EP0748883A1 - Pièce munie d'un revêtement électrolytique et procédé de réalisation de couches par électrodéposition - Google Patents

Pièce munie d'un revêtement électrolytique et procédé de réalisation de couches par électrodéposition Download PDF

Info

Publication number
EP0748883A1
EP0748883A1 EP96810338A EP96810338A EP0748883A1 EP 0748883 A1 EP0748883 A1 EP 0748883A1 EP 96810338 A EP96810338 A EP 96810338A EP 96810338 A EP96810338 A EP 96810338A EP 0748883 A1 EP0748883 A1 EP 0748883A1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
metal layer
galvanic bath
layer
part according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96810338A
Other languages
German (de)
English (en)
Inventor
Elias Dr. Jülke
Martin Schiesser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0748883A1 publication Critical patent/EP0748883A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials

Definitions

  • the invention is based on a part with a galvanically applied coating according to the preamble of claim 1 and on a method for producing galvanic layers.
  • Electro-coated parts and a large number of processes for producing electroplated layers are known. Such a method is known from published patent application DE 23 58 309, for example, in which fine-grained particles are kept in suspension in the electroplating bath. These fine-grained particles are mechanically introduced into the electroplated metal layer and are enclosed by the deposited metal as the electroplating process proceeds. The introduction of the fine-grained particles into the metal layer requires a comparatively great mechanical effort.
  • non-metal particles can be oxides, carbides, sulfides or foreign metals, they have particle sizes in the range between 0.5 ⁇ m and 8 ⁇ m. The volume fraction of these non-metal particles was between 1% and 5%.
  • This dispersion coating brought about an improvement in the adhesion wear in silver contact arrangements, but such contact arrangements can only be used if they are additionally lubricated from time to time with conventional lubricants.
  • the surface of such coatings is comparatively rough, since on the one hand the sharp-edged non-metallic particles protrude from the surface in places, and on the other hand the sharp-edged non-metallic particles cause pores in the coating.
  • the respective lubricant is deposited in the depressions of this surface and is consumed together with the removal of the rough parts of the surface during operation; it must then be replaced.
  • the invention achieves the object of creating a part with a galvanically applied coating which is comparatively simple to produce, the coating being designed in such a way that when it is used as Component of a contact arrangement is used, the additional lubrication of the same is unnecessary, and specify a simple method for producing this electroplated coating.
  • the advantages achieved by the invention are essentially to be seen in the fact that the coating has a better stability against mechanical stresses. It is a significant economic advantage that these coatings can be produced in conventional electroplating plants without additional mechanical expenditure.
  • the part 1 shows a greatly simplified partial section through a part 1 with a coating according to the invention.
  • the part 1 can be cylindrical, but it can also have a flat surface which is provided with a coating.
  • the part 1 has a base material 2, which consists of a metal or a plastic. If the base material 2 is a plastic matrix, then its surface to be coated is metallized before it is introduced into a galvanic bath, for example by chemical deposition of a metal layer on this surface or by vapor deposition of a metal layer under high vacuum conditions.
  • a first metal layer 3, in which homogeneously distributed nanoparticles 4 are embedded, has been applied galvanically to the base material 2. These nanoparticles 4 are chemically and physically bonded to a material that reduces abrasion or friction.
  • This substance that reduces abrasion or friction is a substance based on surface-active chemical compounds.
  • This first metal layer 3 can also consist of several individual layers applied in succession. For certain applications, the first metal layer 3 does not need to be covered with further layers.
  • the first metal layer 3 is here completely covered by a metallic cover layer 5.
  • the cover layer 5 has a smooth surface 6.
  • the metallic cover layer 5 generally has a greater hardness than the first metal layer 3.
  • the first metal layer 3 advantageously has a thickness in the range from 5 ⁇ m to 15 ⁇ m, while the metallic cover layer 5 has a thickness in the range around 2 ⁇ m.
  • the metallic cover layer 5 is advantageously designed as hard silver plating in order to optimize its abrasion behavior.
  • nanoparticles 4 can be used as nanoparticles 4, for example carbides such as SiC, WC and TiC, nitrides such as AlN and Si 3 N 4 , borides such as TiB, metal oxides such as ZnO, SiO 2 , Fe 2 O 3 , Bi 2 O 3 , PdO, NiO, AgO, TeO, CuO, Sb 2 O 3 , TiO 2 , ZrO 2 , Al 2 O 3 , In 2 O 3 , SnO, V 2 O 5 , TiO 2 and MgO and metals such as W and Ni.
  • the nanoparticles 4 are produced from the respective base materials using one of the known methods.
  • the nanoparticles 4 have a size in the range from approximately 5 nm to 50 nm and are generally spherical.
  • the nanoparticles 4 have no sharp edges.
  • Either nanoparticles 4 made of a single substance or nanoparticles 4 made of a mixture of two or more substances are introduced into the galvanic bath. In order to achieve a uniform distribution of the nanoparticles 4 in the galvanic bath, the bath is constantly stirred.
  • particles with a somewhat coarser structure than the above-described nanoparticles 4 are used, the chemical-physical one Although the effectiveness of these particles deteriorates somewhat because less surface-active chemical compounds can attach to these particles, applications are conceivable where such a coarser structure can advantageously be used. In particular, it is also possible to use particles which have a somewhat coarser structure mixed with nanostructured material in order to achieve a specific adaptation to certain predetermined operating requirements.
  • Suitable surface-active chemical compounds for attachment to the nanoparticles 4 can be bipolar, natural chemical compounds which are referred to as soaps, such as, for example, stearates, oleates, palmitates or laureates, but also synthetic compounds, such as, for example, sulfonic acids, and in particular Toluene sulfonic acid or lauric sulfonic acid, or amino alcohols, polyalcohols and the like can be used. These compounds attach themselves chemically and physically to the nanoparticles 4, as a rule it is Van der Waal's forces which ensure this attachment.
  • the nanoparticles 4 are wholly or at least partially enveloped by one or a mixture of two or more of these compounds which reduce abrasion or friction.
  • FIG. 2 schematically shows a section through a nanoparticle 4 with its shell made of a surface-active chemical compound that is attached in a chemical-physical way.
  • the nanoparticle 4 has been produced, for example, from Al 2 O 3 , ZrO or TiO 2 by one of the known processes.
  • Oxygen O is directly attached to the nanoparticle 4 and a hydrocarbon compound R 1 to the oxygen O.
  • R 1 is here For example, an amino alcohol NH 2 is added, which is to be regarded as the decisive component for reducing the abrasion or friction when this nanoparticle 4 is embedded in the first metal layer 3.
  • hydroxyl groups OH are also directly attached to the nanoparticle 4; the hydrogen for these hydroxyl groups is removed from the water of the galvanic bath by the attached oxygen O.
  • the hydrogen ions of these hydroxyl groups OH are positively charged, so that the nanoparticle 4 has an overall positive electrical charge.
  • the so positively charged nanoparticles 4 migrate to the cathode in the electric field of the galvanic bath, just like the dissolved metals, and are deposited there together with the part 1 to be coated. In this way, a very homogeneous distribution of the nanoparticles 4 in the first metal layer 3 is achieved without additional aids, which results in a uniform lubricating effect due to the shell of the embedded nanoparticles 4.
  • non-oxide nanoparticles 4 which have nitrides, borides, carbides and metals as the base materials, are coated in the normal atmosphere with a wafer-thin oxide layer, which after the introduction of these nanoparticles 4 into a galvanic bath enables the same chemical-physical surface reactions as described above are described in connection with the representation of the nanoparticle 4 in FIG.
  • the first metal layer 3 is therefore to be regarded as a self-lubricating layer.
  • the coated part 1 can interact in a contacting assembly as a stationary or comparatively slow moving component with a movable metallic component sliding or rolling on this part 1.
  • Part 1 can be designed, for example, as a fixed nominal current contact of a circuit breaker, and a movable counter contact equipped with silver-plated fingers or with silver-plated spiral contacts can be provided as a component sliding on this fixed contact.
  • these novel silver-plated contacts can improve the contact transitions in circuit breakers and in energy distribution systems, on the other hand, for example, the gold-plated contact parts in relays can be made more durable, or, with the same service life, can be provided with a thinner coating, which is the case with the enormous number of pieces such contacts leads to significant material savings.
  • Nanoparticles 4 on the can be used particularly advantageously for use in silver-plated contact zones in metal-encapsulated gas-insulated switchgear assemblies which are filled with SF 6 gas Use the base of carbides and metals that have been prepared using one of the known methods. These nanoparticles 4 have a size of approximately 5 nm to 50 nm. These nanoparticles 4 are resistant to the decomposition products of the sulfur hexafluoride usually used in these metal-encapsulated gas-insulated switchgear assemblies as an insulating agent and as an extinguishing agent for the arc, so that the lubricity of the first metal layer 3 is not reduced by these decomposition products.
  • the connections attached to these nanoparticles 4 result in a particularly long service life of the contacts.
  • the abrasion occurring here consists of comparatively small abrasion particles; there are no abrasion particles of the critical size which could migrate and cause flashovers in the electrical field in the metal-encapsulated gas-insulated high-voltage systems.
  • part 1 is designed as a stationary or comparatively slowly moving component which interacts with a movable metallic component that slides or rolls on this part 1.
  • the coating according to the invention it is also possible to provide everyday objects such as cutlery, jewelry, costume jewelry made of plastic and the like with the coating according to the invention, in order to improve their durability or to save material for the coating.
  • the first metal layer 3, as described is provided with nanoparticles 4 together with the abrasion-reducing deposits, and the overlying layer 5 is high-gloss silvering.
  • This cover layer 5 will wear through at the most stressed points over time, so that the first metal layer 3 appears there. Thanks to the doping with the coated nanoparticles 4, however, this first metal layer 3 is so abrasion-resistant that the further wear of the cutlery is extremely slowed down, while the visual impression of the cutlery is only insignificantly impaired.
  • this first metal layer 3 can be constructed as a single-layer structure or also from several similar layers. In principle, it is also possible to construct this first metal layer 3 from several layers of different metals, but each of these layers is doped with nanoparticles 4. If this first metal layer 3 is used in a bearing, covering with an additional cover layer 5 is generally not provided. The full effect of the the nanoparticles 4 attached, lubricating compounds are guaranteed from the start.
  • the majority of the same metal is dissolved in the first and second galvanic baths, but it is also possible, if special applications require this, that at least two different metals are dissolved in one or both galvanic baths.
  • the hardness of the respective metal layer can thus be adapted to the respective operating requirements with simple means.
  • 0.002 to 0.20 percent by weight of the nanoparticles 4 are introduced into the first galvanic bath. It has been shown that an optimal composition of the first metal layer 3 is then achieved. A comparatively small amount of the substance based on surface-active chemical compounds, which is adapted to the amount of nanoparticles 4, is introduced into the first galvanic bath, care being taken that this substance is metered in continuously becomes. If the amounts of the nanoparticles 4 and this substance are not matched to one another, undesired clumping of the nanoparticles 4 often occurs, which has the consequence that these clumps sink in the galvanic bath, which is then the homogeneous distribution of the nanoparticles 4 in the first metal layer 3 no longer guaranteed. However, if attention is paid to the adjustment of the quantities mentioned, the concentration of the galvanic bath is not significantly influenced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
EP96810338A 1995-06-12 1996-05-28 Pièce munie d'un revêtement électrolytique et procédé de réalisation de couches par électrodéposition Withdrawn EP0748883A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19521323 1995-06-12
DE1995121323 DE19521323A1 (de) 1995-06-12 1995-06-12 Teil mit einer galvanisch aufgebrachten Beschichtung und Verfahren zur Herstellung von galvanischen Schichten

Publications (1)

Publication Number Publication Date
EP0748883A1 true EP0748883A1 (fr) 1996-12-18

Family

ID=7764172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810338A Withdrawn EP0748883A1 (fr) 1995-06-12 1996-05-28 Pièce munie d'un revêtement électrolytique et procédé de réalisation de couches par électrodéposition

Country Status (6)

Country Link
EP (1) EP0748883A1 (fr)
CN (1) CN1147569A (fr)
BR (1) BR9602735A (fr)
CA (1) CA2171585A1 (fr)
DE (1) DE19521323A1 (fr)
PL (1) PL314668A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348210A (en) * 1999-03-26 2000-09-27 Miba Gleitlager Ag Electrodeposited alloy layer used as an overlay of a plain bearing
DE10125290A1 (de) * 2001-05-15 2002-11-28 Siemens Ag Verfahren zum Aufbereiten von Nano-Dispersanten
DE10125289A1 (de) * 2001-05-15 2002-11-28 Siemens Ag Verfahren zum Herstellen einer abriebfesten, galvanischen Schicht auf Teilen und danach hergestellte Teile
EP1398399A1 (fr) * 2002-06-13 2004-03-17 Fujimura, Tadamasa Fine couche métallique contenant des particules superfines de diamant, matériau métallique ayant cette fine couche, et son procédé de fabrication
WO2004080907A1 (fr) * 2003-03-11 2004-09-23 3M Innovative Properties Company Dispersions de revetement pour fibres optiques
EP1643016A1 (fr) * 2004-10-04 2006-04-05 Siemens Aktiengesellschaft Utilisation de particules à surface modifiée pour la galvanotechnique
WO2006099068A1 (fr) * 2005-03-09 2006-09-21 Scarpa Frank C Compositions liposomales et procedes d'utilisation
EP1707650A1 (fr) * 2005-03-31 2006-10-04 Siemens Aktiengesellschaft Matrice et système de couches
DE102005032738B3 (de) * 2005-07-08 2006-11-23 Siemens Ag Verfahren und Vorrichtung zum Bearbeiten wenigstens zweier Werkstücke mittels elektrochemischer Behandlung
WO2007006752A1 (fr) * 2005-07-12 2007-01-18 Siemens Aktiengesellschaft Ensemble d'electrodes et procede de revetement electrochimique de la surface d'une piece
DE102006045531B3 (de) * 2006-09-21 2008-05-29 Siemens Ag Verfahren zum Herstellen einer Schicht auf einem Träger
WO2008122570A2 (fr) 2007-04-05 2008-10-16 Freie Universität Berlin Système de matériau et procédé de fabrication
WO2011015531A2 (fr) 2009-08-06 2011-02-10 Tyco Electronics Amp Gmbh Revêtement autolubrifiant, et procédé de production de revêtement autolubrifiant

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134559B4 (de) * 2001-07-16 2008-10-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Beschichtung von Bauteilen, mit dem Verfahren herstellbare Dispersionsschichten und Verwendung
DE102009014588B4 (de) * 2009-03-24 2013-07-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metallbasiertes Schichtsystem, Verfahren zur Herstellung desselben und Verwendung des Schichtsystems oder des Verfahrens
EP3605751B1 (fr) 2013-08-16 2021-10-06 Schleifring GmbH Ensemble de bague collectrice et composants associés
CN105624758B (zh) * 2014-11-03 2018-07-06 宁波瑞隆表面技术有限公司 一种铸铝合金微弧氧化陶瓷膜层的制备方法
CN112030213B (zh) * 2020-08-14 2021-11-09 北京科技大学 一种耐磨超疏水镍钨/碳化钨复合镀层及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3152972A (en) * 1960-07-26 1964-10-13 Udylite Corp Electrodeposition of lustrous satin nickel
FR1420009A (fr) * 1963-12-24 1965-12-03 Kampschulte & Cie Dr W Procédé de formation par électrolyse de couches de revêtement en nickel-chrome brillant et résistant à la corrossion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3762882A (en) * 1971-06-23 1973-10-02 Di Coat Corp Wear resistant diamond coating and method of application
DE2247956C3 (de) * 1972-09-29 1980-11-06 Toyo Kogyo Co. Ltd., Hiroshima (Japan) Werkstück mit galvanisch aufgebrachtem Nickelüberzug und Bad zu dessen Abscheidung
US3996114A (en) * 1975-12-17 1976-12-07 John L. Raymond Electroplating method
DE3032469A1 (de) * 1980-08-28 1982-04-01 Siemens AG, 1000 Berlin und 8000 München Cyanidische goldbaeder und verfahren zur galvanischen abscheidung von feststoffschmiermittel-haltigen gold-dispersionsueberzuegen und seine anwendung
DE3333121A1 (de) * 1983-09-14 1985-03-28 AHC-Oberflächentechnik, Friebe & Reininghaus GmbH & Co KG, 5014 Kerpen Dispersionsschichten
US4910095A (en) * 1987-12-29 1990-03-20 Nippon Steel Corporation High corrosion resistant plated composite steel strip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3152972A (en) * 1960-07-26 1964-10-13 Udylite Corp Electrodeposition of lustrous satin nickel
US3152973A (en) * 1960-07-26 1964-10-13 Udylite Corp Electrodeposition of lustrous nickel
US3152971A (en) * 1960-07-26 1964-10-13 Udylite Corp Electrodeposition of fine-grained lustrous nickel
FR1420009A (fr) * 1963-12-24 1965-12-03 Kampschulte & Cie Dr W Procédé de formation par électrolyse de couches de revêtement en nickel-chrome brillant et résistant à la corrossion

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348210B (en) * 1999-03-26 2004-01-21 Miba Gleitlager Ag Electrodeposited alloy layer, in particular an overlay of a plain bearing
GB2348210A (en) * 1999-03-26 2000-09-27 Miba Gleitlager Ag Electrodeposited alloy layer used as an overlay of a plain bearing
DE10125290B4 (de) * 2001-05-15 2005-04-14 Siemens Ag Verfahren zum Aufbereiten von Nano-Dispersanten
DE10125290A1 (de) * 2001-05-15 2002-11-28 Siemens Ag Verfahren zum Aufbereiten von Nano-Dispersanten
DE10125289A1 (de) * 2001-05-15 2002-11-28 Siemens Ag Verfahren zum Herstellen einer abriebfesten, galvanischen Schicht auf Teilen und danach hergestellte Teile
DE10125289B4 (de) * 2001-05-15 2005-04-07 Siemens Ag Verfahren zum Herstellen einer abriebfesten, galvanischen Schicht auf Teilen
EP1398399A1 (fr) * 2002-06-13 2004-03-17 Fujimura, Tadamasa Fine couche métallique contenant des particules superfines de diamant, matériau métallique ayant cette fine couche, et son procédé de fabrication
EP1840095A3 (fr) * 2003-03-11 2008-01-23 3M Innovative Properties Company Dispersions de revêtement pour fibres optiques
US7297731B2 (en) 2003-03-11 2007-11-20 3M Innovative Properties Company Coating dispersions for optical fibers
KR101029421B1 (ko) * 2003-03-11 2011-04-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광섬유용 코팅 분산액
WO2004080907A1 (fr) * 2003-03-11 2004-09-23 3M Innovative Properties Company Dispersions de revetement pour fibres optiques
US7257303B2 (en) 2003-03-11 2007-08-14 3M Innovative Properties Company Coated optical fiber and fiber optic device having same
EP1840095A2 (fr) * 2003-03-11 2007-10-03 3M Innovative Properties Company Dispersions de revêtement pour fibres optiques
WO2006037721A1 (fr) * 2004-10-04 2006-04-13 Siemens Aktiengesellschaft Utilisation de particules a surface modifiee en galvanoplastie
EP1643016A1 (fr) * 2004-10-04 2006-04-05 Siemens Aktiengesellschaft Utilisation de particules à surface modifiée pour la galvanotechnique
WO2006099068A1 (fr) * 2005-03-09 2006-09-21 Scarpa Frank C Compositions liposomales et procedes d'utilisation
EP1707650A1 (fr) * 2005-03-31 2006-10-04 Siemens Aktiengesellschaft Matrice et système de couches
DE102005032738B3 (de) * 2005-07-08 2006-11-23 Siemens Ag Verfahren und Vorrichtung zum Bearbeiten wenigstens zweier Werkstücke mittels elektrochemischer Behandlung
DE102005033857A1 (de) * 2005-07-12 2007-01-18 Siemens Ag Elektrodenanordnung und Verfahren zum elektrochemischen Beschichten einer Werkstückoberfläche
WO2007006752A1 (fr) * 2005-07-12 2007-01-18 Siemens Aktiengesellschaft Ensemble d'electrodes et procede de revetement electrochimique de la surface d'une piece
US8747638B2 (en) 2005-07-12 2014-06-10 Siemens Aktiengesellschaft Electrode arrangement and method for electrochemical coating of a workpiece surface
DE102006045531B3 (de) * 2006-09-21 2008-05-29 Siemens Ag Verfahren zum Herstellen einer Schicht auf einem Träger
WO2008122570A2 (fr) 2007-04-05 2008-10-16 Freie Universität Berlin Système de matériau et procédé de fabrication
WO2008122570A3 (fr) * 2007-04-05 2009-04-23 Univ Berlin Freie Système de matériau et procédé de fabrication
WO2011015531A2 (fr) 2009-08-06 2011-02-10 Tyco Electronics Amp Gmbh Revêtement autolubrifiant, et procédé de production de revêtement autolubrifiant
DE102009036311A1 (de) 2009-08-06 2011-02-17 Tyco Electronics Amp Gmbh Selbstschmierende Beschichtung und Verfahren zur Herstellung einer selbstschmierenden Beschichtung
DE102009036311B4 (de) 2009-08-06 2021-10-28 Te Connectivity Corporation Selbstschmierende Beschichtung, selbstschmierendes Bauteil, Beschichtungselektrolyt und Verfahren zur Herstellung einer selbstschmierenden Beschichtung

Also Published As

Publication number Publication date
CA2171585A1 (fr) 1996-12-13
CN1147569A (zh) 1997-04-16
PL314668A1 (en) 1996-12-23
DE19521323A1 (de) 1996-12-19
BR9602735A (pt) 1999-10-13

Similar Documents

Publication Publication Date Title
EP0748883A1 (fr) Pièce munie d'un revêtement électrolytique et procédé de réalisation de couches par électrodéposition
EP2619348B1 (fr) Matériau composite stratifié pour éléments de glissement, son procédé de fabrication et son utilisation
EP4219796A1 (fr) Surfaces de contact dotées de couches de dispersion d'argent
DE10152029A1 (de) Schiebekontakt-Detektor
DE1078774B (de) Elektrischer Kontakt
DE4243570C1 (de) Elektrischer Kontaktkörper
EP1421651B1 (fr) Contact electrique
DE102009036311B4 (de) Selbstschmierende Beschichtung, selbstschmierendes Bauteil, Beschichtungselektrolyt und Verfahren zur Herstellung einer selbstschmierenden Beschichtung
DE19929090A1 (de) Verfahren zur Beschichtung eines Werkstückes mit einem Schmierstoff
DE2038929B2 (de) Kontakt für eine Schaltvorrichtung der Nachrichtentechnik
EP0145924B1 (fr) Matériau pour contacts à courant faible
DE4434303C2 (de) Mechanische Teile in dem Wirkungsmechanismus eines Rückschlagventils
DE102017201020A1 (de) Verfahren zum Beschichten eines Kontaktbauteils und Kontaktbauteil, Vakuumschaltröhre und Schaltanlage
EP0142615B1 (fr) Bain et procédé pour le dépôt galvanique de couches de dispersion à base de - ou contenant un - métal noble
DE3932536C1 (en) Wear resistant contact material - in which is applied to support comprising copper alloy and non-noble metal contg. silver, palladium or palladium-silver alloy
DE3434627A1 (de) Elektrischer gleitkontakt, insbesondere fuer kommutierungssysteme
EP0837955B1 (fr) Couche de glissement a base de cuivre
DE4230060A1 (de) Trennschalter mit in einem Isoliergas angeordneten Kontaktgliedern
DE3635692C1 (en) Composite material for plug contacts or sliding contacts
DE3402091A1 (de) Verbundwerkstoff fuer elektrische kontaktstuecke
EP0088220B1 (fr) Elément de contact et méthode pour sa fabrication
DE102006045531B3 (de) Verfahren zum Herstellen einer Schicht auf einem Träger
EP0163904B1 (fr) Matière argentifère pour contacts à courant faible
DE19608490C1 (de) Kontaktwerkstoff aus Silber und Wirkkomponenten, daraus gefertigtes Formstück sowie Verfahren zur Herstellung des Formstücks
DE1031458B (de) Verfahren zum Vorbehandeln von Trockenschmiermitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

17P Request for examination filed

Effective date: 19970509

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19980609