EP0788047B1 - Vorrichtung zur Erzeugung von Referenzstrom in einer integrierten Schaltung - Google Patents

Vorrichtung zur Erzeugung von Referenzstrom in einer integrierten Schaltung Download PDF

Info

Publication number
EP0788047B1
EP0788047B1 EP97400209A EP97400209A EP0788047B1 EP 0788047 B1 EP0788047 B1 EP 0788047B1 EP 97400209 A EP97400209 A EP 97400209A EP 97400209 A EP97400209 A EP 97400209A EP 0788047 B1 EP0788047 B1 EP 0788047B1
Authority
EP
European Patent Office
Prior art keywords
transistor
resistor
transistors
current
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97400209A
Other languages
English (en)
French (fr)
Other versions
EP0788047A1 (de
Inventor
François Cabinet Ballot-Schmit Tailliet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
SGS Thomson Microelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9601168A external-priority patent/FR2744262B1/fr
Application filed by STMicroelectronics SA, SGS Thomson Microelectronics SA filed Critical STMicroelectronics SA
Publication of EP0788047A1 publication Critical patent/EP0788047A1/de
Application granted granted Critical
Publication of EP0788047B1 publication Critical patent/EP0788047B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Definitions

  • the invention relates to a reference device for stable current in integrated circuit.
  • Such devices are used in particular in memory circuits, particular for generating timing signals stable necessary for reading or writing memory cells.
  • EP-A-0 052 553 describes a current generator using the threshold difference between two transistors each mounted in a branch of a current mirror device, a resistance being placed in one of the branches to make up for this difference voltage and produce a stable current.
  • the invention therefore relates to a device for intrinsically stable current reference, without feedback to compensate for this or that variation.
  • the invention relates to a integrated circuit current reference device with a reference resistance.
  • the device includes first and second transistor of the same type of conductivity, the first having its grid and its drain connected together to a first resistance terminal, the second having its grid and its drain connected together to a second resistance terminal, and the first transistor having a threshold voltage higher than that of the second transistor, the two transistors being polarized in saturated mode, the source of each of these transistors being polarized at the same potential as the substrate or the box in which the transistor is made.
  • the device maybe transposed from one manufacturing technology to another without simulations.
  • Figure 1 shows the electronic diagram of a integrated circuit current reference device according to the invention.
  • the first transistor T1 has a voltage of threshold higher than that of the second transistor T2.
  • the transistors T1 and T2 are of type N produced in a conventional technology with P substrate.
  • the transistor T2 is then of the native type while the transistor T1 is of the enriched type, in order to fulfill the condition on the threshold voltages (Vt 1 ⁇ Vt 2 ).
  • Their sources are then connected to ground.
  • the substrate P is therefore connected to the same potential as the source of the transistors T1 and T2, which has the effect of eliminating the substrate effect. There is therefore a particularly stable threshold voltage with the supply voltage.
  • a resistor R1 is connected to the drain of the first transistor T1 to call a load current I1.
  • This polarization resistance R1 may very well be directly connected to the supply voltage Vcc, as shown in dotted lines in FIG. 1, or then, a bias circuit CP can be provided.
  • the two transistors T1 and T2 which are mounted as a diode are then in saturated mode and there is on their drain, the threshold voltage of the transistor.
  • the voltage V tN V tNna ' where V tN is the threshold voltage V t1 of the enriched transistor T1, of the order of 0.8 volt and V tNna is the threshold voltage V t2 of the native transistor T2, or about 0.2 volts.
  • This reference current is independent of the temperature. Indeed, according to theory and as verified in practice, the threshold voltages of the native transistor and of the enriched transistor vary in parallel, by two millivolts per degree, so that their difference is practically independent of the temperature.
  • the only variation with the possible temperature of the reference current obtained by the device of the invention can only come from the reference resistance Rr.
  • This technology is that used in Mos technology with low drain doping called "LDD", and corresponding to a first implantation and slightly doped diffusion (N-) before the highly doped diffusion, to obtain a less abrupt junction profile, having better tensile strength.
  • LDD low drain doping
  • N- slightly doped diffusion
  • Variations in characteristics due to the process manufacturing affect all threshold voltages as well as the value of the reference resistance.
  • Vtn-Vtna threshold voltages
  • the variation can only come in process from the variation of the threshold implant dose of the transistor enriched T1, since the thickness of the gate oxide is the same for both transistors and that the threshold variation due to the initial doping operation of the substrate is also found on the transistor native only on the enriched transistor.
  • the variation in resistance with the process is of the same order. In the worst case, the variation of the reference current due to the process is thus of the order of ⁇ 20%, which is satisfactory.
  • the polarization resistance of device could be connected directly to the voltage Vcc supply.
  • the device then has the advantage of operate at very low voltage, since the path critical between supply voltage and ground is given by R1, Rr, T2.
  • the current of load It is then directly dependent on the voltage Vcc supply. If we vary the voltage Vcc supply in a range from 1.6 volts to 6 volts, the charging current of the first transistor will vary greatly, with an annoying effect on the stability of the drain voltage of the first transistor and therefore on the reference current.
  • a bias circuit CP which includes a transistor Mos T3, diode mounted, to impose on the resistance load R1 a transistor threshold voltage higher than the threshold voltage of transistor T1, at place of the supply voltage Vcc.
  • a native P-type transistor to be able to bias the enriched transistor N T1.
  • the tension of threshold of a native P transistor (about 1.5 volts) is indeed higher than the threshold voltage of a enriched N transistor (approximately 0.8 volts).
  • House could very well choose an N-type transistor, more enriched than transistor T1.
  • I1 (V tPna - V tN ) / R1.
  • the reference current Ir (V tN -V tNna ) / Rr is then practically independent of the supply voltage Vcc.
  • resistor R1 is charged from the resistor R2 and the reference resistor Rr is charged from the resistor R1. So that the current is sufficient to bias the entire device, it is therefore necessary to choose resistors with values such as R2 ⁇ R1 ⁇ Rr. And if you want to limit the current consumption of the device, you need high resistances.
  • resistors with values such as R2 ⁇ R1 ⁇ Rr.
  • the technology in drain extension it will be preferable to use the technology in drain extension to achieve the resistances , because it is less bulky (2000 ohms / square) than the source drain technology (typically 50 to 100 ohms / square in P + , 20 to 50 ohms / square in N +).
  • this drain-extension technology is less stable in temperature.
  • FIG. 2 thus represents another electronic diagram of a current reference device in integrated circuit according to an alternative embodiment of the invention, which makes it possible to use resistors of lower values.
  • a Mos transistor T4 is used as a follower to apply to the load resistor R1, a bias voltage independent of the supply voltage.
  • the transistor Mos T4 is of type N and connected between the supply voltage Vcc and the resistor R1.
  • This transistor T4 is controlled on its gate by the voltage imposed by the series connection of a transistor T5 mounted in direct diode (gate and drain connected) and of a transistor T6 mounted in direct diode. These two transistors T5 and T6 are connected in series between the gate of the follower transistor T4 and the ground.
  • the transistor T5 is preferably of the same type as the transistor T4 and with the same threshold voltage (to compensate as we will see).
  • the transistor T6 is of type P and native. It could be of type N. It is only necessary that its threshold voltage is greater than that of transistor T1.
  • a resistor R3 is provided between the supply voltage Vcc and the transistor T5 to bias the transistors T5 and T6 in saturated mode.
  • the transistors T4 and T5 of type N are chosen to be native, in order to have the lowest threshold voltage, which allows the device to operate at the lowest possible supply voltage. In this manner is found on the terminal of the load resistor R1 connected to the transistor T4, the voltage (V F + ASPR TNNA -Vt Nna) is thus V ASPR.
  • the load current of the transistor T1 is therefore (V tPna -Vt tNna ) / R1 and is therefore very stable, as already explained previously.
  • Figure 3 shows a variant of the device in Figure 2, which further improves the stability of the reference current.
  • the resistor R3 is directly supplied by the voltage logic supply to the circuit. If the tension diet varies, for example if it increases, we has an effect on the gate of transistor T4 follower, which will tend to increase the current of reference Ir.
  • a resistor R4 is inserted between the supply voltage Vcc and terminal C of the resistance R3.
  • a branch identical to the branch (T5, T6) is provided between terminal C and earth, comprising two transistors T8 and T9.
  • the T8 transistor is mounted as a diode and identical to transistor T5.
  • the transistor T9 is diode mounted and identical to transistor T6. In the example they are all the same type N enriched and of the same geometry (W / L). Which is important in practice is that two by two, T5 and T8, T6 and T9, are identical to have the compensation expected.
  • This branch (T8, T9) serves as a limiter of the tension at node C, to make this node less dependent on variations in supply voltage Vdd.
  • the node C follows the increase of the supply voltage through the resistor R4. But as soon as node C reaches a potential of the order of 2 x Vt n (sum of the threshold voltages of transistors T8 and T9 in series), the branch T8, T9, tends to maintain this level at node C: the voltage Vc will then move much less, as shown in Figure 4. Indeed T8 and T9 do not have the resistance R3 in their branch, they will pass more current (I) than T5 and T6. Thus the voltage on this branch given by Vt8 + Vt9 + Ron.I, where Ron is the equivalent pass resistance of the two transistors, will always be slightly higher than Vt5 + Vt6 (Vti is the threshold voltage of the transistor Ti).
  • the device shown may very well be made in NMOS technology.
  • a current Ir from which we can obtain other reference currents, by mirrored arrangements of current.
  • Such an assembly is for example shown on the Figure 2: an N-type native T7 transistor is mounted in current mirror with respect to transistor T2: its gate is controlled by the gate of transistor T2.
  • Another reference resistance Rr ' is connected to the drain of transistor T7 on one terminal. The other terminal is connected to the supply voltage Vcc.
  • Vcc supply voltage
  • the current reference device in circuit integrated according to the invention therefore offers great stability. And by design without feedback, it can be transposed from a technology of manufacturing to another without simulations, which is not not the least of its advantages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Claims (10)

  1. Referenzstromvorrichtung im integrierten Schaltkreis, umfassend einen Referenzwiderstand (Rr),
    gekennzeichnet durch
    einen ersten und einen zweiten Mos-Transistor vom gleichen Leitfähigkeitstyp, wobei der erste (T1) sein Gate und sein Drain gemeinsam mit einem ersten Anschluß (A) des Referenzwiderstandes verbunden hat, der zweite (T2) sein Gate und sein Drain gemeinsam mit einem zweiten Anschluß (B) des Referenzwiderstandes verbunden hat, der erste Transistor eine Schwellenspannung hat, die größer als die des zweiten Transistors ist, und die zwei Transistoren in den gesättigten Zustand vorgespannt sind, die Source jedes dieser Transistoren auf das gleiche Potential vorgespannt ist, wie das Substrat oder die Wanne, in welcher der Transistor realisiert ist.
  2. Referenzvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie einen dritten Mos-Transistor (T3) mit einer Schwellenspannung umfaßt, die größer als die des ersten Transistors ist und dessen Gate mit seinem Drain verbunden ist, derart, daß an den ersten Transistor ein Vorspannungsstrom (I1), der proportional zu der Differenz der genannten Schwellenspannungen des ersten und dritten Transistors ist, über einen Vorspannungswiderstand (R1), der zwischen den ersten und den dritten Transistor geschaltet ist, angelegt wird.
  3. Referenzvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Vorspannungsschaltkreis einen vierten Mos-Folgertransistor (T4) umfaßt, der in Reihe geschaltet ist mit einem ersten Widerstand (R1), um den ersten Transistor (T1) vorzuspannen, wobei der Folgertransistor gesteuert wird über sein Gate durch die Serienschaltung eines fünften und eines sechsten Mos-Transistors, wobei der fünfte Transistor (T5) vom selben Leitfähigkeitstyp ist und die gleiche Schwellenspannung hat wie der Folgertransistor und als Diode geschaltet ist und der sechste Mos-Transistor (T6) eine Schwellenspannung hat, die größer als die des ersten Transistors (T1) ist, und als Diode geschaltet ist, wobei die zwei Transistoren in dem gesättigten Bereich über einen zweiten Widerstand (R3) vorgespannt sind, der zwischen den Drain des Transistors T5 und die Versorgungsspannung Vcc geschaltet ist.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß sie einen dritten Vorspannungswiderstand (R4), der zwischen die Versorgungsspannung und den zweiten Widerstand (R3) auf einen Knoten C geschaltet ist, und eine Serienschaltung zwischen diesem Knoten C und der Masse eines siebten Transistors (T8), der als Diode geschaltet ist und identisch ist mit dem fünften Transistor (T5), und einen achten Transistor (T9), der als Diode geschaltet ist identisch zum sechsten Transistor (T6), umfaßt.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Referenzwiderstand (Rr) realisiert wird durch Diffusion vom Typ Drain-Extension.
  6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Referenzwiderstand (Rr) realisiert wird durch Diffusion vom Typ Source/Drain.
  7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Vorspannungswiderstände (R1, R3, R4) ebenfalls realisiert werden durch Diffusion vom Typ Source/Drain.
  8. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sie außerdem wenigstens eine Stromspiegelstruktur (T7) in bezug auf den zweiten Transistor (T2) umfaßt zum Erzeugen eines weiteren Referenzstroms (Ir') in einem weiteren Referenzwiderstand Rr'.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der andere Referenzwiderstand realisiert ist in der gleichen Technologie wie der erste Widerstand (Rr).
  10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Transistoren (T2, T7), die in der Stromspiegelstruktur verwendet werden, einen langen Kanal aufweisen.
EP97400209A 1996-01-31 1997-01-29 Vorrichtung zur Erzeugung von Referenzstrom in einer integrierten Schaltung Expired - Lifetime EP0788047B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9601168 1996-01-31
FR9601168A FR2744262B1 (fr) 1996-01-31 1996-01-31 Dispositif de reference de courant en circuit integre
FR9607705 1996-06-20
FR9607705A FR2744263B3 (fr) 1996-01-31 1996-06-20 Dispositif de reference de courant en circuit integre

Publications (2)

Publication Number Publication Date
EP0788047A1 EP0788047A1 (de) 1997-08-06
EP0788047B1 true EP0788047B1 (de) 1998-10-07

Family

ID=26232490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97400209A Expired - Lifetime EP0788047B1 (de) 1996-01-31 1997-01-29 Vorrichtung zur Erzeugung von Referenzstrom in einer integrierten Schaltung

Country Status (4)

Country Link
US (1) US5903141A (de)
EP (1) EP0788047B1 (de)
DE (1) DE69700031T2 (de)
FR (1) FR2744263B3 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749939B1 (fr) * 1996-06-13 1998-07-31 Sgs Thomson Microelectronics Detecteur de gamme de tension d'alimentation dans un circuit integre
EP0943975B1 (de) * 1998-03-16 2005-06-08 STMicroelectronics S.r.l. Polarisationsspannungssteuerschaltung für schwebende Senke in einer integrierten Halbleiterschaltung
US6175267B1 (en) * 1999-02-04 2001-01-16 Microchip Technology Incorporated Current compensating bias generator and method therefor
JP2001332696A (ja) * 2000-05-24 2001-11-30 Nec Corp 基板電位検知回路及び基板電位発生回路
US6424205B1 (en) * 2000-08-07 2002-07-23 Semiconductor Components Industries Llc Low voltage ACMOS reference with improved PSRR
US6750699B2 (en) * 2000-09-25 2004-06-15 Texas Instruments Incorporated Power supply independent all bipolar start up circuit for high speed bias generators
US6346803B1 (en) * 2000-11-30 2002-02-12 Intel Corporation Current reference
US6433624B1 (en) 2000-11-30 2002-08-13 Intel Corporation Threshold voltage generation circuit
US6693332B2 (en) * 2001-12-19 2004-02-17 Intel Corporation Current reference apparatus
JP2003347852A (ja) * 2002-05-24 2003-12-05 Toshiba Corp バイアス回路及び半導体装置
US20050003764A1 (en) * 2003-06-18 2005-01-06 Intel Corporation Current control circuit
US7118274B2 (en) * 2004-05-20 2006-10-10 International Business Machines Corporation Method and reference circuit for bias current switching for implementing an integrated temperature sensor
US7489183B2 (en) * 2004-12-08 2009-02-10 Triquint Semiconductor, Inc. Bias control system for a power amplifier
US7768248B1 (en) 2006-10-31 2010-08-03 Impinj, Inc. Devices, systems and methods for generating reference current from voltage differential having low temperature coefficient
TW200910050A (en) * 2007-08-22 2009-03-01 Faraday Tech Corp Bandgap reference circuit
TWI335496B (en) * 2007-08-22 2011-01-01 Faraday Tech Corp Bandgap reference circuit
US9092045B2 (en) * 2013-04-18 2015-07-28 Freescale Semiconductor, Inc. Startup circuits with native transistors
CN106527558B (zh) * 2016-12-23 2018-08-07 长沙景美集成电路设计有限公司 一种低功耗的与绝对温度成正比的电流源电路
US20230155498A1 (en) * 2021-11-16 2023-05-18 Rohm Co., Ltd. Current source circuit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562017A (en) * 1979-06-19 1981-01-10 Toshiba Corp Constant electric current circuit
FR2494519A1 (fr) * 1980-11-14 1982-05-21 Efcis Generateur de courant integre en technologie cmos
IT1190325B (it) * 1986-04-18 1988-02-16 Sgs Microelettronica Spa Circuito di polarizzazione per dispositivi integrati in tecnologia mos,particolarmente di tipo misto digitale-analogico
US4978904A (en) * 1987-12-15 1990-12-18 Gazelle Microcircuits, Inc. Circuit for generating reference voltage and reference current
JPH0727424B2 (ja) * 1988-12-09 1995-03-29 富士通株式会社 定電流源回路
JPH0690653B2 (ja) * 1988-12-21 1994-11-14 日本電気株式会社 トランジスタ回路
CA2066929C (en) * 1991-08-09 1996-10-01 Katsuji Kimura Temperature sensor circuit and constant-current circuit
JP2531104B2 (ja) * 1993-08-02 1996-09-04 日本電気株式会社 基準電位発生回路
JPH07106869A (ja) * 1993-09-30 1995-04-21 Nec Corp 定電流回路
US5739682A (en) * 1994-01-25 1998-04-14 Texas Instruments Incorporated Circuit and method for providing a reference circuit that is substantially independent of the threshold voltage of the transistor that provides the reference circuit
FR2721119B1 (fr) * 1994-06-13 1996-07-19 Sgs Thomson Microelectronics Source de courant stable en température.
JP3374541B2 (ja) * 1994-08-22 2003-02-04 富士電機株式会社 定電流回路の温度依存性の調整方法

Also Published As

Publication number Publication date
FR2744263A1 (fr) 1997-08-01
FR2744263B3 (fr) 1998-03-27
DE69700031D1 (de) 1998-11-12
EP0788047A1 (de) 1997-08-06
US5903141A (en) 1999-05-11
DE69700031T2 (de) 1999-02-25

Similar Documents

Publication Publication Date Title
EP0788047B1 (de) Vorrichtung zur Erzeugung von Referenzstrom in einer integrierten Schaltung
EP0578526B1 (de) Hochspannungsschaltkreis
EP0756223B1 (de) Spannungs- und/oder Stromreferenzgenerator in integriertem Schaltkreis
FR2670035A1 (fr) Circuit de production de tension de reference d'un dispositif de memoire a semiconducteurs.
EP0700141B1 (de) Temperaturdetektor auf einer integrierten Schaltung
FR2886783A1 (fr) Pompe a charge bi-directionnelle a haut rendement
EP3895371A1 (de) Physikalisch unklonbare funktionsvorrichtung
EP0649079B1 (de) Geregelter Spannungsquellengenerator der Bandgapbauart
EP1073202B1 (de) Steuerschaltung für einen Pegelumsetzer-Hochspannungsschalter
EP0687967B1 (de) Temperaturstabilisierte Stromquelle
EP0568440A1 (de) Detektionsschaltung mit Spannungsschwellen
EP0902437B1 (de) Hochspannungsgeneratorschaltung zum Programmieren oder Löschen eines Speichers
FR2514589A1 (fr) Circuit porte logique bipolaire
EP1073203B1 (de) Steuerschaltung für einen Pegelumsetzer-Hochspannungsschalter
FR2795557A1 (fr) Dispositif d'ajustement des circuits apres mise en boitier et procede de fabrication correspondant
FR2982720A1 (fr) Interrupteur de puissance
CH651160A5 (fr) Amplificateur differentiel a transistors bipolaires realises en technologie cmos.
FR2750240A1 (fr) Generateur de reference de tension
EP0915562A2 (de) MOS-Transistor-Differentialverstärker
FR2744262A1 (fr) Dispositif de reference de courant en circuit integre
EP0811987B1 (de) Hochprogrammierspannungsgeneratorschaltung
FR2847717A1 (fr) Circuit limiteur de tension, notamment pour pompe de charge
FR2759507A1 (fr) Pompe de charge dans une technologie a double caisson
EP0800131B1 (de) Integrierte Stromquellenschaltung
EP1315062B1 (de) Stromgeneratorschaltung für Hochspannungsanwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19971009

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980211

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981009

REF Corresponds to:

Ref document number: 69700031

Country of ref document: DE

Date of ref document: 19981112

ITF It: translation for a ep patent filed

Owner name: VEDI IST. IN ATTI;PORTA CHECCACCI E BOTTI S.R.L.

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: STMICROELECTRONICS S.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050126

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050127

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070129