EP0754172A1 - Reacteur a diaphragme pour la transformation de matieres premieres gazeuses - Google Patents

Reacteur a diaphragme pour la transformation de matieres premieres gazeuses

Info

Publication number
EP0754172A1
EP0754172A1 EP95913002A EP95913002A EP0754172A1 EP 0754172 A1 EP0754172 A1 EP 0754172A1 EP 95913002 A EP95913002 A EP 95913002A EP 95913002 A EP95913002 A EP 95913002A EP 0754172 A1 EP0754172 A1 EP 0754172A1
Authority
EP
European Patent Office
Prior art keywords
membrane
methanol
reaction
particular according
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95913002A
Other languages
German (de)
English (en)
Inventor
Ruud Struis
Samuel Stucki
Michael Wiedorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casale SA
Original Assignee
Methanol Casale SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Methanol Casale SA filed Critical Methanol Casale SA
Publication of EP0754172A1 publication Critical patent/EP0754172A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for converting substantially gaseous starting materials into at least one substantially vaporous product, a process for producing methanol from synthesis gas and a device for carrying out the process.
  • the enriched gas from the reactor is cooled to about 30 ° C., and methanol condenses out of the unreacted synthesis gas.
  • the unreacted reactants are recompressed, heated again and returned to the reactor for further conversion.
  • the total conversion is increased to approximately 88% by recycling the unreacted synthesis gas with a circulating gas ratio of 5 and a recirculation rate of usually 4-6.
  • the object of the present invention is therefore to provide a method generally for reactions of gas to propose educts for the formation of vaporous products and in particular for the synthesis of methanol, whereby during the reaction or the synthesis, the conversion or conversion can be increased by simultaneously removing one or more of the products. According to the invention, this object is achieved by means of a method according to the wording of claim 1.
  • a method for converting essentially gaseous starting materials, which starting materials are converted into at least one essentially vaporous product, the reaction equilibrium being shifted towards product (s) in order to increase the reaction yield, by removing at least one product from the reaction mixture by means of membrane permeation.
  • the at least one product be withdrawn by means of so-called steam permeation.
  • Thin layers are referred to as membranes, which may have very different structures, but all have the common property of opposing different resistance to the passage of different substances. It is known to separate individual grain to separate components from fluid mixtures. Please refer to the article by Y. Cen, K. Meckl and RN Lichtenthaler entitled “Non-porous membranes and their applications", Che. -Ing. -Tech. 65 (1993) No. 8, pp. 901-913.
  • reaction equilibrium is shifted in the direction of methanol by withdrawing methanol and / or water from the reaction mixture by means of membrane permeation.
  • a polymer membrane is used as the membrane for the removal of methanol and / or possibly water, which, as mentioned above, has a higher permeability for vapors exhibits than for gases.
  • methanol and / or water are continuously separated off, which, as required according to the invention, can significantly increase the conversion with unchanged pressure and temperature.
  • a membrane made from a perfluorinated ionomer such as a perfluorinated cation exchange membrane.
  • Such fluoropolymers with sulfonic acid and / or carboxyl groups are normally used as ionomeric membranes in chlorine-alkali electrolysis.
  • RS Yeo entitled "Applications of Perf1 uorosulfonated Polymer Membranes in Fuel Cells, Electrolyzers, and Load Leveling Devices” in "Perf1 uorated Iono er Membranes", Edit. A. Eisenberg, HL Yeager, ACS Symposium, Ser. 180, Washington DC (1982).
  • the perfluorinated polysulfonic acid membrane in lithium form proposed according to the invention has excellent chemical resistance on the one hand and good temperature resistance up to approximately 250 ° C. on the other hand. Accordingly, it is possible to carry out the reaction at temperatures up to about 220 ° C., the catalysts customary in methanol synthesis such as copper, zinc, Chromium and / or aluminum, or mixtures thereof, or at least partially oxide mixtures thereof, can be used.
  • FIG. 1 is a schematic diagram of a possible structure of a membrane reactor claimed according to the invention for carrying out the methanol synthesis
  • FIG. 2 shows a membrane module as used in an abnormal test arrangement to carry out or check the method according to the invention
  • Fig. 3 shows an example of the design of a technical or industrial reactor for the production of methanol according to the principle of the invention.
  • the reactor includes a semi-permeable membrane 1 which is coated or surrounded on its outer surface by means of catalyst particles.
  • the semi-permeable membrane is a so-called non-porous membrane, with perfluorinated polysulfonic acid in lithium form having proven to be the preferred material as the membrane material.
  • perfluorinated ionomers have a high selectivity for the transport of water.
  • Perfluorinated polysulfonic acid is available on the market, for example under the brand name "NAFION" and is manufactured by the Du Pont company.
  • the perfluorinated polysulfonic acid membrane used according to the invention was treated with lithium chloride solution before the methanol synthesis reaction was carried out, as a result of which the counterion is formed by lithium ions.
  • Suitable catalysts are all catalysts usually used in methanol synthesis, such as copper, zinc, chromium, aluminum, mixtures thereof or at least partially oxides of these metals.
  • the reactor When the reaction is carried out, the reactor is charged with synthesis gas 5, which is carbon dioxide and hydrogen gas. Near the surface of the semi-permeable membrane 1, ie in the area of the catalyst particles 3, the reaction to methanol and water takes place, these condensable products according to the arrows 7 preferably permeating through the membrane 1, in order to be discharged in the direction of arrow 9 on the opposite surface of the membrane, for example by means of a gas stream or by means of a vacuum.
  • synthesis gas 5 is carbon dioxide and hydrogen gas.
  • the method proposed according to the invention can significantly increase the conversion in the methanol synthesis by using a semi-permeable membrane.
  • the structure of the membrane module used in the exemplary embodiment is shown schematically in FIG. 2.
  • the module 11 used it comprises an outer shell 13 and an inner, also cylindrical, membrane 15, supplied by Per a Pure Products Inc. in Thos River, NJ 08754, USA, with an inlet end 17 and an outlet 19.
  • a perfluorinated poly sulphonic acid membrane is used, the membrane surface
  • 0.0122 m was 10 m with a membrane thickness of 3.15.
  • the inner hose volume was 6.6 10 m.
  • the outer casing 13 is a steel pipe jacket.
  • the membrane separates the tube volume from the jacket volume, so that the gas type (medium), pressure, flow rate and flow direction can be set independently of one another in both parts of the reactor module 11.
  • the outer steel 1 tubular casing 1 and 13 in turn comprises an inlet 20 and an outlet 21.
  • 7.0 g of catalyst (with a grain size of 500-1000 ⁇ m) were filled into the tube volume and the ends were each loosely closed with glass wool.
  • the catalyst entered was based on copper, zinc or aluminum.
  • the catalyst was converted into the active form in accordance with the customary methods proposed by the catalyst suppliers.
  • a flushing gas flow of 200 ml / min (100% by volume argon) and a synthesis gas flow of 64 ml were carried out with the aid of mass flow controllers at a pressure of 4.3 bar in the jacket and tube volume / min (76.2 vol% hydrogen, 23.8 vol% carbon dioxide).
  • the purge gas and the synthesis gas were conducted in the opposite direction (countercurrent principle).
  • the synthesis gas was guided at arrow 17 into the interior of the membrane 15 and also discharged at arrow 19.
  • the flushing gas flow of argon was entered into the jacket at arrow 20 and discharged at arrow 21.
  • the drying cabinet temperature was 200 ° C. while the methanol synthesis was carried out.
  • the methanol yield was determined integrally by condensing the gases in two wash bottles filled with water and connected in series.
  • the methanol content was determined quantitatively by gas chromatography.
  • the methanol yield related to the cabbage endi oxide supply was 3.6%.
  • FIG. 3 schematically shows an example of a possible design of an industrial methanol synthesis reactor, in which, as proposed according to the invention, the arrangement of a membrane is provided for the separation of methanol and / or water from the reaction mixture.
  • the methanol yield per pass can be increased according to the invention starting from, for example, C0 2 and H at 30 bar and 220 ° C. if in perfluorinated cation exchange membrane 1 are installed in this tube.
  • the membrane can be hollow fibers (e.g. each 10 m long, diameter 120 ⁇ m and thickness 10 ⁇ m) that withstand the pressure difference (synthesis pressure minus vacuum pressure).
  • the membrane is in the form of thin foils (layers) or tubes would also be conceivable. In these cases, a support body could take up the differential pressure.
  • reactor tube 4 shown in FIG. 3 is only one possible example which can be modified, modified and supplemented in any manner. 3 only serves to show that the reactor type shown schematically or in laboratory scale in FIGS. 1 and 2 can be transformed to the industrial scale.
  • the product (s) obtained are / are removed from the reaction mixture by means of a semi-permeable membrane, so as to shift the equilibrium towards the products and thus increase them to achieve sales.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé de transformation de matières premières essentiellement gazeuses en au moins un produit essentiellement en phase vapeur, caractérisé, en ce qu'en vue d'accroître le rendement de la réaction, l'équilibre réactionnel est déplacé dans le sens du/ou des produit(s), en soutirant du mélange réactionnel au moins un produit, par perméation sur diaphragme. Un exemple type de ce procédé est fourni par la synthèse du méthanol qui, en règle générale, s'effectue conformément à l'équation de réaction suivante (1), dans laquelle X peut prendre une valeur comprise entre 0 et 1. Les éduits gazeux sont transformés en méthanol en phase vapeur, éventuellement avec formation d'eau, les produits formés étant soutirés, par perméation sur diaphragme, en vue de déplacer l'équilibre de la réaction dans le sens des produits.
EP95913002A 1994-04-08 1995-04-04 Reacteur a diaphragme pour la transformation de matieres premieres gazeuses Withdrawn EP0754172A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH01050/94A CH687004A5 (de) 1994-04-08 1994-04-08 Membranreaktor fuer die Umsetzung von gasfoermigen Ausgangsstoffen.
CH1050/94 1994-04-08
PCT/CH1995/000076 WO1995027690A1 (fr) 1994-04-08 1995-04-04 Reacteur a diaphragme pour la transformation de matieres premieres gazeuses

Publications (1)

Publication Number Publication Date
EP0754172A1 true EP0754172A1 (fr) 1997-01-22

Family

ID=4201286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95913002A Withdrawn EP0754172A1 (fr) 1994-04-08 1995-04-04 Reacteur a diaphragme pour la transformation de matieres premieres gazeuses

Country Status (7)

Country Link
EP (1) EP0754172A1 (fr)
JP (1) JPH09511509A (fr)
CN (1) CN1147241A (fr)
AU (1) AU2065595A (fr)
CA (1) CA2186222A1 (fr)
CH (1) CH687004A5 (fr)
WO (1) WO1995027690A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117612C (zh) * 2000-01-31 2003-08-13 暨南大学 烃类选择氧化的管状催化膜反应器
US7019039B1 (en) * 2005-07-14 2006-03-28 Starchem Technologies, Inc. High efficiency process for producing methanol from a synthesis gas
JP2007055970A (ja) * 2005-08-26 2007-03-08 Mitsui Eng & Shipbuild Co Ltd メタノール製造用反応器及びメタノール製造方法
GB0718398D0 (en) * 2007-09-21 2007-10-31 Robert Gordon The University Process for the production of alcohols
CN102584526B (zh) * 2011-12-28 2014-09-10 上海碧科清洁能源技术有限公司 一种由合成气制备甲醇的膜接触器方法以及用于该方法的膜反应器
EP2974785A1 (fr) * 2014-07-14 2016-01-20 Akzo Nobel Chemicals International B.V. Procédé de séparation de méthanol et d'eau à partir de produits non condensables
JP7049075B2 (ja) * 2016-07-04 2022-04-06 公益財団法人地球環境産業技術研究機構 メタノール製造方法およびメタノール製造装置
EP3517204A1 (fr) * 2018-01-26 2019-07-31 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Réacteur et procédé d'hydrogénation du dioxyde de carbone
DK3556451T3 (da) * 2018-04-20 2020-08-31 Siemens Ag Fremgangsmåde til drift af et reaktoranlæg
JP6746763B2 (ja) * 2018-08-01 2020-08-26 日本碍子株式会社 発電システム
JP6741830B2 (ja) * 2018-08-01 2020-08-19 日本碍子株式会社 発電システム
JP7430498B2 (ja) * 2018-08-02 2024-02-13 三菱ケミカル株式会社 メタノールの製造方法
CN112512672A (zh) 2018-08-02 2021-03-16 三菱化学株式会社 接合体、具备该接合体的分离膜组件及醇制造方法
DE202018106371U1 (de) * 2018-11-09 2018-11-15 Muw Screentec Filter- Und Präzisionstechnik Aus Metall Gmbh Katalytischer Membranreaktor zur Durchführung chemischer Gleichgewichtsreaktionen
US10570071B1 (en) * 2018-12-12 2020-02-25 Saudi Arabian Oil Company Membrane-based process for butanols production from mixed butenes
JP7291350B2 (ja) * 2020-02-12 2023-06-15 国立大学法人島根大学 内部凝縮型反応器
CN112657435B (zh) * 2020-12-24 2022-05-31 中国人民解放军海军工程大学 Co2加氢合成甲醇膜反应器及总熵生产率最小优化方法
JP7190774B2 (ja) * 2021-05-13 2022-12-16 イーセップ株式会社 Co2転換装置
DE112022002561T5 (de) * 2021-05-13 2024-03-21 ESEP Inc. CO2-Umwandlungsvorrichtung
CN116157194A (zh) * 2021-06-08 2023-05-23 日本碍子株式会社 膜反应器
JPWO2023112800A1 (fr) * 2021-12-17 2023-06-22
AU2022418749A1 (en) * 2021-12-22 2023-09-21 Ngk Insulators, Ltd. Reactor and liquid fuel synthesis method
CN117015589A (zh) * 2022-02-08 2023-11-07 日本碍子株式会社 反应器
CN114588844B (zh) * 2022-03-18 2023-07-21 杭州师范大学 两面神中空纤维膜反应器在Suzuki-Miyaura反应中的应用及其膜反应器
WO2024048674A1 (fr) * 2022-09-01 2024-03-07 日本碍子株式会社 Procédé de production de combustible liquide et système de synthèse de combustible liquide
WO2024048673A1 (fr) * 2022-09-01 2024-03-07 日本碍子株式会社 Procédé de production de combustible liquide et système de synthèse de combustible liquide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8518575D0 (en) * 1985-07-23 1985-08-29 Bp Chem Int Ltd Esterification process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9527690A1 *

Also Published As

Publication number Publication date
CA2186222A1 (fr) 1995-10-19
JPH09511509A (ja) 1997-11-18
WO1995027690A1 (fr) 1995-10-19
CH687004A5 (de) 1996-08-30
MX9604577A (es) 1997-11-29
CN1147241A (zh) 1997-04-09
AU2065595A (en) 1995-10-30

Similar Documents

Publication Publication Date Title
EP0754172A1 (fr) Reacteur a diaphragme pour la transformation de matieres premieres gazeuses
EP3034485B1 (fr) Réaction du dioxide de carbone avec hydrogène utilisant une membrane permsélective
DE3424208A1 (de) Verfahren und vorrichtung zur umsatzsteigerung von mit wasserstoffbildung ablaufenden gasreaktionen
EP2300361B1 (fr) Dispositif pour la production d'hydrogène
EP3638827A1 (fr) Procédé et installation pour la préparation d'un produit gazeux contenant du monoxyde de carbone
EP1133808A1 (fr) Contenant destine a l'agent permettant le fonctionnement de piles a combustible
DE2910743A1 (de) Verfahren zur herstellung von synthesegasgemischen mit hilfe von semipermeablen hohlfasermembranen
DE19955150B4 (de) Verfahren zur Erzeugung von Wasserstoff
DE102018202335A1 (de) Anlage zur elektrochemischen Herstellung eines CO-haltigen Gasprodukts
EP3583089B1 (fr) Procédé et dispositif pour la transformation de dioxyde de carbone en méthanol
WO2021089183A1 (fr) Procédé et installation de production de monoéthylène glycol
DE102019126114A1 (de) Verfahren und Vorrichtung zur Luftzerlegung
WO2010108974A1 (fr) Procédé de fonctionnement d'une centrale électrique à énergie fossile et centrale électrique
DE102016005418A1 (de) Verfahren zur Isolierung und Methanisierung von Kohlendioxid aus Abgasen
EP2102102B1 (fr) Procédé pour éliminer du no et du n<sb>2</sb>o de mélanges gazeux
AT522323B1 (de) Membranreaktor
EP3526166A1 (fr) Procédé de préparation d'ammoniac à partir d'un mélange gazeux de procédé contenant de l'azote et de l'hydrogène
WO2017207110A1 (fr) Procédé et installation de fabrication d'éthanol
EP2708493B1 (fr) Méthode de fonctionnement d'un procedé partiel nécessitant de la vapeur d'eau dans un procedé global
EP4197619A1 (fr) Procédé de production de courants contenant du monoxyde de carbone
WO2021009346A1 (fr) Procédé de production de monoxyde de carbone
DE19758536A1 (de) Ethylenaufbereitung mittels Gaspermeation
EP3650118A1 (fr) Réacteur à membrane catalytique permettant la réalisation de réactions d'équilibre chimiques
EP3759065A1 (fr) Procédé pour la transformation catalytique de glycérine en propanol
DE102017209848A1 (de) Thermochemischer Kreisprozess zur Spaltung eines gasförmigen Oxids bei reduziertem relativem Partialdruck

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17Q First examination report despatched

Effective date: 19971016

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19971230