the lamp.
  • the control device MP accesses the reference data RS1 when a first sensor SENS1 according to FIG. 1 is used Detection of the lamp type is provided. If, on the other hand, a first input device EXSW1 is provided (FIG. 2), the information INF1 supplied by EXSW1 is used directly - possibly in conjunction with the information INF2 - to select the control sequence data SEQ or the operating data (U or I) of the lamp.
  • FIG. 9 shows the relationship between a control signal sequence SEQ, the characteristic data of which is stored in the memory MEM, and the associated data (U, I) of the steady-state operation of the lamp L formed in one operating mode.
  • the two diagrams shown below in FIG. 9 show the course of control signal sequences (eg SEQ2, FIG. 8) that are output by the signal generator SG to the power electronics SNT (pin J2-4 or pin J2-22 in FIG. 5B, bottom left or in the middle at the entrance of SNT).
  • the two diagrams shown above in FIG. 9 show the profile of the lamp current IL or the lamp voltage UL (e.g. I2, U2), which are output by the signal generator SG to the power electronics SNT
  • the method according to the invention for operating an electric lamp of a predeterminable lamp type on a defined energy source therefore has the steps of acquiring first information INF1, which designates the lamp type of the lamp, and the step of actuating the lamp as a function of the first information, which designates the lamp type.
  • a predeterminable voltage can be used to detect the first information that denotes the lamp type U1 or a predeterminable current I1 are applied to the lamp, the first lamp-type information item being formed from the operating state of the lamp, which results in response to the application of voltage U1 or current I1.
  • information that designates a photometric, an electrical and / or a thermodynamic operating state can be used as the first piece of information.
  • the first information INF1 that designates the lamp type can be specified by an input device EXSW1, in particular by a switching element.
  • a second piece of information INF2 can be detected, which denotes one of several operating modes of the lamp after it has been put into operation, the energy supply to the lamp depending on the lamp type-specifying first information and depending on the second information that the Operation is referred to, controlled or regulated.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
EP96112922A 1995-08-18 1996-08-09 Procédé et circuit pour commander une lampe Withdrawn EP0759686A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19530485 1995-08-18
DE1995130485 DE19530485A1 (de) 1995-08-18 1995-08-18 Verfahren und Schaltungsanordnung zum Betreiben einer elektrischen Lampe

Publications (2)

Publication Number Publication Date
EP0759686A2 true EP0759686A2 (fr) 1997-02-26
EP0759686A3 EP0759686A3 (fr) 1997-12-29

Family

ID=7769850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96112922A Withdrawn EP0759686A3 (fr) 1995-08-18 1996-08-09 Procédé et circuit pour commander une lampe

Country Status (2)

Country Link
EP (1) EP0759686A3 (fr)
DE (1) DE19530485A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833548A1 (fr) * 1996-04-10 1998-04-01 Seiko Epson Corporation Ensemble lampe source de lumiere, element source de lumiere et dispositif d'affichage par projection
EP0889675A1 (fr) * 1997-07-02 1999-01-07 MAGNETEK S.p.A. Ballast électronique avec reconnaissance du type de lampe
EP0947883A2 (fr) * 1998-03-27 1999-10-06 Canon Kabushiki Kaisha Appareil et méthode d'exposition, méthode de fabrication d'un dispositif, et lampe à décharge
WO2000025554A2 (fr) * 1998-10-27 2000-05-04 Trilux-Lenze Gmbh + Co. Kg Procede et ballast pour faire fonctionner une lampe pourvue d'un tube fluorescent
DE19859253A1 (de) * 1998-12-22 2000-07-06 Bosch Gmbh Robert Schaltungsanordnung zum Betreiben einer Gasentladungslampe
EP0974787A3 (fr) * 1998-07-23 2001-11-21 MELA Industrieprodukte GmbH Lampe, boítier notamment pour une lampe et dispositif de fixation pour le montage d'un élément fonctionnel dans le boítier
DE10013273A1 (de) * 2000-03-17 2002-01-31 Trilux Lenze Gmbh & Co Kg Elektronisches Vorschaltgerät für eine elektrische Lampe und Verfahren zur Ansteuerung desselben
WO2003069963A1 (fr) * 2002-02-18 2003-08-21 Tridonicatco Gmbh & Co. Kg Capteur de lampe pour ballast concu pour faire fonctionner une lampe a decharge gazeuse
DE10204059A1 (de) * 2002-01-31 2003-08-21 B & S Elektronische Geraete Gm Steuereinrichtung für den Betrieb einer Mehrzahl von Leuchten
EP1363451A1 (fr) * 2002-05-16 2003-11-19 NEC Viewtechnology, Ltd. Projecteur et méthode de traitement de l'information relative à la lampe utilisée pour ce projecteur
NL1025713C2 (nl) * 2004-03-12 2005-09-13 Nedap Nv Identificatiesysteem voor TL-buizen.
WO2008074664A1 (fr) * 2006-12-20 2008-06-26 Osram Gesellschaft mit beschränkter Haftung Lampe avec une puce d'identification par fréquence radio lisible sans contact
DE102007008148A1 (de) 2007-02-19 2008-08-21 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Universal-EVG zum Betrieb Hg-freier und Hg-haltiger D-Lampen
CN101261433B (zh) * 2007-03-09 2010-06-09 索尼株式会社 放映机和其控制方法
CN101816219A (zh) * 2007-10-02 2010-08-25 赤多尼科阿特可两合股份有限公司 确定用电子镇流器操作的气体放电灯的工作参数的方法及相应的镇流器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640625A1 (de) * 1996-10-01 1998-04-02 Heraeus Noblelight Gmbh Beleuchtungseinrichtung und dafür geeigneter Strahler
DE19708791C5 (de) * 1997-03-04 2004-12-30 Tridonicatco Gmbh & Co. Kg Steuerschaltung und elektronisches Vorschaltgerät mit einer derartigen Steuerschaltung
GB9825299D0 (en) * 1998-11-18 1999-01-13 Microlights Ltd Improvements to electrical lamps
GB9825296D0 (en) * 1998-11-18 1999-01-13 Microlights Ltd A improvement to electrical lamps
DE10015527A1 (de) * 2000-03-30 2001-10-04 Wedeco Ag Verfahren und Vorrichtung zum Betrieb einer UV-Strahlenquelle
DE10114124A1 (de) * 2001-03-22 2002-09-26 Hella Kg Hueck & Co Schaltungsanordnung
DE102008016753A1 (de) * 2008-03-31 2009-10-01 Tridonicatco Schweiz Ag Erkennung des Typs einer Hochdruck (HID)-Entladungslampe
DE102008019158B3 (de) * 2008-04-17 2009-11-05 Vossloh-Schwabe Deutschland Gmbh Lampentyperkennung für Gasentladungslampen bei Kaltstart
WO2009127257A1 (fr) * 2008-04-17 2009-10-22 Osram Gesellschaft mit beschränkter Haftung Lampe à décharge à haute pression, système d'éclairage doté d'une lampe à décharge à haute pression, procédé de conduite d'une lampe à décharge à haute pression, procédé de conduite d'un système d'éclairage et projecteur utilisant une lampe à décharge à haute pression
WO2009127259A1 (fr) * 2008-04-18 2009-10-22 Osram Gesellschaft mit beschränkter Haftung Dispositif et procédé de fonctionnement d'une lampe à décharge à haute pression
DE102008053625A1 (de) * 2008-10-29 2010-05-20 Osram Gesellschaft mit beschränkter Haftung Lampensystem und Verfahren zum Betreiben einer Lampe
DE102009011765A1 (de) * 2009-03-09 2010-10-07 Heraeus Noblelight Gmbh Strahlenquelle, insbesondere Halogenlampe mit Lampenkörper und Baugruppe für dessen Halterung
DE102010063933A1 (de) * 2010-12-22 2012-06-28 Tridonic Gmbh & Co Kg Betriebsgerät und Verfahren zum Betrieb von Gasentladungslampen
DE202014102007U1 (de) * 2014-04-29 2015-07-31 Zumtobel Lighting Gmbh Beleuchtungsanordnung mit Betriebsgerät zum Bereitstellen eines geeigneten Versorgungsstroms
DE102016200473A1 (de) * 2016-01-15 2017-07-20 Siemens Aktiengesellschaft Umrichteranordnung sowie Verfahren zu deren Betrieb

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208083A2 (fr) * 1985-07-11 1987-01-14 TRILUX-LENZE GmbH & Co. KG Circuit réducteur d'intensité pour circuit ballast électronique pour lampe fluorescente
EP0413991A1 (fr) * 1989-07-28 1991-02-27 Toshiba Lighting & Technology Corporation Appareil d'alimentation d'une lampe à décharge commandant la lampe en fonction de son type
EP0594880A1 (fr) * 1992-10-28 1994-05-04 Knobel Ag Lichttechnische Komponenten Procédé et circuit d'amorçage de lampes fluorescentes lorsque les électrodes de préchauffage ont atteint une température donnée

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128314A1 (de) * 1991-08-27 1993-03-04 Diehl Gmbh & Co Stromversorgungsschaltung
DE4314993C2 (de) * 1993-05-06 1999-05-12 B & S Elektronische Geraete Gm Vorschaltgerät zur Abgabe von an unterschiedliche anschließbare Lampentypen angepaßten Leistungen
JP3447776B2 (ja) * 1993-09-17 2003-09-16 池田デンソー株式会社 放電灯点灯装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208083A2 (fr) * 1985-07-11 1987-01-14 TRILUX-LENZE GmbH & Co. KG Circuit réducteur d'intensité pour circuit ballast électronique pour lampe fluorescente
EP0413991A1 (fr) * 1989-07-28 1991-02-27 Toshiba Lighting & Technology Corporation Appareil d'alimentation d'une lampe à décharge commandant la lampe en fonction de son type
EP0594880A1 (fr) * 1992-10-28 1994-05-04 Knobel Ag Lichttechnische Komponenten Procédé et circuit d'amorçage de lampes fluorescentes lorsque les électrodes de préchauffage ont atteint une température donnée

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690282B2 (en) 1996-04-10 2004-02-10 Seiko Epson Corporation Light-source lamp unit, light-source device and projection-type display apparatus
US6268799B1 (en) 1996-04-10 2001-07-31 Seiko Epson Corporation Light-source lamp unit, light-source device and projection-type display apparatus and method of use
EP0833548A4 (fr) * 1996-04-10 2001-01-03 Seiko Epson Corp Ensemble lampe source de lumiere, element source de lumiere et dispositif d'affichage par projection
US7006004B2 (en) 1996-04-10 2006-02-28 Seiko Epson Corporation Light-source lamp unit, light-source device and projection-type display apparatus
EP0833548A1 (fr) * 1996-04-10 1998-04-01 Seiko Epson Corporation Ensemble lampe source de lumiere, element source de lumiere et dispositif d'affichage par projection
US6081077A (en) * 1997-07-02 2000-06-27 Magnetek Universal power supply for discharge lamps
EP0889675A1 (fr) * 1997-07-02 1999-01-07 MAGNETEK S.p.A. Ballast électronique avec reconnaissance du type de lampe
US6771353B2 (en) 1998-03-27 2004-08-03 Canon Kabushiki Kaisha Exposure apparatus and method, device manufacturing method, and discharge lamp
EP1220040A2 (fr) * 1998-03-27 2002-07-03 Canon Kabushiki Kaisha Appareil et méthode d'exposition, méthode de fabrication d'un dispositif, et lampe à décharge
EP0947883A3 (fr) * 1998-03-27 2001-03-21 Canon Kabushiki Kaisha Appareil et méthode d'exposition, méthode de fabrication d'un dispositif, et lampe à décharge
EP0947883A2 (fr) * 1998-03-27 1999-10-06 Canon Kabushiki Kaisha Appareil et méthode d'exposition, méthode de fabrication d'un dispositif, et lampe à décharge
EP1220040A3 (fr) * 1998-03-27 2002-07-10 Canon Kabushiki Kaisha Appareil et méthode d'exposition, méthode de fabrication d'un dispositif, et lampe à décharge
US6369876B1 (en) 1998-03-27 2002-04-09 Canon Kabushiki Kaisha Exposure apparatus and method, device manufacturing method, and discharge lamp
EP0974787A3 (fr) * 1998-07-23 2001-11-21 MELA Industrieprodukte GmbH Lampe, boítier notamment pour une lampe et dispositif de fixation pour le montage d'un élément fonctionnel dans le boítier
US6525479B1 (en) 1998-10-27 2003-02-25 Trilux-Lenze Gmbh & Co. Kg Method and ballast for operating a lamp fitted with a fluorescent tube
WO2000025554A2 (fr) * 1998-10-27 2000-05-04 Trilux-Lenze Gmbh + Co. Kg Procede et ballast pour faire fonctionner une lampe pourvue d'un tube fluorescent
WO2000025554A3 (fr) * 1998-10-27 2000-08-17 Trilux Lenze Gmbh & Co Kg Procede et ballast pour faire fonctionner une lampe pourvue d'un tube fluorescent
DE19850441A1 (de) * 1998-10-27 2000-05-11 Trilux Lenze Gmbh & Co Kg Verfahren und Vorschaltgerät zum Betrieb einer mit einer Leuchtstofflampe versehenen Leuchte
DE19859253A1 (de) * 1998-12-22 2000-07-06 Bosch Gmbh Robert Schaltungsanordnung zum Betreiben einer Gasentladungslampe
DE19859253B4 (de) * 1998-12-22 2005-07-21 Automotive Lighting Reutlingen Gmbh Schaltungsanordnung zum Betreiben einer Gasentladungslampe
DE10013273A1 (de) * 2000-03-17 2002-01-31 Trilux Lenze Gmbh & Co Kg Elektronisches Vorschaltgerät für eine elektrische Lampe und Verfahren zur Ansteuerung desselben
DE10204059A1 (de) * 2002-01-31 2003-08-21 B & S Elektronische Geraete Gm Steuereinrichtung für den Betrieb einer Mehrzahl von Leuchten
DE10204059B4 (de) * 2002-01-31 2004-07-01 B & S Elektronische Geräte GmbH Steuereinrichtung für den Betrieb einer Mehrzahl von mit Gasentladungslampen bestückten Leuchten
WO2003069963A1 (fr) * 2002-02-18 2003-08-21 Tridonicatco Gmbh & Co. Kg Capteur de lampe pour ballast concu pour faire fonctionner une lampe a decharge gazeuse
CN1633830B (zh) * 2002-02-18 2010-06-30 赤多尼科阿特可两合股份有限公司 用于操作气体放电灯的镇流器的灯感测器
US6802615B2 (en) 2002-05-16 2004-10-12 Nec Viewtechnology, Ltd. Projector and lamp information management method used for the same
EP1363451A1 (fr) * 2002-05-16 2003-11-19 NEC Viewtechnology, Ltd. Projecteur et méthode de traitement de l'information relative à la lampe utilisée pour ce projecteur
NL1025713C2 (nl) * 2004-03-12 2005-09-13 Nedap Nv Identificatiesysteem voor TL-buizen.
WO2008074664A1 (fr) * 2006-12-20 2008-06-26 Osram Gesellschaft mit beschränkter Haftung Lampe avec une puce d'identification par fréquence radio lisible sans contact
DE102007008148A1 (de) 2007-02-19 2008-08-21 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Universal-EVG zum Betrieb Hg-freier und Hg-haltiger D-Lampen
US8344649B2 (en) 2007-02-19 2013-01-01 Osram Gesellschaft Mit Beschraenkter Haftung Universal electronic ballast for operating Hg-free lamps and Hg-containing discharge lamps
CN101261433B (zh) * 2007-03-09 2010-06-09 索尼株式会社 放映机和其控制方法
CN101816219A (zh) * 2007-10-02 2010-08-25 赤多尼科阿特可两合股份有限公司 确定用电子镇流器操作的气体放电灯的工作参数的方法及相应的镇流器
CN101816219B (zh) * 2007-10-02 2014-04-02 赤多尼科阿特可两合股份有限公司 确定气体放电灯的工作参数的方法及相应的镇流器

Also Published As

Publication number Publication date
DE19530485A1 (de) 1997-02-20
EP0759686A3 (fr) 1997-12-29

Similar Documents

Publication Publication Date Title
EP0759686A2 (fr) Procédé et circuit pour commander une lampe
EP1103165B1 (fr) Ballast electronique destine a au moins une lampe a decharge basse tension
EP1227707B1 (fr) Microcontrôleur, alimentation à découpage et ballast électronique pour la mise en oeuvre d'au moins une lampe
EP1066739B1 (fr) Procede et dispositif permettant de detecter l'effet redresseur apparaissant dans une lampe a decharge
EP1125477B1 (fr) Procede et ballast pour faire fonctionner une lampe pourvue d'un tube fluorescent
DE2325872C2 (de) Notstromversorgung für ein Beleuchtungssystem mit wenigstens zwei in Reihe geschalteten Entladungslampen
DE19900153A1 (de) Integrierte Gate-Treiberschaltung
DE102008033176A1 (de) Verfahren zum Herstellen einer Lichtquellenanordnung und Lichtquellenanordnung
WO1996003017A1 (fr) Procede permettant de faire fonctionner au moins une lampe a fluorescence au moyen d'un ballast electronique et ballast electronique utilise a cet effet
EP1103166A1 (fr) Ballast electronique destine a au moins une lampe a decharge basse tension
DE19708791A1 (de) Steuerschaltung und elektronisches Vorschaltgerät mit einer derartigen Steuerschaltung
EP1425943B1 (fr) Procede et dispositif destines au fonctionnement economique d'un tube fluorescent
EP1651014A1 (fr) Méthode et circuit utilisant la mesure du courant actif pour alimenter une lampe
EP1276355B1 (fr) Circuit ballast pour determiner la puissance de préchauffage
EP1202612A2 (fr) Dispositif d'éclairage à préchauffage amélioré pour lampes à décharge
EP2274960B1 (fr) Procédé et agencement de circuits pour faire fonctionner au moins une lampe à décharge
EP0821864B1 (fr) Dispositif et procede destines a faire fonctionner une lampe a decharge
DE3806649C2 (fr)
WO2008138391A1 (fr) Circuit et procédé permettant de faire fonctionner au moins une lampe à décharge
EP1732365A2 (fr) Circuit et méthode pour détecter le facteur de forme d' un courant à travers une lampe ou d' une tension aux bornes d' une lampe
DE202007006644U1 (de) Adapter-System für eine Gasentladungslampe
EP0797377B1 (fr) Circuit inverseur à pont amélioré pour lampes à décharge
EP1040732B1 (fr) Procede de detection de changement de lampe et ballast electronique destine au fonctionnement de lampes a decharge a l'aide d'un tel procede de detection de changement de lampe
DE102010029511B4 (de) Schaltungsanordnung zum Betreiben einer Entladungslampe
EP0871350A2 (fr) Dispositif d'éclairage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19980121

17Q First examination report despatched

Effective date: 19991228

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000710