EP0759097B1 - Fabrication d'activateurs a base de phosphates pour la phosphatation assistee par micro-ondes - Google Patents

Fabrication d'activateurs a base de phosphates pour la phosphatation assistee par micro-ondes Download PDF

Info

Publication number
EP0759097B1
EP0759097B1 EP95919995A EP95919995A EP0759097B1 EP 0759097 B1 EP0759097 B1 EP 0759097B1 EP 95919995 A EP95919995 A EP 95919995A EP 95919995 A EP95919995 A EP 95919995A EP 0759097 B1 EP0759097 B1 EP 0759097B1
Authority
EP
European Patent Office
Prior art keywords
titanium
reaction mixture
phosphate
acids
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95919995A
Other languages
German (de)
English (en)
Other versions
EP0759097A1 (fr
Inventor
Karl Dieter Brands
Bernd Mayer
Sandra Witt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0759097A1 publication Critical patent/EP0759097A1/fr
Application granted granted Critical
Publication of EP0759097B1 publication Critical patent/EP0759097B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • C23C22/80Pretreatment of the material to be coated with solutions containing titanium or zirconium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Definitions

  • the invention is in the field of phosphating metal surfaces made of steel, zinc, aluminum or their alloys.
  • the Metal substrates consist entirely of these metals or alloys, they However, they can also be multi-layer and a coating made of a metallic Have material that differs from the base metal. Examples include steels made with zinc, aluminum or with alloys are coated, the main component of which is zinc or aluminum. Examples include coatings made of zinc-aluminum alloys, Zinc-iron alloys, zinc-nickel alloys on a steel substrate. Another example is galvanized aluminum.
  • the invention relates to a new manufacturing process for phosphate-containing activators, which before actual phosphating of the metal surfaces mentioned in the form of a dilute aqueous solution or suspension with the metal surfaces mentioned be brought into contact. This is the new manufacturing process excellent that it is done using microwaves. The procedure can be used for activators based on polymeric titanium phosphates, but also can be applied on a titanium-free basis.
  • the usual materials used for body construction are phosphated, traditionally iron or steel sheets, increasingly also electrolytic galvanized or hot-dip galvanized steel or materials with a Surface made of zinc alloys, which, for example, as an alloy partner Contain iron, nickel, cobalt or aluminum.
  • a corrosion inhibiting Phosphating such surfaces is not only in the automotive industry, but also in the manufacture of household appliances such as washing machines or refrigerators. For the latter application area, but also increasingly for applications in building construction and automotive engineering, you bet increasing trend material that is already used as a strip material in the steel mill was phosphated and optionally also coated organically.
  • the workpieces are cleaned and rinsed before the above treatment and activated to form a thin and even layer of phosphate when phosphating to achieve, which is known to be a prerequisite for one forms good corrosion protection.
  • high zinc phosphating processes it was possible to remove the metal surface in one step of adhering oils, greases and others, also from mechanical Processing to get rid of impurities and to be activated simultaneously for the following step of zinc phosphating.
  • DE-A-40 13 483 describes a phosphating process in which in addition to the usual concentrations of low zinc phosphating Zinc and manganese copper ions in the ppm range are used.
  • the above Procedures lead in connection with the usually following Electrocoating for significantly improved corrosion protection.
  • these procedures are much more sensitive to changes in the Process parameters and on contaminants with those to be coated Sheets are entered in the phosphating bath. So that comes with it Step of activating the metal surface is of much greater importance than before. Activation has proven to be particularly advantageous in a separate process step, the cleaning and degreasing step to connect. This is especially true if the Low-zinc phosphating takes place in one dipping process, is also equally for zinc phosphating after one Spray or combined spray immersion processes as well as immersion spray processes significant.
  • the activation of the metal surface has the following goals:
  • Reduction of the minimum phosphating time i.e. the time to complete Cover the metal surface with a closed zinc phosphating layer.
  • titanium phosphates can be used as activating agents, which are manufactured with consistent quality can be and thus a reliable activation performance high bath capacity (expressed as activatable area per unit volume of the ready-to-use activation bath).
  • the EP-A-307 839 describes a process for the preparation of polymeric titanium phosphates Activating agent in which the reaction of the titanium components with the Phosphate components in an aqueous environment under hydrothermal conditions, here at temperatures between 100 and 160 ° C below the respectively occurring Pressure is performed.
  • EP-B-339 452 teaches that titanium phosphate is used.
  • Produce activating agent with extended bath life can if in the implementation of the titanium with the phosphate components in aqueous medium at a temperature between 75 and 120 ° C a complexing agent is present in a sub-stoichiometric amount with respect to titanium.
  • Loud EP-A-201 841 improves the quality of activation baths containing titanium phosphate, if this continues to be pyrophosphate and water-soluble, anionic Copolymers of unsaturated carboxylic acids with acrylic acid ester, acrylic acid amide, Acrylonitrile, isobutylene, and / or styrene or water-soluble, anionic condensation products from naphthalenesulfonic acid and formaldehyde contain.
  • US-A-3,864,139 describes activating agents or activating baths, the additional “stabilizing in addition to polymeric titanium phosphates Agents ". As such stabilizing agents, for example called: alkali metal citrates and aminopolycarboxylates.
  • phosphate-containing activating agents known to use titanium compounds are dispensed with.
  • the EP-A-340 530 that activating phosphates are obtained when one a phosphate component with complexing agents selected from the group of 1,1-diphosphonic acids and poly (aldehydocarboxylic acids) in suitable proportions implements.
  • Activating agents containing phosphate have so far generally been in the form of powder put on the market at the place of application, if necessary after a predispersion, are introduced into the aqueous activating bath. This is disadvantageous for the application, since dust problems arise when using the powder can occur and since the addition of the powder to the aqueous Badly automated activation baths. So there have been attempts the activators as storage-stable, pumpable, concentrated aqueous To provide suspensions or solutions for use must be diluted with the appropriate amount of water. Such one "Liquid activating agent" is described for example in EP-A-554 179, initially in a conventional manner containing a powdery titanium phosphate Activating agent is produced. The powder becomes formation a two to twenty percent by weight suspension in water, their viscosity to prevent settling of the suspension during storage with a thickener based on a polysaccharide is set appropriately.
  • This activating agent can be in powder form, but also in the form of a stabilized aqueous concentrate with a water content by thickening be sold from 50 to 90%.
  • aqueous activating agent concentrates described above Common to the aqueous activating agent concentrates described above is that the activating component is made in aqueous slurry, then dried to a powder and then thickened Water is suspended. Due to the previously necessary intermediate drying of the such an approach is energy-intensive.
  • the object of the present invention was a new method for the production of titanium-containing or titanium-free activating agents based on phosphate to provide the activation products with short reaction times supplies that conventionally processed into powder, advantageously however, without intermediate drying directly in the form of a stabilized aqueous concentrate can be used.
  • the object is achieved by a process for the production of phosphate Activating agent for the activation of metal surfaces made of steel, Zinc, aluminum or their alloys before phosphating, thereby characterized in that one or an aqueous solution or slurry several alkali metal phosphates, oligophosphates and / or polyphosphates together with a second reaction component selected from titanium compounds, Complexing agents or combinations thereof of radiation subject with microwaves.
  • Treatment of the aqueous slurry of the reactants with Microwaves only lead in a technically attractive time, for example less than 30 minutes to a reaction mixture with activating Properties when the solids content of the aqueous reaction mixture is between 40 and 80 wt .-%. Particularly short response times of below 5 to about 15 minutes are required if the aqueous reaction mixture has a solids content of between 55 and 75% by weight.
  • the pH the reaction mixture is as in the production of phosphate Activating agent is usually 6 to 12 and is preferably in the range 7 to 11. This can be done, for example, by appropriate mixing primary and secondary alkali metal phosphates can be achieved.
  • the pH value for example by adding sodium hydroxide solution to the required area can be set.
  • an acid preferably phosphoric acid
  • the radiation duration should be chosen so that the Total energy input from the microwaves preferably at least 10 kJ per kilogram of reaction mixture.
  • the energy input can be varied by constant pulse train the energy of the single pulse or that one at constant Pulse energy the temporal pulse sequence varies.
  • the reaction mixture itself is heated by the microwave radiation , it is recommended to mix the reaction mixture before microwave irradiation to preheat.
  • the The temperature of the reaction mixture is between 80 and 150 ° C, for example between 95 and 140 ° C. Temperatures above the boiling point of the Of course, the reaction mixture requires that the reaction in a suitable, microwave-permeable autoclave. Therefor For example, Teflon autoclaves are suitable. If you work at one Temperature that is 1 to 10 ° below the boiling temperature of the reaction mixture is, the implementation can be done without pressure. This is from a process engineering point of view View preferred, since open reaction vessels are used here can be. It may be necessary during microwave radiation Compensate for any water loss that occurs through the addition of water.
  • the reaction mixture can be after the end of the microwave irradiation can be dried to a powder product in a conventional manner. This can be done, for example, by heating and / or the application of vacuum evaporates as much water from the reaction mixture, that a solid, grindable solid remains, which leads to a free-flowing powder can be ground. This leads to a conventional powdered activating agent, but by the Microwave radiation significantly reduces the required reaction time becomes.
  • the reaction mixture after microwave irradiation not to dry to a powdery solid product, but directly to an aqueous, storage-stable activating agent concentrate process that has a solids content of 5 to 30 wt .-%.
  • solids contents below 5 wt .-% are uneconomical if the product for User should be transported. If you put the activating agent after
  • the method according to the invention can be produced directly at the point of use the reaction mixture after the microwave irradiation also directly on the Use concentration of 0.01 to 2 wt .-% are diluted.
  • the reaction mixture is preferably diluted with water to a solids content between 10 and 25 wt .-% and increases the storage stability, the viscosity of the suspension or the solution that they range between 15 and 25, preferably from 18 to 21 DIN seconds.
  • the viscosity is here according to DIN 53211-4 as the run-out time measured from an outlet cup at a temperature of 20 ° C.
  • the thickener can already be used to dilute the reaction mixture water used or only after dilution be added.
  • Suitable thickeners are from the prior art over phosphate Activating agent known.
  • EP-A-454 211 states: Polymers of natural origin, for example polypeptides such as gelatin or polysaccharides such as starch, xanthan or dextrins. According to the teaching of EP-A-554 179 can also use polysaccharides. These thickeners are also suitable in the context of the present invention. Good storage stability of the suspension without negative influence on the activating one Effect was achieved when using polysaccharides as thickeners receive. If a longer storage period is provided, this can be avoided an addition of a fungicide may be required from mold formation.
  • titanium-containing or titanium-free reactants For the production of phosphate-containing activating agents, the above Phosphate components listed titanium-containing or titanium-free reactants be implemented.
  • the use of titanium-containing reactants is preferred.
  • Suitable titanium compounds as a reaction component are in the aforementioned prior art, for example in the EP-B-339 452. Examples include: various modifications of titanium dioxide or its digestion products with alkali, in particular with a melt or an aqueous solution of sodium hydroxide, Titanium tetrahalides such as, in particular, titanium tetrachloride, alkali metal hexafluorotitanates such as especially dipotassium hexafluorotitanate, titanium acetylacetonate and / or titanyl sulfate.
  • the hydrolysis products used with water or with aqueous alkalis will. It is known that titanium phosphate-containing activating agents only then are formed when the titanium component with a large molar excess of the phosphate components is implemented. Therefore it is also for the The present invention preferred that when reacting under microwave radiation the molar ratio of titanium to phosphorus is preferably in the range 1:20 to 1:60, in particular in the range 1:25 to 1:40.
  • EP-B-339 452 can be applied analogously to the present invention will. From this document it is known that the addition of special Small amounts of complexing agents during the polymeric titanium phosphate leading reaction - with the molar ratio of complexing agents too Titan should be below 1.0 - to be activated products with significantly improved application properties.
  • the increased effectiveness of the activating agents produced according to the invention is particularly evident in one compared to standard products increased bath capacity, which extends the service life of the activation baths allowed.
  • the poly (aldehydocarboxylic acids) and the 1,1-diphosphonic acids are preferred used as sodium salts, so that in the general formula (IV) M stands for sodium.
  • the complexing agent is in one Amount of 0.1 to 0.6 moles used per mole of titanium.
  • the poly (aldehydocarboxylic acids) used according to the invention are commercially available and are available from Degussa AG, Frankfurt, for example under the names POC OS 20, POC HS 0010, POC HS 2020, POC HS 5060, POC HS 65120 and POC AS 0010, POC AS 2020, POC AS 5060 or POC AS 65120 sold.
  • the designation HS relates to the acid form and the designation AS to the sodium salt form of the poly (aldehydocarboxylic acids). They can be produced using a special process developed by Degussa, the "oxidative polymerization" of acrolein. Acrolein is treated alone or as a mixture with acrylic acid in aqueous solution with hydrogen peroxide.
  • the H 2 O 2 acts here as an initiator of the polymerization and as a molecular weight regulator.
  • some of the aldehyde groups of acrolein are oxidized to carboxyl groups by hydrogen peroxide. This gives rise to polymers with pendant aldehyde and carboxyl groups, namely the poly (aldehydocarboxylic acids), the preparation of which is described in DE-C-23 57 036.
  • the complexing agents which can be used are those which according to EP-A-201 841 improve the effectiveness of titanium-containing phosphating agents.
  • Water-soluble anionic copolymers of unsaturated are mentioned here Carboxylic acids with acrylic acid esters, amides, nitriles, isobutylene and / or styrene and water-soluble anionic condensation products Naphthalenesulfonic acid and formaldehyde.
  • Suitable complexing agents can be selected from the group of phosphonocarboxylic acids and the hydroxycarboxylic acids and the aminopolycarboxylic acids will.
  • US-A-3,864,139 is the stabilizing Influence of citrate or aminopolycarboxylate on the activators Titanium phosphate colloids known.
  • the complexing agents Depending on the molar ratio of complexing agent to titanium and the time of addition the complexing agents have different effects on the reaction mixture on the properties of the products obtained.
  • a Use in a substoichiometric ratio i.e. in a molar ratio Complexing agent (in the case of polymers with respect to the monomer unit) Titanium of less than 1 and if added before, but at the latest before At the end of microwave radiation, the complexing agents affect the Particle size of the titanium phosphate colloids formed.
  • the teaching of EP-B-339 452 shows that activating agents with particular favorable activating properties can be obtained.
  • the reaction mixture in the implementation of titanium compounds with phosphates or after the end of the microwave radiation complexing agent of the above groups mentioned the molar ratio between complexing agents (for polymers based on the molecular weight of the monomer units) and titanium compound is between 0.05 and 3.
  • the molar ratio between complexing agents for polymers based on the molecular weight of the monomer units
  • titanium compound is between 0.05 and 3.
  • colloidal titanium phosphates can be added ions of metals that are more noble than the substrates to be activated, continue to improve. It is particularly favorable, as described in EP-A-454 211, the presence of copper ions. In the sense of this teaching, Weight ratio Cu: Ti between 100: 1 and 1:60.
  • EP-A-340 530 describes the production of titanium-free phosphate-containing activating agents known for phosphating, using suitable complexing agents reacted with a phosphate component. This procedure can also carried out in the sense of the present invention using microwaves will.
  • the same components can be used as phosphate components or mixtures are used, the above for the reaction with Titanium compounds have been listed and are characterized by the general formulas Let (I), (II) and (III) describe.
  • Suitable as complexing agents the above-described poly (aldehydocarboxylic acids) or their Alkali metal salts and / or 1,1-diphosphonic acids of the general formula (IV).
  • the weight ratio of complexing agent to alkali metal phosphate is in the range from 0.01: 1 to 0.1: 1, preferably in the range 0.02: 1 to 0.05: 1.
  • Activating agents containing phosphate are used for the activation of metal surfaces made of steel, zinc, aluminum or their alloys before phosphating, preferably zinc phosphating and in particular a low zinc phosphating, the activating agents in Form aqueous dispersions or solutions are used, their solids content of activating agent 0.01 to 2, preferably 0.05 to 1% by weight is.
  • the pH of the ready-to-use activating solution or activating suspension is in the technically customary range, as specified, for example, in EP-A-454 211: 7 to 11, preferably 7.5 to 10.
  • the ready-to-use activating bath can contain further auxiliaries, which are known in the prior art (EP-A-454 211), for example condensed phosphates in amounts up to 1.2 g / l (calculated as P 2 O 5 ), silicates in amounts up to 0.5 g / l (calculated as SiO 2 ), complexing agents in amounts up to 1 g / l, water-soluble organic polymer in amounts up to 0.1 g / l, thickeners in amounts up to 0.1 g / l and surfactants in amounts up to 0.3 g / l.
  • condensed phosphates in amounts up to 1.2 g / l (calculated as P 2 O 5 )
  • silicates in amounts up to 0.5 g / l
  • the reaction mixture After the end of the irradiation, the reaction mixtures by adding water to a total solids content of 13% by weight adjusted and with the help of the thickening agent Kelzan TM K5C151 (polysaccharide of the xanthan type, from Kelco Corp.) to a viscosity between 18 and 21 DIN seconds, determined as the run-out time from a flow cup DIN 53211-4, thickened.
  • Kelzan TM K5C151 polysaccharide of the xanthan type, from Kelco Corp.
  • Example 9 irradiation was carried out in a Teflon autoclave, with no water being able to evaporate due to the closed reaction vessel.
  • a reaction mixture according to Example 3 was in a with a manometer provided Teflon autoclave with microwaves (700 W) for 10 minutes.
  • the pressure in the autoclave rose to 3.5 bar corresponding to one Water temperature of approximately 140 ° C.
  • layer weight The mass per unit area (“layer weight”) was determined by dissolving in 5% chromic acid solution in accordance with DIN 50942. Table 2 contains the results. In all cases, optically perfect layer images were obtained.
  • Layer weights Activation Product from example comment Layer weight g / m 2 St 1405 ZE 1 2.1 2.4 2nd 2.4 2.8 3rd 2.0 2.1 4th 2.0 2.2 4th Concentrate stored for 3 months 2.2 2.3 4th Concentrate stored for 3 months, activation bath left for 7 days 2.3 2.4 4th Approach bath in city water, hardness 18 ° d 2.1 2.5 5 2.1 2.3 5 Activating bath aged 2 weeks without sheet throughput 2.3 2.7 5 after sheet throughput 2.8 m 2 / l activating bath 2.4 2.6 6 2.1 2.4 7 2.4 2.6 8th 2.3 2.7 9 2.1 2.4
  • Example 4 Using a batch mixture according to Example 4, the influence of the irradiation time at 700 watts on the activation ability of the products obtained checked. It was found that under the conditions of the example 4 A sufficient activation effect is not achieved when the radiation duration is less than 4 minutes. With irradiation times between 5 and a good activation effect is observed for 15 minutes. Longer exposure times are possible, but have no advantage.

Claims (10)

  1. Procédé de fabrication d'agents d'activation contenant du phosphate pour l'activation de surfaces métalliques en acier, en zinc, en aluminium ou en leurs alliages avant une phosphatation,
    caractérisé en ce qu'
    on soumet une solution ou suspension aqueuse d'un ou plusieurs phosphates, oligo-phosphates et/ou polyphosphates de métaux alcalins avec un second composant réactionnel choisi parmi les composés de titane, les agents de complexation ou leurs combinaisons à une irradiation avec des micro-ondes.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    le mélange réactionnel présente une teneur en solides comprise entre 40 et 80 % en poids, de préférence entre 55 et 75 % en poids.
  3. Procédé selon l'une des revendications 1 et 2, ou les deux,
    caractérisé en ce que
    la réaction sous irradiation par les micro-ondes s'effectue par lots et en ce que l'apport d'énergie dû aux micro-ondes s'élève de préférence à au moins 10 kJ/kg de mélange réactionnel.
  4. Procédé selon l'une ou plusieurs des revendications 1 à 3,
    caractérisé en ce que
    la température du mélange réactionnel pendant l'irradiation par les micro-ondes est comprise entre 80 et 150°C, de préférence entre 95 et 140°C.
  5. Procédé selon une ou plusieurs des revendications 1 à 4,
    caractérisé en ce qu'
    on sèche le mélange réactionnel après irradiation par les micro-ondes pour obtenir une poudre.
  6. Procédé selon une ou plusieurs des revendications 1 à 4,
    caractérisé en ce qu'
    on dilue le mélange réactionnel après l'irradiation par les micro-ondes à une teneur en solides de 5 à 30, de préférence de 10 à 25 % en poids avec de l'eau et de préférence en ce qu'on règle la suspension par addition d'un épaississant à une viscosité comprise entre 15 et 25, de préférence entre 18 et 21 DIN-secondes, mesurée avec un godet à écoulement.
  7. Procédé selon une ou plusieurs des revendications 1 à 6,
    caractérisé en ce que
    le second composant de la réaction est un composé de titane, de préférence choisi parmi le dioxyde de titane, le dioxyde de titane éclairci avec de la lessive, les tétrahalogénures de titane, les hexafluorotitanates de métaux alcalins, l'acétylacétonate de titane et/ou le sulfate de titanyle ou à chaque fois leurs produits d'hydrolyse, et
    le rapport molaire du titane au phosphore se situe de préférence dans un intervalle de 1:20 à 1:60, en particulier dans un intervalle de 1:25 à 1:40.
  8. Procédé selon la revendication 7,
    caractérisé en ce que
    le mélange réactionnel contient en outre un ou plusieurs agents de complexation, de préférence choisis dans le groupe des acides poly(aldéhydocarboxyliques), des copolymères anioniques solubles dans l'eau des acides carboxyliques insaturés avec des esters, amides ou nitriles de l'acide acrylique, de l'isobutylène et/ou du styrène, des acides diphosphoniques géminés, en particulier l'acide 1-hydroxyéthane-1,1-disphosphonique, des acides phosphonocarboxyliques, des acides hydroxycarboxyliques, en particulier l'acide citrique, des acides aminopolycarboxyliques, le rapport molaire entre l'agent de complexation (pour les polymères, par rapport à la masse molaire des unités monomères) et le composé de titane se situant de préférence entre 0,05 et 3.
  9. Procédé selon l'une des revendications 7 et 8, ou les deux,
    caractérisé en ce que
    le mélange réactionnel contient en outre des ions calcium dans un rapport molaire Ca:Ti compris entre 2:1 et 5:1 et/ou des ions cuivres dans un rapport pondéral Cu:Ti compris entre 100:1 et 1:60.
  10. Procédé selon l'une ou plusieurs des revendications 1 à 6,
    caractérisé en ce que
    le mélange réactionnel est dépourvu de titane et contient comme second composant de la réaction des agents de complexation dans un rapport pondéral des agents de complexation au phosphate de métal alcalin de 0,01:1 à 0,1:1, de préférence dans un intervalle de 0,02:1 à 0,05:1, les agents de complexation étant choisis parmi les acides 1,1-diphosphoniques et/ou les acides poly(aldéhydocarboxyliques).
EP95919995A 1994-05-11 1995-05-02 Fabrication d'activateurs a base de phosphates pour la phosphatation assistee par micro-ondes Expired - Lifetime EP0759097B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4416619A DE4416619A1 (de) 1994-05-11 1994-05-11 Herstellung phosphathaltiger Aktiviermittel für die Phosphatierung unter Einsatz von Mikrowellen
DE4416619 1994-05-11
PCT/EP1995/001654 WO1995031588A1 (fr) 1994-05-11 1995-05-02 Fabrication d'activateurs phosphates destines a la phosphatation par micro-ondes

Publications (2)

Publication Number Publication Date
EP0759097A1 EP0759097A1 (fr) 1997-02-26
EP0759097B1 true EP0759097B1 (fr) 1998-08-19

Family

ID=6517865

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95919995A Expired - Lifetime EP0759097B1 (fr) 1994-05-11 1995-05-02 Fabrication d'activateurs a base de phosphates pour la phosphatation assistee par micro-ondes

Country Status (4)

Country Link
EP (1) EP0759097B1 (fr)
JP (1) JPH10500175A (fr)
DE (2) DE4416619A1 (fr)
WO (1) WO1995031588A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019134298A1 (de) * 2019-12-13 2021-06-17 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines Stahlflachprodukts mit einer metallischen Schutzschicht auf Basis von Zink und einer auf einer Oberfläche der metallischen Schutzschicht erzeugten Phosphatierschicht und derartiges Stahlflachprodukt

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD111938A1 (fr) * 1974-06-27 1975-03-12
JPS61257481A (ja) * 1985-05-10 1986-11-14 Nippon Parkerizing Co Ltd りん酸塩皮膜化成処理用水性表面調整液
DE3814363A1 (de) * 1988-04-28 1989-11-09 Henkel Kgaa Titanfreie aktivierungsmittel, verfahren zu ihrer herstellung und ihre verwendung zur aktivierung von metalloberflaechen vor einer zinkphosphatierung
DE4012796A1 (de) * 1990-04-21 1991-10-24 Metallgesellschaft Ag Verfahren zur herstellung von aktivierungsmitteln fuer die zinkphosphatierung
DE4012795A1 (de) * 1990-04-21 1991-10-24 Metallgesellschaft Ag Aktivierungsmittel fuer die phosphatierung

Also Published As

Publication number Publication date
JPH10500175A (ja) 1998-01-06
DE4416619A1 (de) 1995-11-16
DE59503273D1 (de) 1998-09-24
WO1995031588A1 (fr) 1995-11-23
EP0759097A1 (fr) 1997-02-26

Similar Documents

Publication Publication Date Title
EP0454211B1 (fr) Procédé pour appliquer des couches de phosphates sur des surfaces métalliques
EP0064790A1 (fr) Procédé pour la phosphatation de métaux ainsi que son utilisation pour le prétraitement pour la peinture électrique au trempé
WO2007039015A1 (fr) Solution de phosphatation contenant du peroxyde d'hydrogene et des acides carboxyliques chelateurs
DE69936529T2 (de) Konditionieren einer metalloberfläche vor der phosphatierung
DE2902916A1 (de) Verfahren zur herstellung von titanium enthaltenden phosphaten als konditionierungsmittel fuer metalloberflaechen
DE3234558A1 (de) Waessrig-saure zinkphosphat-ueberzugsloesungen, solche loesungen verwendende tieftemperatur-verfahren zur bildung chemischer umwandlungsueberzuege auf eisen- und/oder zinkoberflaechen und darin verwendbare ueberzugskonzentrate und titanhaltige metallaktivierende loesungen
WO1994013856A1 (fr) Procede de phosphatation de surfaces metalliques
DE2538347C3 (de) Zinkphosphatlösungen zur Ausbildung von Zinkphosphatschichten auf Metallen
EP0339452B1 (fr) Phosphates de titane polymères, leur procédé de préparation et leur utilisation dans l'activation de surfaces métalliques avant une phosphatation en zinc
EP0340530B1 (fr) Agents d'activation ne contenant pas de titane, procédé pour leur préparation et leur utilisation pour activer des surfaces métalliques avant la phosphatation au zinc
EP0759097B1 (fr) Fabrication d'activateurs a base de phosphates pour la phosphatation assistee par micro-ondes
DE69513036T3 (de) Flüssiges Aktivierungsmittel für Phosphat-Konversionsüberzügen
WO1999043868A1 (fr) Solution aqueuse et procede pour phosphater des surfaces metalliques
DE69730711T2 (de) Mangan-phosphat-umwandlungsbeschichtungzusammensetzung und verfahren zur verwendung bei mässigen temperaturen
WO2019042951A1 (fr) Procédé amélioré de phosphatation sans nickel de surfaces métalliques
DE3731049A1 (de) Verfahren zur herstellung von aktivierenden titanphosphaten fuer die zinkphosphatierung
JPH0543212A (ja) 防錆顔料組成物
EP0454212A1 (fr) Procédé pour préparer des agents activateurs pour la phosphatation au zinc et leur utilisation
DE3823716C2 (de) Verfahren zur Herstellung von Zusammensetzungen zur Behandlung von Metallen
EP0340529B1 (fr) Additif stabilisateur d'agents d'activation dans l'eau dure avant la phosphatation au zinc
DE19637372A1 (de) Titanphosphathaltiges Aktivierungsmittel für die Phosphatierung, enthaltend Lithium- und/oder Silberionen
DE2931712C2 (de) Verfahren zur Herstellung einer Titanverbindung zur Aktivierung von Phosphatisierungs-Prozessen
DE2038105C3 (de) Verfahren zum Aufbringen von Zinkphosphatschichten auf Oberflächen aus Eisen, Stahl und feuerverzinktem Material
AT238529B (de) Wässerige, nickelbeschleunigte Phosphatüberzugslösung
EP0751239A1 (fr) Procédé de remontage de solution de phosphatation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970507

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 59503273

Country of ref document: DE

Date of ref document: 19980924

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990507

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990511

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST