EP0756223B1 - Spannungs- und/oder Stromreferenzgenerator in integriertem Schaltkreis - Google Patents

Spannungs- und/oder Stromreferenzgenerator in integriertem Schaltkreis Download PDF

Info

Publication number
EP0756223B1
EP0756223B1 EP96401646A EP96401646A EP0756223B1 EP 0756223 B1 EP0756223 B1 EP 0756223B1 EP 96401646 A EP96401646 A EP 96401646A EP 96401646 A EP96401646 A EP 96401646A EP 0756223 B1 EP0756223 B1 EP 0756223B1
Authority
EP
European Patent Office
Prior art keywords
transistor
transistors
voltage
arm
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96401646A
Other languages
English (en)
French (fr)
Other versions
EP0756223A1 (de
Inventor
Tien-Dung Do
David Naura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
SGS Thomson Microelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA, SGS Thomson Microelectronics SA filed Critical STMicroelectronics SA
Publication of EP0756223A1 publication Critical patent/EP0756223A1/de
Application granted granted Critical
Publication of EP0756223B1 publication Critical patent/EP0756223B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/245Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/247Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the supply voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Definitions

  • the present invention relates to a generator integrated circuit reference for supplying a voltage and / or a stable reference current with the process manufacturing, temperature stable and independent of the supply voltage.
  • Reference current or voltage generators are used in integrated circuits, in particular for reading or writing memory cells.
  • the reference current obtained is very dependent on the temperature.
  • the object of the invention is to provide a generator for particularly stable benchmark, despite the variations in process, temperature or voltage feed.
  • FIG. 1 represents a diagram of a voltage generator in integrated circuit according to the invention.
  • the generator includes a three-branch current mirror device.
  • a first branch is a source of current. It comprises a first transistor T1, mounted as a direct diode (that is to say with its gate connected to its drain) and in series with a second resistive transistor T2 (W / L ⁇ 1).
  • a second branch comprises a third transistor T3 in series with a fourth transistor T4, mounted as a direct diode.
  • a third branch comprises a fifth transistor T5 in series with a sixth transistor T6, mounted as a direct diode, and connected to a midpoint B of the second branch.
  • the third transistor and the fifth transistor are respectively mounted as a current mirror with respect to the first transistor.
  • the second transistor is mounted as a current mirror with respect to the fourth transistor.
  • the transistor T4 has a threshold voltage Vt n greater than that of the transistors T2 and T6.
  • the transistor T4 is enriched and the transistors T2 and T6 are native (that is to say with a threshold voltage Vt na positive and close to zero volts).
  • a current mirror assembly consists to control the gate of a transistor by a transistor of the same type of conductivity and mounted as a diode in direct (grid connected to the drain). In this way we controls the flow of current through the first transistor.
  • the ratio of the currents in the two transistors basically depends on the ratio of their W / L geometries.
  • the first, third and fifth transistors are thus of the same type of conductivity and the second, fourth and sixth transistors are from same type of conductivity.
  • the reference generator according to the invention is shown in CMOS technology. So the first, third and fifth transistors are from conductivity type P. Their sources are connected to a logic supply voltage Vcc. The second, fourth and sixth transistors are of the type of conductivity N. The sources of the second and fourth transistors are connected to the electrical ground. The source of the sixth transistor is connected to node B of the second branch, i.e. to the drains of third and fourth transistors.
  • Vt p is the threshold voltage of a P-type transistor, on the order of 1 volt
  • Vt na is the threshold voltage of a native N-type transistor, on the order of 0.2 volt
  • Vt n is the threshold voltage of an enriched type N transistor, of the order of 0.8 volts.
  • the values are given by way of nonlimiting example for a 1.2 and 1.0 micron technology and at ambient temperature (25 ° C.).
  • the transistor T2 is resistive (W / L ⁇ 1), so that the transistor T1 is left with a drain voltage close to Vcc - Vt p . It is the voltage V A at the node A.
  • the transistor T3 is resistive, so that one finds on its drain a voltage V B , close to the threshold voltage of the transistor T4.
  • the transistor T2 is mounted as a current mirror with respect to the transistor T4, the voltage V B is found on the gate of the transistor T2.
  • the threshold voltage of transistor T2 is lower than the threshold voltage of transistor T4.
  • the transistor T2 is therefore highly conductive.
  • V A Vcc - Vt p on its drain
  • the transistor T2 is therefore saturated, which ensures a relatively constant current in the branch T1, T2 and therefore also in the branch T3, T4, even if the supply voltage varies.
  • the transistor T5 is polarized like the transistor T3, that is to say at the conduction limit.
  • the transistor T6 is mounted as a direct diode. As its threshold voltage is low, close to zero, the branch (T5, T6) which is in parallel on the transistor T3, tends to decrease the equivalent resistance (T3 // T5 + T6) which charges the transistor T4 and therefore slightly raise the level of voltage V B.
  • the threshold voltages decrease, around 2 millivolts per degree Celsius.
  • the voltage V A therefore increases, which would make the transistor T3 more resistive, likewise for the transistor T5, but their threshold voltages also decrease.
  • the threshold voltage of transistor T4 decreases, the level of voltage V B therefore tends to decrease.
  • the threshold voltage of the transistor T6 also decreases, (the transistor is almost equivalent to a short circuit): the resistance equivalent to T3 // T5 + T6 therefore decreases, which tends to pull the level of V B upwards and stabilize it.
  • the process for manufacturing the transistors corresponds to an interval of values of the threshold voltages, knowing that two close transistors will in practice have the same threshold voltage.
  • Vt p the interval [0.9V - 1.3V]
  • Vt n the interval [0.7V - 1.0V]. If threshold voltages corresponding to the maximum values of the process are obtained for all the transistors, the voltage V A tends to decrease, which increases the current in the transistor T3. But at the same time the threshold voltage of transistor T3 is also higher, which decreases the current in transistor T3. At the same time, the threshold voltage of transistor T4 increases, and the level of voltage V B tends to increase.
  • T6 As the threshold voltage of transistor T6 also increases, the equivalent resistance of T3 // T5 + T6 increases, which tends to stabilize the level of voltage V B. In practice, it has been possible to verify that the voltage V B follows at worst the variation of a threshold voltage of an N type transistor (T4). The opposite reasoning applies in the case where the threshold voltages are minimum.
  • the structure with three branches according to the invention makes it possible in practice to obtain a voltage level V B which varies at worst like the threshold voltage of a transistor.
  • a fourth branch is provided, connected to the node B to compensate for the variation of the voltage V B with the threshold voltage Vt n .
  • the fourth branch thus comprises a transistor T7 of type N in series with a transistor T8 of type N and enriched (normally doped). And transistor T7 has a lower threshold voltage than that of transistor T8.
  • the transistor T7 is native.
  • the transistor T7 receives the voltage V B on its gate.
  • the transistor T8 is mounted as a direct diode (gate connected to its drain).
  • V B This voltage is lower than V B , but it is completely self-compensated in temperature. In practice we show that it is also self-compensated in process. If, in addition, a sufficiently resistive transistor T8 and a transistor T7 with a low input resistance Ron (high conductance) are chosen, good compensation is also obtained for variations in supply voltage.
  • the reference voltages obtained V B or V C are quite low (for example, of the order of 1 volt for V B and 0.8 volt for V C ), but they are sufficient for the polarization of the grids of memory cells.
  • the reference generator according to the invention also makes it possible to deliver a reference current.
  • This is what is shown in FIG. 2.
  • the same elements are used in FIG. 1, except for replacing the transistor T8 with a real resistance in a resistive material chosen to be very stable in temperature in the technology used, for example of diffusion N.
  • An invariant current is obtained with the supply voltage Vcc, with the temperature and the manufacturing process.
  • the only variation in current is therefore that due to resistance R.
  • to obtain several reference currents capable of supplying several devices it suffices to use successive assemblies with current mirror with respect to this fourth branch.
  • a transistor T9 is placed in series between the supply voltage Vcc and the transistor T7. This transistor is mounted in direct diode and it is of type P in the example.
  • a fifth branch comprises a transistor T10 in series with a transistor T11.
  • the transistor T10 is of the same type of conductivity as the transistor T9 and it has its gate connected to that of the transistor T9.
  • the transistor T11 is of the same type of conductivity as the transistor T7, but with a higher threshold voltage (Vt n ) and it is mounted as a direct diode.
  • Vt n threshold voltage
  • FIG. 4 shows more detailed diagrams than those of Figures 1 and 3. They indeed show an example of a bias circuit of the reference generator according to the invention.
  • a pair 1 of transistors of opposite conductivity types is placed in parallel between the gate and the drain (A) of the transistor T1.
  • this pair 1 draws the voltage VA towards a positive potential.
  • a transistor 2 here of type N
  • Another transistor 3 here of type P, isolates the gate voltage of the transistors T2 and T4 from the supply voltage Vcc to prevent it from rising too much.
  • a transistor 4, here of type P transmits the supply voltage on the drain of transistor T7.
  • Transistors 5 and 6, here of type N, each in series with the transistors T2 and T4 respectively, draw the sources of these two transistors towards ground. Finally, a transistor 7 in parallel on the transistor T8 pulls the node C towards the ground, when the generator is not under tension (ON 0).
  • the ON activation signal of the generator delivered by a control circuit not shown in the integrated circuit, controls the grid of transistors 5 and 6 and the N-type transistor of the pair 1.
  • An inverter 8 provides the command corresponding inverse / ON for transistors 2, 4, 7, and the P-type transistor of pair 1.
  • the polarization circuit makes it possible to polarize the transistors T1 and T4 at the conduction limit, while preventing current consumption when the generator is not activated.
  • FIG. 5 represents a bias circuit for the reference generator used to deliver a stable current as shown in FIG. 2.
  • This polarization circuit comprises the elements 1, 2, 5 and 6 of the polarization circuit of FIG. 4. It further comprises two transistors 8 and 9, here of type N, in series on each branch for generating the reference current in order to draw them to ground. It does not include the elements 4 and 7 of the polarization circuit of FIG. 4.
  • the different figures represent a generator of reference made in CMOS technology. But the invention is not limited to this particular technology. The invention is more generally achievable by MOS technology, with the only constraints being that transistors mounted in current mirror are the same conductivity type, and that the fifth branch uses two transistors (T7, T8) of the same type to obtain the desired temperature compensation.
  • Vcc> V VS is Vcc> Vt not - Vt n / A and for figure 3, it is necessary: Vcc> V VS is Vcc> Vt p + Vt not - Vt n / A .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Claims (7)

  1. Referenzgenerator als integrierter Schaltkreis in MOS-Technologie, der einen Stromspiegel umfaßt, und der umfaßt:
    einen ersten Stromquellenzweig mit einem ersten Transistor (T1), der als Diode geschaltet ist, in Reihe mit einem ursprünglichen zweiten Transistor (T2), der einen Widerstand darstellt;
    einen zweiten Zweig mit einem dritten Transistor (T3)in Reihe mit einem vierten Transistor (T4), der als Diode geschaltet ist;
    dadurch gekennzeichnet, daß die Vorrichtung einen dritten Zweig umfaßt, der mit einem Mittelpunkt (B) des zweiten Zweigs verbunden ist, mit einem fünften Transistor (T5) in Reihe mit einem sechsten Transistor (T6), der als Diode geschaltet und mit dem Mittelpunkt verbunden ist;
    wobei der erste, dritte und fünfte Transistor vom selben Leitungstyp sind und ihr Gate zusammengeschlossen ist,
    und der zweite, vierte und sechste Transistor vom selben Leitungstyp sind und das Gate des zweiten und vierten Transistors zusammengeschlossen sind,
    wobei der vierte Transistor eine Leitfähigkeitsschwelle (vtn) hat, die größer als die des zweiten und des sechsten Transistors ist (Vtna),
    um eine stabile Spannung (VB) an dem Mittelpunkt des zweiten Zweiges zu erzeugen.
  2. Referenzgenerator nach Anspruch 1, dadurch gekennzeichnet, daß er eine Ausgangsstufe umfaßt, die in Reihe einen siebten Transistor (T7) und einen achten Transistor (T8) vom selben Leitfähigkeitstyp wie der zweite Transistor umfaßt, wobei der siebte Transistor niederohmig ist und über sein Gate die stabile Spannung (VB) empfängt, wobei der achte Transistor (T8) als Diode geschaltet und sehr hochohmig ist und eine Leitfähigkeitsschwelle (Vtn) hat, die größer als die des siebten Transistors (Vtna) ist,
    um eine Ausgangsspannung (VC) an dem Ausgangspunkt (C) zwischen dem siebten und achten Transistor zu erzeugen.
  3. Referenzgenerator nach Anspruch 2, dadurch gekennzeichnet, daß der siebte Transistor einen kleinen Eingangswiderstand hat.
  4. Referenzgenerator nach Anspruch 1, dadurch gekennzeichnet, daß er einen vierten Zweig umfaßt, der einen siebten Transistor (T7) vom selben Leitfähigkeitstyp wie der zweite Transistor aufweist, der niederohmig in Reihe mit einem Widerstand (R) geschaltet ist,
    wobei dieser siebte Transistor eine Schwellenspannung (Vtna) hat, die kleiner als die (Vtn) des vierten Transistors ist, und die stabile Spannung (VB) an seinem Gate empfängt,
    um einen konstanten Strom (I) in diesem vierten Zweig zu erhalten.
  5. Stromgenerator nach Anspruch 4, dadurch gekennzeichnet, daß er wenigstens einen fünften Zweig umfaßt, der als Stromspiegel zu dem vierten Zweig geschaltet ist, wobei der vierte Zweig außerdem einen neunten Transistor (T9) umfaßt, der als Diode geschaltet ist und vom selben Leitfähigkeitstyp wie der erste Transistor (T1) ist.
  6. Referenzgenerator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die geometrischen Verhältnisse des dritten und fünften Transistors zum Modifizieren des Pegels der Ausgangsspannung verwendet werden.
  7. Referenzgenerator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß er in CMOS-Technologie hergestellt ist, wobei der erste Transistor eine Leitfähigkeit vom P-Typ und der zweite Transistor eine Leitfähigkeit vom N-Typ aufweist.
EP96401646A 1995-07-25 1996-07-24 Spannungs- und/oder Stromreferenzgenerator in integriertem Schaltkreis Expired - Lifetime EP0756223B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9509023A FR2737319B1 (fr) 1995-07-25 1995-07-25 Generateur de reference de tension et/ou de courant en circuit integre
FR9509023 1995-07-25

Publications (2)

Publication Number Publication Date
EP0756223A1 EP0756223A1 (de) 1997-01-29
EP0756223B1 true EP0756223B1 (de) 1998-06-10

Family

ID=9481355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96401646A Expired - Lifetime EP0756223B1 (de) 1995-07-25 1996-07-24 Spannungs- und/oder Stromreferenzgenerator in integriertem Schaltkreis

Country Status (4)

Country Link
US (1) US5841270A (de)
EP (1) EP0756223B1 (de)
DE (1) DE69600348T2 (de)
FR (1) FR2737319B1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292050B1 (en) 1997-01-29 2001-09-18 Cardiac Pacemakers, Inc. Current and temperature compensated voltage reference having improved power supply rejection
DE19818464A1 (de) * 1998-04-24 1999-10-28 Siemens Ag Referenzspannung-Erzeugungsschaltung
US6381491B1 (en) 2000-08-18 2002-04-30 Cardiac Pacemakers, Inc. Digitally trimmable resistor for bandgap voltage reference
KR100344222B1 (ko) * 2000-09-30 2002-07-20 삼성전자 주식회사 능동저항소자를 사용한 기준전압 발생회로
JP3868756B2 (ja) * 2001-04-10 2007-01-17 シャープ株式会社 半導体装置の内部電源電圧発生回路
KR100554979B1 (ko) * 2003-10-31 2006-03-03 주식회사 하이닉스반도체 기준전압 발생회로
US7180360B2 (en) * 2004-11-12 2007-02-20 Lsi Logic Corporation Method and apparatus for summing DC voltages
US7397226B1 (en) * 2005-01-13 2008-07-08 National Semiconductor Corporation Low noise, low power, fast startup, and low drop-out voltage regulator
JP5262718B2 (ja) * 2006-09-29 2013-08-14 富士通株式会社 バイアス回路
US7768248B1 (en) 2006-10-31 2010-08-03 Impinj, Inc. Devices, systems and methods for generating reference current from voltage differential having low temperature coefficient
US20110133710A1 (en) * 2009-12-08 2011-06-09 Deepak Pancholi Partial Feedback Mechanism in Voltage Regulators to Reduce Output Noise Coupling and DC Voltage Shift at Output
US8471538B2 (en) * 2010-01-25 2013-06-25 Sandisk Technologies Inc. Controlled load regulation and improved response time of LDO with adaptive current distribution mechanism
US8283198B2 (en) 2010-05-10 2012-10-09 Micron Technology, Inc. Resistive memory and methods of processing resistive memory
US9122292B2 (en) 2012-12-07 2015-09-01 Sandisk Technologies Inc. LDO/HDO architecture using supplementary current source to improve effective system bandwidth
CN103631311A (zh) * 2013-11-28 2014-03-12 苏州贝克微电子有限公司 一种稳压器
KR20160072703A (ko) * 2014-12-15 2016-06-23 에스케이하이닉스 주식회사 기준전압 생성회로
TWI569578B (zh) * 2015-08-10 2017-02-01 威盛電子股份有限公司 控制電路、連接線及其控制方法
TWI720305B (zh) * 2018-04-10 2021-03-01 智原科技股份有限公司 電壓產生電路

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723108A (en) * 1986-07-16 1988-02-02 Cypress Semiconductor Corporation Reference circuit
GB2210745A (en) * 1987-10-08 1989-06-14 Ibm Voltage-controlled current-circuit
US4994688A (en) * 1988-05-25 1991-02-19 Hitachi Ltd. Semiconductor device having a reference voltage generating circuit
US4918334A (en) * 1988-08-15 1990-04-17 International Business Machines Corporation Bias voltage generator for static CMOS circuits
EP0397408A1 (de) * 1989-05-09 1990-11-14 Advanced Micro Devices, Inc. Referenzspannungsgenerator
US4970415A (en) * 1989-07-18 1990-11-13 Gazelle Microcircuits, Inc. Circuit for generating reference voltages and reference currents
US4978905A (en) * 1989-10-31 1990-12-18 Cypress Semiconductor Corp. Noise reduction output buffer
US5029295A (en) * 1990-07-02 1991-07-02 Motorola, Inc. Bandgap voltage reference using a power supply independent current source
JPH04111008A (ja) * 1990-08-30 1992-04-13 Oki Electric Ind Co Ltd 定電流源回路
US5124632A (en) * 1991-07-01 1992-06-23 Motorola, Inc. Low-voltage precision current generator
US5302888A (en) * 1992-04-01 1994-04-12 Texas Instruments Incorporated CMOS integrated mid-supply voltage generator
FR2703856B1 (fr) * 1993-04-09 1995-06-30 Sgs Thomson Microelectronics Architecture d'amplificateur et application a un generateur de tension de bande interdite .
DE4312117C1 (de) * 1993-04-14 1994-04-14 Texas Instruments Deutschland Bandabstands-Referenzspannungsquelle
US5451860A (en) * 1993-05-21 1995-09-19 Unitrode Corporation Low current bandgap reference voltage circuit
JPH07106869A (ja) * 1993-09-30 1995-04-21 Nec Corp 定電流回路
KR960002457B1 (ko) * 1994-02-07 1996-02-17 금성일렉트론주식회사 정전압회로
KR0143344B1 (ko) * 1994-11-02 1998-08-17 김주용 온도의 변화에 대하여 보상 기능이 있는 기준전압 발생기
US5686824A (en) * 1996-09-27 1997-11-11 National Semiconductor Corporation Voltage regulator with virtually zero power dissipation

Also Published As

Publication number Publication date
DE69600348T2 (de) 1998-10-08
FR2737319B1 (fr) 1997-08-29
EP0756223A1 (de) 1997-01-29
FR2737319A1 (fr) 1997-01-31
DE69600348D1 (de) 1998-07-16
US5841270A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
EP0756223B1 (de) Spannungs- und/oder Stromreferenzgenerator in integriertem Schaltkreis
EP0733961B1 (de) Referenzstromgenerator in CMOS-Technologie
EP0788047B1 (de) Vorrichtung zur Erzeugung von Referenzstrom in einer integrierten Schaltung
EP0424264B1 (de) Stromquelle mit niedrigem Temperaturkoeffizient
EP0700141B1 (de) Temperaturdetektor auf einer integrierten Schaltung
EP1566717A1 (de) Vorrichtung zur Erzeugung einer verbesserten Referenzspannung und entsprechende integrierte Schaltung
EP0687967B1 (de) Temperaturstabilisierte Stromquelle
EP0649079B1 (de) Geregelter Spannungsquellengenerator der Bandgapbauart
FR2729762A1 (fr) Circuit de detection de tension compense en technologie et en temperature
EP0902437B1 (de) Hochspannungsgeneratorschaltung zum Programmieren oder Löschen eines Speichers
FR2890239A1 (fr) Compensation des derives electriques de transistors mos
FR2770947A1 (fr) Amplificateur differentiel a transistor mos
FR2757964A1 (fr) Regulateur de tension serie
EP3357159A1 (de) Elementare elektronische schaltung zur verstärkung oder wiederholung von analogen signalen
EP0050583B1 (de) Wechselspannung/Gleichstrom-Konverter und Schwingkreis-Schaltung mit einem solchen Konverter
EP0055320A1 (de) Spannungskomparator mit weitem Gleichtakt-Eingangsspannungsbereich
FR3104344A1 (fr) Circuit électronique de diviseur de tension en technologie FDSOI
EP0762259B1 (de) Vorspannungsschaltung zur Stellung des durchschnittlichen Pegels einer alternierenden Spannung
FR2834086A1 (fr) Generateur de tension de reference a performances ameliorees
FR3082052A1 (fr) Dispositif electronique integre destine a fonctionner dans des environnements a temperature variable
EP0420822B1 (de) Verfahren zur Speicherung analoger Grössen und Einrichtung zur Durchführung des Verfahrens
FR2790569A1 (fr) Bloc operateur electronique permettant d'engendrer un courant qui est une puissance rationnelle quelconque d'un autre courant
EP1046890A1 (de) Temperaturpegeldetektorschaltung
FR2825807A1 (fr) Dispositif de polarisation atopolarise a point de fonctionnement stable
FR2802316A1 (fr) Controle de source de courant basse consommation par double alimentation basse regulee en tension

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19970623

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971007

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: PORTA CHECCACCI E BOTTI S.R.L.

REF Corresponds to:

Ref document number: 69600348

Country of ref document: DE

Date of ref document: 19980716

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980701

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: STMICROELECTRONICS S.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040721

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040806

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050708

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050724

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050724

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731