EP0740434B1 - System zur Verteilung von Fernsehsatellitensignalen in einer Gemeinschaftsantennenanlage - Google Patents
System zur Verteilung von Fernsehsatellitensignalen in einer Gemeinschaftsantennenanlage Download PDFInfo
- Publication number
- EP0740434B1 EP0740434B1 EP96106739A EP96106739A EP0740434B1 EP 0740434 B1 EP0740434 B1 EP 0740434B1 EP 96106739 A EP96106739 A EP 96106739A EP 96106739 A EP96106739 A EP 96106739A EP 0740434 B1 EP0740434 B1 EP 0740434B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- channel
- converter
- signals
- frequency band
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 238000009795 derivation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H40/00—Arrangements specially adapted for receiving broadcast information
- H04H40/18—Arrangements characterised by circuits or components specially adapted for receiving
- H04H40/27—Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
- H04H40/90—Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving
Definitions
- the present invention relates to a system for distributing signals, in particular a community antenna system for the distribution of television signals different channels according to the preamble of claim 1.
- FIGS. 1 and 2 Two systems are currently used for this purpose: which are shown schematically in FIGS. 1 and 2:
- This system consists of an antenna 1, the television signals of one polarity receives, a converter 2, in particular an LNA / LNB block, and Cables 3 connecting the LNA / LNB block to a signal processing unit 400 connect.
- This signal processing unit 400 consists of a plurality channel-specific FM demodulators / AM modulators 19, a switching element 18, a power supply 17, connecting bridges 7, load components 8.
- a single distribution cable (discharge line) 13 is connected to it with decouplers 14 and user or antenna sockets 15. This The disadvantage of the system is that there is one for each satellite channel received channel-specific FM demodulator / AM modulator 19 required. Should the The number of satellite channels to be received is also increased Increase the number of FM demodulators / AM modulators required.
- EP-A-0 2 888 928 discloses a device with an internal unit which has an amplifier and signal converter function realized.
- This internal unit points several converters, each with a tuner demodulator and an encoder modulator on.
- Such a system is also known from DE-A-40 12 657, wherein in the system converter, each with a tunable demodulator and an AM modulator are provided.
- the distribution of television satellite channels takes place up to System users without the signals being frequency demodulated and amplitude modulated beforehand will.
- Such a system is from the US patent 4,608,710.
- the signals of the television satellite channels are thus frequency modulated (e.g. in the frequency range between 950 MHz and 2050 MHz) distributed.
- This system according to FIG. 2 requires a difference to the system according to FIG. 1, none downstream of the LNA / LNB blocks channel individual FM demodulators / AM modulators; has this system but the disadvantage that for the distribution of the satellite channels that of two different polarities or from more than one satellite, more than one distribution cable 13 is to be installed.
- additional Distribution cable 13 can be in existing systems due to spatial Conditions in the buildings where the additional distribution cables are too install would be very complex or possibly excluded.
- this prior art system requires multiple switching devices 16 to select different distribution cables and on the tapped selected distribution cable to pick up signals.
- the usage of these switching devices, which are connected to the distribution cables also associated with the risk that formed by the switching devices electrical switching impulses reach the distribution cable and the transmission quality the signals transmitted there deteriorate.
- From DE-OS 41 17 208 A1 is a device for satellite television reception devices known, wherein television signals are processed by a parabolic antenna can be received and horizontally polarized channels and have vertically polarized channels. To avoid elaborate Wiring becomes the horizontally polarized channels and the vertically polarized channels separated from each other and block by block in separate frequency bands implemented. The blocks of channels separated in this way are opened a common line switched.
- the known device only allows the block-wise implementation of channels.
- Systems are similarly structured also from European patent application 0 597 783 and from DE-U-93 06 499 known.
- the signals are arranged as if they were directly from the antennas of the system have been transmitted to this node would be. Furthermore, the transponder combination devices are power inserted downstream, connected on the output side with several distribution cables are. The known system is thus complex in terms of circuitry designed.
- the object of the invention based on a system for the distribution of signals of the aforementioned Specify the type that enables the distribution of a larger number of channels and is designed in a simple manner in terms of circuitry, as well as a corresponding channel-specific converter and a corresponding input device.
- the system according to the invention is characterized by a number of advantages on.
- the user has only one distribution cable predefinable channels are provided.
- the individual from signals be selected by one or more antennas come.
- the channel-specific provided according to the invention Converter which convert a predeterminable channel into another channel. but the system as a whole is also simple in terms of circuitry realized.
- the channel-specific converters are in any frequencies a specifiable frequency band adjustable.
- Individual signals or channels can be superimposed by other signals or channels, both the 1 overlaid as well as the overlaying signals transmitted to the user will. However, only the superimposed signals can be used by the user.
- the system according to the invention thus enables a modified one System users demand regarding the use of predefined channels can be met flexibly.
- the system according to the invention can be used, among other things, in who already have a single distribution cable installed, or in cases where which the laying of another distribution cable due to the same circumstances would be expensive or excluded.
- the system according to the invention also has channels of two polarities or from two or more satellites via a single distribution cable to user sockets transmitted, no switching devices on the distribution cable on. This means that there are no electrical switching impulses on the distribution cable coupled in, so that corresponding disturbances are excluded.
- An advantageous embodiment of the invention is characterized in that that the channel-specific converter of the head device in at least a converter module are integrated, with the converter module on its input with downconverters and at its output with the Distribution cable is connected.
- the converter module preferably has at least two converters. the converters in the converter module are connected to each other in a chain connection (an input of a first Converter module is connected to the input of a second converter module, that is adjacent to the first converter module; an exit of the first converter module is connected to the output of the second converter module connected).
- This derailleur structure is characterized by what is important in practice The advantage is that not every channel-specific converter has a separate one Cable to be connected to a down converter and beyond that not every channel-specific converter with a separate cable a mixer or adder is to be connected upstream of the distribution cable is.
- the derailleur structure on the one hand the separate cables and on the other hand the cost of their Installation saved.
- channel-specific converters or their inputs and / or their outputs by means of connecting bridges known per se connect with each other.
- the system according to the invention enables processing and distribution of signals from a variety of television channels. So there are several Converter modules into which a changeable number of channel-specific Converters can be integrated, e.g. via a mixer ("9") with each other connect.
- the system according to the invention can have a further mixer ("5") with at least one have two entrances.
- One of the inputs is with the Output of a converter module connected while another input is directly connected to a down converter of an antenna.
- This Mixer the output side possibly via an amplifier with the distribution cable connected, allows more channels in the distribution cable to couple, from the first channels or signals from satellites radiated and received by parabolic antennas, as well as by second channels or signals broadcast by terrestrial transmitters and received by conventional antennas, as well as by the first and second signals.
- the channel-specific converters can each have a microprocessor have, which controls at least one oscillator.
- the microprocessor enables an external input device to the microprocessor releasably connect and data in the converter or the microprocessor enter a predefinable input channel frequency and a predefinable Denote output channel frequency.
- the channel-specific converter in a particularly simple manner to a predefinable Set the input frequency and a predefinable output frequency, by which the frequency conversion of a channel is determined.
- the converter external input device can also be used as a remote control transmitter be designed.
- the channel-specific converters have an amplifier with a controllable Profit on being a mixer ("5") with at least two inputs Signals from different channels of the same frequency with different Signal levels are supplied. This makes it easy to do different things Overlay ducts on the distribution cable.
- the signal level difference of at least 15 dB can be overlaid Channels in the devices that can be connected to the user sockets display in good reception quality.
- Block A is a signaling device
- block B is a head device with a Signal processing unit
- block C represents the distribution network.
- Block A of the system according to the invention i.e. the signaling device, as shown for example in Fig. 3, consists of antennas 1, the the signals from television channels that are transmitted via satellites, receive. If the antennas are parabolic antennas, the focus is on each an antenna 1, a down converter 2 is arranged, which the received signals in a conventional manner from the satellite television reception frequency range from e.g. 10.7 - 12.5 GHz in the intermediate frequency range between 950 MHz and 2050 MHz (usually as "first intermediate frequency") implement.
- Such downconverters 2 with an amplifier LNA and a channel block converter LNB known and available on the market.
- Each antenna 1 has. one or two down converter 2 (or one Down converter with two outputs) depending on whether Receive signals of one or two polarities (horizontal, vertical) per antenna should be.
- the antenna 1 receives signals of one polarity a down converter 2 is provided; the antenna 1 receives signals from two Polarities, two downconverters 2 are provided.
- the downconverters 2 are each connected to a cable 3 on the output side. Introduce in different embodiments of the invention or more cables 3, as shown in FIGS. 3, 4, 5, 6 and 9 the signal processing unit 400 with at least one individual channel Converter 4. It can also be provided that one or more cables 3, as shown in Figures 3, 6 and 9, to a ("second") mixer 5 lead of a channel-specific converter 4 or a converter module 40 connected with at least one channel-specific converter 4 is.
- the channel-specific converters 4 of the head device B are preferred integrated in at least one converter module 40, the converter module 40 at its entrance via a cable 3 with a down converter (LNA / LNB) 2 and at its output with the distribution cable 13 (coaxial cable) is connectable.
- the distribution cable 13 is preferably at the outlet an amplifier 6 connected, which is connected downstream of the ("second") mixer 5 can be.
- Each channel-specific converter 4 has two inputs and two outputs on.
- the channels are individual Converter 4 of a converter module 40 connected to one another in the manner that an input (e.g. EC1 in Figure 7) of a first converter module with the input (e.g. EC2) of a second one (not shown in FIG. 7) Converter module, which is adjacent to the first converter module connected is. There is also an output (e.g. SC1) of the first converter module with the Output (z.V. SC2) of the second converter module connected (chain connection).
- an input e.g. EC1 in Figure 7
- Converter module which is adjacent to the first converter module connected is.
- This derailleur structure is characterized by the practically important
- the advantage is that not every channel-specific converter 4 has a separate one Cable 3 is to be connected to a down converter 2 and that in addition not every channel-specific converter 4 with a separate cable to connect a ("second") mixer (5) upstream of the distribution cable 13 is.
- each of the two inputs is e.g. via a known connecting bridge 7 with an input of an upstream channel-specific converter 4 or with the input of a downstream channel-specific converter 4 is connected.
- each of the two outputs e.g. each via a known connecting bridge 7 with an output an upstream channel-specific converter 4 or with the output a downstream channel-specific converter 4.
- an identical housing for each channel-specific converter 4 provided, that is, a housing of the same spatial dimensions which places the input and output ports in the same locations are. This enables the use of identical connecting bridges 7, each with either an electrical connection between two Inputs or between two outputs.
- an input of a converter 4 (first Converter 4 of a converter module 40, which in Figures 4 and 5, respectively is drawn on the right in a converter module) with a cable 3, which those generated by the downconverters 2 or in the intermediate frequency range transmits converted signals, is connected.
- An entrance a converter 4 (last converter 4 of a converter module 40, which 4 and 5 is shown on the left) with a feed source 11 connected, the converter 4 and one per signal processing unit 400 provided amplifier 12 supplied.
- These channel-specific converters 4 take those on the input side Down converter 2 output and transmitted via the cable 3 signals or channels in the intermediate frequency range and set the signals or Channels in the intermediate frequency range around, as with reference to Figures 9 and 10 is described.
- outputs of the channel-specific converters 4 can be used with one Ohmic resistance 8 of 75 ohms can be completed (see FIG. 3, Block B, reference number 8 below the converter 4; right and left Converter module 40 in FIG. 5; Figures 6 and 9, reference numeral 8 below the converter 4).
- FIG. 3, Block B, reference number 8 below the converter 4; right and left Converter module 40 in FIG. 5; Figures 6 and 9, reference numeral 8 below the converter 4 are in particular the outcome of a (with regard to the Signal flow) first converter 4 in a first converter module (right Converter module in Figure 5) and the output of a (in terms of Signal flow) last converter 4 in a last converter module (left Converter module in Figure 5).
- a channel is selected with each channel-specific converter 4 and from an input frequency in the intermediate frequency range to a specifiable one Output frequency implemented in the intermediate frequency range.
- Second Two neighboring modules are over one (“First") mixer 9 can be combined with one another.
- the output of the first mixer 9 is connected by means of a connecting cable 10 introduced into the arrangement of supply source 11 and amplifier 12.
- the amplified signal is fed to the second mixer 5.
- the channel-specific converter 4 is preferably configured as follows: Input side Frequency range 950 ... 1950 (or 2050) MHz Input level - 50 ... -30 dBm Mirror selection (image frequency rejection) ⁇ 40 dB Intermediate frequency 479.5 MHz Bandwidth 27 MHz Looping input losses ⁇ 1.2 dB Output side Frequency range 950 ... 1950 (or 2050) MHz Max. Output level - 25 ⁇ 5 dBm Output level control range 15 dB Bandwidth 27 MHz Loop-through output losses ⁇ 1.2 dB Noise level > - 20 dBc
- the feed source 11 is preferably configured as follows: Mains voltage 230V ⁇ 15% Output voltage 15V / 5V Intermediate frequency loop-through losses ⁇ 1.2 dB
- the amplifier 12 is preferably configured as follows: Bandwidth 950 ... 2050 MHz Profit 23 ... 33 dB Max. Output level for two channels 115 dB ⁇ V / 6 dBm
- the first mixer 9 is preferably configured as follows: Bandwidth 950 ... 2050 MHz Insertion loss ⁇ 4 dB Rejection between inputs 15 dB
- first signals that a converter module 40 forms are formed (input E1), as well as second signals from the down converters 2 are formed (input E2), as well as third signals from antennas the signals received by terrestrial transmitters, the second Mixer 5 are fed.
- the output side of this mixer 5 is Distribution cable 13 connected.
- the mixer 5 an amplifier 6 is connected downstream, on the output side of the distribution cable 13 is connected.
- the distribution network C consists of a single one Distribution cable 13 on which all channels that are FM-modulated are transmitted will.
- the distribution cable 13 is formed and leads by a coaxial cable to diverters 14 which send the signal to various user sockets 15 uncouple.
- FIG. 4 shows a signal processing unit 400 with a converter module 400 shown, which consists of four channel-specific converters 4, while in Figure 5 a signal processing unit 400 with two converter modules 400 is shown, each consisting of four channel-specific converters 4 exist.
- the number of channel-specific converters is 4 is equal to the number of channels that are coupled into the distribution cable 13 and transmitted to the user sockets 15 via the discharge devices 14 will.
- the channel-specific converters are at predefinable input frequencies in the intermediate frequency range and on predefinable output frequencies adjustable in the intermediate frequency range.
- FIG. 4 An exemplary embodiment of a channel-specific converter 4 is shown in FIG.
- Two inputs EC1 and EC2 are electrically connected to one another and via a directional coupler 41 to and an amplifier 42.
- the inputs EC1 and EC2 are designed mechanically in such a way that known connecting bridges (7 in FIG. 4) can be used for connection to an input of an adjacent channel-specific converter. In this way, several channel-specific converters can be integrated into one converter module.
- This form of connection therefore consists in that each of the two inputs EC1, EC2 is connected, for example in each case via a known connecting bridge, to an input of an upstream channel-specific converter 4 or to the input of a downstream channel-specific converter 4.
- each of the two outputs SC1, SC2 of the converter 4 is connected, for example in each case via a known connecting bridge, to an output of an upstream channel-specific converter 4 or to the output of a downstream channel-specific converter 4.
- This form of connection has the advantage that distribution devices, which would otherwise have to be connected downstream of the downconverters 2, and connecting cables between these distribution devices and channel-specific converters are not required.
- the amplifier 42 amplifies the supplied signals e.g. in the frequency band from 950 to 2050 MHz.
- the signals become an input Tracking filter 43 supplied.
- This filter is a bandpass filter, that to the selected input channel frequency by means of a voltage is tuned by a phase-locked loop (PLL) circuit 46 is formed.
- the circuit 46 is operated by a microprocessor (MP) 49 controlled.
- MP microprocessor
- a mixer 44 connected downstream of the after-filter 43 is operated by one local oscillator (OL) 45 driven, which in turn from the PLL circuit 46 is controlled.
- the mixer 44 sets the at the inputs EC1 and EC2 pending frequency of the selected channel to a frequency of 479.5 MHz around.
- the signal formed by the mixer 44 is fed to a low-pass filter 47, whose cut-off frequency is, for example, 600 MHz. So that will be Signal of the local oscillator 45 and undesirable formed during the mixing process Signals eliminated.
- the signal is then processed using a surface acoustic wave filter Filtered SAW 50, e.g. a bandwidth of 27 MHz at a center frequency of 479.5 MHz.
- a surface acoustic wave filter Filtered SAW 50 e.g. a bandwidth of 27 MHz at a center frequency of 479.5 MHz.
- the SAW surface wave filter before or. downstream amplifiers 48 and 51 increase the signal level so that the losses caused by the SAW filter 50 are compensated for.
- the mixer 52 connected downstream of the amplifier 51 mixes the signal of the signal selected at the input with a frequency of 479.5 MHz Signal generated by a local oscillator (OL) 53.
- the local one Oscillator is controlled by a PLL circuit 54.
- the PLL circuit 54 is also controlled by the microprocessor 49.
- the mixer 52 is an output-side tracking filter 55 downstream, which like that Filter 43 is a bandpass filter.
- the filter 55 eliminates the unwanted Signals formed when mixing is performed by mixer 52 will.
- the signal of frequency is then at the output of filter 55 converted channel, which is fed to an amplifier 56.
- the gain of amplifier 56 is controllable, so that the level of the frequency converted channel signal are set to predetermined values can (see e.g. channels 1 and 5 in Figure 8)
- a downstream directional coupler 57 couples the amplified signal the outputs SC1, SC2.
- the outputs SC1 and SC2 are mechanically in designed in such a way that known connecting bridges (7 in Figure 4) for Connection to one output of a neighboring individual channel Converter can be used.
- the converter 4 can be a microprocessor 49, which controls the PLL circuits 46 and 54 and the input and Output frequency of the channel signal of the converter 4 is determined. Farther the microprocessor 49 can control the amplifier 56. To the microprocessor 49 can e.g. an input unit 16 via a 4-cable bus are turned on, in the microprocessor 49, the data one Predefinable input and output frequency and / or control data for the Amplifiers 56 (signal amplification parameters) can be entered.
- the input unit 16 can be a control unit 162 (in particular a microprocessor MP), with a program assigned to the control unit 162 e.g. depending on the limit frequencies of the respective intermediate frequency range (950 MHz, 2050 MHz), of channel bandwidths and Channel spacing and signal level of the channel signals data forms the predetermined comply with technical specifications and those in the microprocessor 49 of the channel-specific converter 4 can be entered.
- the input unit 16 includes a keyboard 161, the controller 162 and one Display 163.
- the keyboard 161 is entered on the display Data, prompt information, and information displayed that the State of the converter after its setting by the entered Label data.
- the input unit 16 can be used as a remote control transmitter be configured in a transmission device which transmits the data to be input to a Receiving device that transmits with the microprocessor 49 of the individual channel Converter is connected.
- FIG. 8 shows a second mixer 5, which is also in FIG. 3, block B. is shown.
- the second mixer 5 has e.g. three inputs E1, E2, E3 and an output S to which the distribution cable 13 is connected.
- the Distribution cable 13 is preferably a coaxial cable, but it can also be one Glass fiber can be provided.
- the input E1 is directly via a cable with one or more converter modules 40 connected;
- a cable 3 is connected directly to the input E2 a down converter (2 in Figure 3) connected during the input E3 connected to a system for receiving terrestrial channels is.
- signals of channels 1, 2, 3, 4, 5 and 6, which originate from a satellite and have a bandwidth of 27 MHz, and, as described, from channel-specific converters in Frequency band between 950 and 2050 MHz were implemented.
- Signals of channels 7, 8, 9, 10, 11, 12, 13 and 14, which originate from a satellite, have a bandwidth of 27 MHz and, as described, from channel-specific converters in the frequency band between 950 and 2050 are fed to input E2 MHz were implemented.
- the signals of the channels pending at input E1 are used by the channel-specific converters 4 supplied in which the frequency conversion and the formation of the respective levels with regard to the coupling of the Signals via the mixer output S into the distribution cable 13.
- Channels 2, 4 and 6, which are pending at input E1 were in the channel-specific converters 4 implemented in terms of frequency that none Channels of the same frequencies are present at input E2.
- Channels 1 and 3 at input E1 are in frequencies between the unwanted Channels 7 and 8 or 9 and 10, which are pending at the input E2, arranged.
- the signal or power level of channel 1 is at a value of at least 15 dB above the corresponding level of channels 7 and 8 set; and the signal or power level of channel 3 is at one Value of at least 15 dB above the corresponding level of the channels 9 and 10 set.
- Channel 5 of input E1 is arranged at the same frequency as the unwanted channel 12, which is present at input E2, the Signal or power level of channel 5 at least 20 dB above the corresponding level of the channel 12.
- the channels are in the frequency band from 47 to 860 MHz and channels 1, 2, 3, 4, 11, 5, 13, 6 and 14 in the 950 frequency band up to 2050 MHz made available to the system user. Also be transmit channels 7, 8, 9, 10 and 12 on distribution cable 13; this are overlaid, however, so that they are not available to the system user be put.
- the overlapping channels can be set to at least 15 dB the end devices that can be connected to the user sockets in good reception quality represent.
- Fig. 9 shows an embodiment of the system according to the invention, which is also shown in Figure 3. It is assumed that Receive signals from different TV channels and process them further be that of three satellites of different orbital positions with horizontal and vertical position.
- system according to the invention are circuit points d, e, f, g, h, i, j, k, l, m, n, and o specified.
- FIG. 10 shows the channels at the circuit points shown in FIG. 9 d - o.
- the signals are present which are from with each satellite in a frequency band between 10.7 - 12.5 GHz horizontal and vertical polarity can be received.
- Each down converter 2 (Fig. 9) selects and sets a polarity Frequency band from 10.9 - 12.5 GHz in the frequency band from 950-2050 MHz in such a way that in each cable 3 at the switching points g, h, i, j, k the channels are present that go to the same satellites and to belong to the same polarity.
- converter modules 40 are provided at the circuit points g, h, i, j provided, the channel-specific converter 4 of the modules 40 to the Input frequencies of each of the selected channels and on the output frequencies, on which the channels are to be arranged will. These output frequencies are occupied frequencies undesirable, channels to be superimposed or free frequencies.
- each converter module 40 At the output of each converter module 40 according to the invention Channels are provided that face a different frequency position the frequency position at the input of the modules.
- the channels appear at node i 72, 82, 77 and 89 in a frequency position that is different from the frequency position of the channels at the switching points g and h differs.
- node m there are channels 65, 68, 17 and 41 that of the circuit points i and j, also in different frequency positions come.
- node n As shown in FIG. 10 is shown, all selected channels from the circuit points g, h, i and j originate in frequency positions that differ from the differentiate original frequency positions. These channels are over the power source 11 is inserted into the amplifier 12, which is the signal level of the Channels reinforced.
- the mixer 5 the channels that are in the circuit point n are present with the channels which are present at node k, mixed.
- the channels at node n have a higher signal level of at least 15, but preferably 18 to 20 dB above the signal levels of the To have channels at node k to be overlaid. With This level difference ensures that the channel is another Channel superimposed without interference from the channel being received has been overlaid.
- the channel 65 becomes the case Channel 60 superimposed (cf. larger amplitude of 65 compared to 60), the Channel 72 to channel 36, channel 68 to channel 44, channel 82 to Channel 2, channel 77 to channel 6, channel 17 to channel 12, channel 89 channel 18 and channel 41 channel 24.
- signals in particular via satellites transmitted television signals of different channels in a common antenna system be distributed.
- the signals are in one Signal generator device A received and the received signals of a certain Polarity (H, V) from a receive frequency band into signals in implemented an intermediate frequency band.
- the in the intermediate frequency band converted signals are processed and the processed signals are via a single distribution cable 13 in the intermediate frequency band to user sockets 15 transferred.
- Individual channels that can be specified are in the intermediate frequency band converted to other channels in the intermediate frequency band.
- First channels implemented in the intermediate frequency band are used with second ones Channels mixed in the intermediate frequency band and the first and second Channels are transmitted via the distribution cable 13.
- the signal level of the signals different channels by at least 15 dB.
Landscapes
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Details Of Television Systems (AREA)
- Radio Relay Systems (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Description
- Fig. 1 und 2
- Signalverteilsysteme nach dem Stand der Technik;
- Fig. 3
- ein erstes Ausführungsbeispiel des Signalverteilsystems gemäß der Erfindung;
- Fig. 4 - 6
- Ausführungsbeispiele von Signalverarbeitungseinheiten eines erfindungsgemäßen Signalverteilsystems nach Figur 3;
- Fig. 7
- ein Ausführungsbeispiel eines kanalindividuellen Konverters in einer Signalverarbeitungseinheit nach den Figuren 3 - 6;
- Fig. 8
- ein Ausführungsbeispiel eines Mischers, der in einer Signalverarbeitungseinheit nach den Figuren 3 - 6 mindestens einem kanalindividuellen Konverter nachgeschaltet ist;
- Fig. 9
- ein Ausführungsbeispiel eines erfindungsgemäßen Signalverteilsystems mit ausgewählten Schaltungspunkten, und
- Figur 10
- Diagramme von Kanalsignalfrequenzen an den Schaltungspunkten des erfindungsgemäßen Signalverteilsystems nach Figur 9.
Eingangsseitig | |
Frequenzbereich | 950 ... 1950 (oder 2050) MHz |
Eingangspegel | - 50 ... -30 dBm |
Spiegelselektion (image frequency rejection) | ≥ 40 dB |
Zwischenfrequenz | 479,5 MHz |
Bandbreite | 27 MHz |
Durchschleifeingangsverluste | < 1,2 dB |
Ausgangsseitig | |
Frequenzbereich | 950 ... 1950 (oder 2050) MHz |
Max. Ausgangspegel | - 25 ± 5 dBm |
Ausgangspegel-Regelbereich | 15 dB |
Bandbreite | 27 MHz |
Durchschleifausgangsverluste | < 1,2 dB |
Störpegel | > - 20 dBc |
Netzspannung | 230V ± 15 % |
Ausgangsspannung | 15V/5V |
Zwischenfrequenz-Durchschleifverluste | < 1,2 dB |
Bandbreite | 950 ... 2050 MHz |
Gewinn | 23 ... 33 dB |
Max. Ausgangspegel für zwei Kanäle | 115 dBµV/6 dBm |
Bandbreite | 950 ... 2050 MHz |
Einfügungsdämpfung | < 4 dB |
Rückweisung zwischen Eingaben (rejection between inputs) | 15 dB |
Diese Verbindungsform besteht also darin, daß jeder der beiden Eingänge EC1, EC2 jeweils z.B. über je eine bekannte Verbindungsbrücke mit einem Eingang eines vorgeschalteten kanalindividuellen Konverters 4 bzw. mit dem Eingang eines nachgeschalteten kanalindividuellen Konverters 4 verbunden ist. Ebenso ist jeder der beiden Ausgänge SC1, SC2 des Konverters 4 jeweils z.B. über je eine bekannte Verbindungsbrücke mit einem Ausgang eines vorgeschalteten kanalindividuellen Konverters 4 bzw. mit dem Ausgang eines nachgeschalteten kanalindividuellen Konverters 4 verbunden. Diese Verbindungsform hat den Vorteil, daß Verteileinrichtungen, die sonst den Abwärtskonvertern 2 nachzuschalten wären, und Verbindungskabel zwischen diesen Verteileinrichtungen und kanalindividuellen Konvertern nicht benötigt werden.
Dem Eingang E2 werden Signale der Kanäle 7, 8, 9, 10, 11, 12, 13 und 14 zugeführt, die von einem Satelliten stammen, eine Bandbreite von 27 MHz haben, und wie beschrieben, von kanalindividuellen Konvertern im Frequenzband zwischen 950 und 2050 MHz umgesetzt wurden.
Die in dieser Weise hinsichtlich Frequenz und Pegel ausgestalteten Kanäle an den Eingängen E1, E2 und E3 des Mischers 5 werden durch den Mischer am Ausgang S in das Verteilkabel 13 in derjenigen Anordnung eingekoppelt, die in Figur 8 dargestellt ist:
- im Frequenzband zwischen 47 und 860 MHz sind am Ausgang S dieselben Kanäle in derselben Frequenzposition und mit denselben Pegeln vorhanden wie am Eingang E3;
- im Frequenzband zwischen 950 und 2050 MHz werden am Ausgang S
die Kanäle 7 und 8 des Eingangs E2 vom Kanal 1 des Eingangs E1
überlagert. Da der Kanal 1 auf einen Signalpegel gesetzt ist, der
wenigstens 15 dB oberhalb der Pegel der Kanäle 7 und 8 liegt, ist für
den Systembenutzer nur Kanal 1 sichtbar, ohne daß die Kanäle 7 und
8 Störungen erzeugen.
Ebenso werden am Ausgang S die Kanäle 9 und 10 des Eingangs E2 vom Kanal 3 des Eingangs E1 überlagert.
Außerdem ist in das Verteilkabel 13 am Ausgang S der Kanal 5 des Eingangs E1 in der Frequenzposition des Kanals 12 des Eingangs E2 eingekoppelt, wobei Kanal 5 den Kanal 12 überlagert, da der Signalpegel von Kanal 5 mindestens 20 dB oberhalb des Kanals 12 liegt.
Außerdem sind in das Verteilkabel 13 der Kanal 4 (ursprünglich am Eingang E1) zwischen die Kanäle 3 (ursprünglich am Eingang E1) und 11 (ursprünglich am Eingang E2) eingekoppelt und der Kanal 6 (ursprünglich am Eingang E1) ist zwischen die Kanäle 13 (ursprünglich am Eingang E2) und 14 (ursprünglich am Eingang E2) eingekoppelt. Die Kanäle 4 und 6 werden also frequenzmäßig in am Eingang E2 freie Frequenzpositionen eingefügt.
- A
- Signalgebereinrichtung
- B
- Kopfeinrichtung
- C
- Verteilnetz
- EC1, EC2
- Eingänge von 4
- SC1, SC2
- Ausgänge von 4
- OL
- lokaler Oszillator 45, 53 (in 4)
- 1
- Antenne
- 2
- Abwärtsumsetzer LNA/LNB
- 3
- Kabel
- 4
- kanal individueller Konverter
- 41, 57
- Richtungskoppler
- 42
- Verstärker
- 43, 55
- Nachlauf-Filter
- 44, 52
- Mischer
- 45, 53
- lokaler Oszillator OL
- 46, 54
- PLL-Schaltung
- 47
- Tiefpaß
- 48, 51
- Verstärker
- 49
- Mikroprozessor
- 50
- SAW-Filter
- 40
- Konvertermodul
- 400
- Signalverarbeitungseinrichtung
- 5
- zweiter Mischer
- 6
- Verstärker
- 7
- Verbindungsbrücke
- 8
- Last
- 9
- erster Mischer
- 10
- Verbindungskabel
- 11
- Speisequelle
- 12
- Verstärker
- 13
- Verteilkabel (Ableitung)
- 14
- Ableitungsvorrichtungen
- 15
- Benutzersteckdosen
- 16
- Eingabeeinheit
- 161
- Tastatur
- 162
- Steuerwerk
- 163
- Display
Claims (15)
- System zur Verteilung von Signalen, insbesondere Gemeinschaftsantennensystem zur Verteilung von Fernsehsignalen unterschiedlicher Kanäle, die insbesondere über Satelliten übertragen werden, wobei das System aufweisteine Signalgebereinrichtung (A) mit wenigstens einer Antenne (1), die Signale empfängt, und wenigstens einem Abwärtsumsetzer (LNA/LNB 2), der empfangene Signale einer bestimmten Polarität (H, V) aus einem Empfangsfrequenzband in Signale in einem Zwischenfrequenzband umsetzt,eine Kopfeinrichtung (B), die der Signalgebereinrichtung (A) nachgeschaltet ist und die wenigstens eine Signalverarbeitungseinheit (400) aufweist, die eingangseitig über ein Kabel (3) mit dem Abwärtsumsetzer (LNA/LNB 2) verbunden ist und die ausgangseitig mit einem einzigen Verteilkabel (13) verbindbar ist, über welches die verarbeiteten Signale im Zwischenfrequenzband zu Benutzersteckdosen (15) übertragen werden, wobei die Signalverarbeitungseinheit (400) der Kopfeinrichtung (B) kanalindividuelle Konverter (4) aufweist, wobei jeder kanalindividuelle Konverter (4) einen vorgebbaren Kanal im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband umsetzt,
daß der kanalinidividuelle Konverter (4) einen steuerbaren Verstärker (56) aufweist, mit dem dem kanalindividuellen Konverter (4) zugeführte Fernsehsignale verstärkt werden, und daß das System eine Einrichtung (5) aufweist, die die vom steuerbaren Verstärker (56) des kanalindividuellen Konverters (4) verstärkten Fernsehsignale anderen Femsehsignalen überlagert, die der Einrichtung (5) zugeführt werden. - System nach Anspruch 1, dadurch gekennzeichnet, daß der kanalindividuelle Konverter (4) einen Mikroprozessor (49) aufweist, der den Verstärker (56) steuert.
- System nach Anspruch 2, dadurch gekennzeichnet, daß der Mikroprozessor (49) die Umsetzung eines vorgebbaren Kanals im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband steuert.
- System nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der Mikroprozessor (49) des kanalindividuellen Konverters mit einer konverterexternen Eingabeeinrichtung (16) verbindbar ist, über die Daten eingebbar sind, die Signalverstärkungsparameter zur Steuerung des Verstärkers (56) bezeichnen.
- System nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß der Mikroprozessor (49) des kanalindividuellen Konverters mit einer konverterexternen Eingabeeinrichtung (16) verbindbar ist, über die Daten eingebbar sind, die eine vorgebbare Eingangssignalfrequenz eines umzusetzenden Kanals und eine vorgebbare Ausgangssignalfrequenz eines umgesetzten Kanals bezeichnen.
- System nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die konverterexteme Eingabeeinrichtung (16) ein Steuerwerk (162) aufweist.
- System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß kanalindividuelle Konverter (4) der Kopfeinrichtung (B) in wenigstens einem Konvertermodul (40) integriert sind, und daß das Konvertermodul (40) an seinem Eingang über das Kabel (3) mit den Abwärtsumsetzern (LNA/LNB2) und an seinem Ausgang mit dem Verteilkabel (13) verbindbar ist.
- System nach Anspruch 7, dadurch gekennzeichnet, daß das Konvertermodul (40) wenigstens zwei kanalindividuelle Konverter (4) aufweist, und daß die kanalindividuellen Konverter (4) in dem Konvertermodul (40) untereinander in der Weise verbunden sind, daß ein Eingang (EC1) eines ersten kanalindividuellen Konverters mit einem Eingang (EC2) eines zweiten kanalindividuellen Konverters, das dem ersten kanalindividuellen Konverter benachbart ist, verbunden ist, und daß ein Ausgang (SC 1) des ersten kanalindividuellen Konverters mit einem Ausgang(SC2) des zweiten kanalindividuellen Konverters verbunden ist.
- System nach Anspruch 8, dadurch gekennzeichnet, daß die Verbindung der Eingänge zweier benachbarter kanalindividueller Konverter (4) und/oder die Verbindung der Ausgänge zweier benachbarter kanalindividueller Konverter (4) durch Verbindungsbrücken (7) realisiert ist.
- System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der kanalindividuelle Konverter (4) eingangseitig und/oder ausgangseitig ein Nachlauffilter (43, 55) aufweist.
- System nach einem der Ansprüche 7 - 10, dadurch gekennzeichnet, daß mehrere Konvertermodule (40) mit einem ersten Mischer (9) verbunden sind, dessen Ausgang über eine Stromversorgungsquelle (11) mit dem Verteilkabel (13) verbindbar ist.
- System nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das System einen zweiten Mischer (5) mit wenigstens zwei Eingängen (E1, E2, E3) aufweist, daß einer der Eingänge (E1) mit dem Ausgang des Konvertermoduls (40) verbindbar ist, daß ein zweiter Eingang (E2, E3) mit einem Abwärtskonverter (LNA/LNB 2) verbindbar ist und daß der zweite Mischer (5) einen Ausgang (S) aufweist, mit dem das Verteilkabel (13) verbindbar ist.
- System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sich die Signalpegel überlagernder und überlagerter Fernsehsignale unterschiedlicher Kanäle um mindestens 15 dB unterscheiden.
- Kanalindividueller Konverter (4) in einem System zur Verteilung von Signalen, insbesondere Gemeinschaftsantennensystem zur Verteilung von Fernsehsignalen unterschiedlicher Kanäle, die insbesondere über Satelliten übertragen werden, wobei das System aufweisteine Signalgebereinrichtung (A) mit wenigstens einer Antenne (1), die Signale empfängt, und wenigstens einem Abwärtsumsetzer (LNA/LNB 2), der empfangene Signale einer bestimmten Polarität (H, V) aus einem Empfangsfrequenzband in Signale in einem Zwischenfrequenzband umsetzt,eine Kopfeinrichtung (B), die der Signalgebereinrichtung (A) nachgeschaltet ist und die wenigstens ein Signalverarbeitungseinheit (400) aufweist, die eingangseitig über ein Kabel (3) mit dem Abwärtsumsetzer (LNA/LNB 2) verbunden ist und die ausgangseitig mit einem einzigen Verteilkabel (13) verbindbar ist, über welches die verarbeiteten Signale im Zwischenfrequenzband zu Benutzersteckdosen (15) übertragen werden, wobei die Signalverarbeitungseinheit (400) der Kopfeinrichtung (B) kanalindividuelle Konverter (4) aufweist, wobei jeder kanalindividuelle Konverter (4) einen vorgebbaren Kanal im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband umsetzt,
daß der kanalinidividuelle Konverter (4) einen steuerbaren Verstärker (56) aufweist, mit dem dem kanalindividuellen Konverter (4) zugeführte Fernsehsignale verstärkt werden, und daß das System eine Einrichtung (5) aufweist, die die vom steuerbaren Verstärker (56) des kanalindividuellen Konverters (4) verstärkten Fernsehsignale anderen Fernsehsignalen überlagert, die der Einrichtung (5) zugeführt werden. - Eingabeeinrichtung (16) zur Eingabe von Daten in einen kanalindividuellen Konverter (4) eines Systems zur Verteilung von Signalen, insbesondere Gemeinschaftsantennensystem zur Verteilung von Fernsehsignalen unterschiedlicher Kanäle, die insbesondere über Satelliten übertragen werden, wobei das System aufweisteine Signalgebereinrichtung (A) mit wenigstens einer Antenne (1), die Signale empfängt, und wenigstens einem Abwärtsumsetzer (LNA/LNB 2), der empfangene Signale einer bestimmten Polarität (H, V) aus einem Empfangsfrequenzband in Signale in einem Zwischenfrequenzband umsetzt,eine Kopfeinrichtung (B), die der Signalgebereinrichtung (A) nachgeschaltet ist und die wenigstens eine Signalverarbeitungseinheit (400) auf weist, die eingangseitig über ein Kabel (3) mit dem Abwärtsumsetzer (LNA/LNB 2) verbunden ist und die ausgangseitig mit einem einzigen Verteilkabel (13) verbindbar ist, über welches die verarbeitetenSignale im Zwischenfrequenzband zu Benutzersteckdosen (15) übertragen werden, wobei die Signalverarbeitungseinheit (400) der Kopfeinrichtung (B) kanalindividuelle Konverter (4) aufweist, wobei jeder kanalindividuelle Konverter (4) einen vorgebbaren Kanal im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband umsetzt,
daß der kanalinidividuelle Konverter (4) einen steuerbaren Verstärker (56) aufweist, mit dem dem kanalindividuellen Konverter zugeführte Fernsehsignale verstärkt werden, daß der kanalinidividuelle Konverter (4) mit einer Einrichtung (5) verbindbar ist, die die vom steuerbaren Verstärker (56) des kanalindividuellen Konverters verstärkten Femsehsignale anderen Fernsehsignalen überlagert, die der Einrichtung (5) zugeführt werden, daß der kanalindividuelle Konverter einen Mikroprozessor (49) aufweist, der den Verstärker (56) und/oder die Umsetzung eines vorgebbaren Kanals im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband steuert, und daß die Eingabeeinrichtung (16) ein Steuerwerk (162) aufweist, das in der Weise ausgestaltet ist, daß in den Mikroprozessor (49) Daten eingebbar sind, die Signalverstärkungsparameter zur Steuerung des Verstärkers (56) bezeichnen und/oder die die Umsetzung eines vorgebbaren Kanals im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband bezeichnen.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES9501160U ES1030963Y (es) | 1995-04-27 | 1995-04-27 | Sistema de distribucion de señales de television procedentes de satelite. |
ES9501160U | 1995-04-27 | ||
DE19524201 | 1995-07-03 | ||
DE19524201 | 1995-07-03 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0740434A1 EP0740434A1 (de) | 1996-10-30 |
EP0740434B1 true EP0740434B1 (de) | 1998-06-10 |
EP0740434B2 EP0740434B2 (de) | 2006-01-11 |
Family
ID=26016505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96106739A Expired - Lifetime EP0740434B2 (de) | 1995-04-27 | 1996-04-29 | System zur Verteilung von Fernsehsatellitensignalen in einer Gemeinschaftsantennenanlage |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0740434B2 (de) |
DE (2) | DE29607766U1 (de) |
DK (1) | DK0740434T4 (de) |
ES (1) | ES2122740T5 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19749120C2 (de) * | 1997-11-06 | 2002-07-18 | Kathrein Werke Kg | Satelliten-Empfangsanlage sowie zugehöriges Verfahren zum Betrieb einer Antennen-Empfangsanlage |
ES2148067B1 (es) * | 1998-03-27 | 2001-04-16 | Kathrein Werke Kg | Dispositivo de recepcion de satelites. |
US7352991B2 (en) * | 2002-03-21 | 2008-04-01 | National Antenna Systems | Satellite signal distribution systems |
JP2006500863A (ja) * | 2002-09-24 | 2006-01-05 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | チャネル事前選択周波数マルチプレクサの低ノイズコンバータを有する電波中継局 |
DE102005040012A1 (de) | 2005-08-23 | 2007-03-01 | Christian Schwaiger Gmbh | Verfahren und Vorrichtung zur Konfiguration von n unabhängigen Teilnehmern einer Satelliten-Empfangsanlage |
DE102013002477B4 (de) | 2013-02-14 | 2019-01-10 | Tesat-Spacecom Gmbh & Co.Kg | Steuervorrichtung für ein Sendeverstärkerelement |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5915335A (ja) * | 1982-07-15 | 1984-01-26 | Maspro Denkoh Corp | 衛星放送受信装置 |
US5073930A (en) * | 1989-10-19 | 1991-12-17 | Green James A | Method and system for receiving and distributing satellite transmitted television signals |
DE4012657C2 (de) * | 1990-04-20 | 1995-06-01 | Comtec Ag | Gemeinschaftsantennenanlage |
DE9306499U1 (de) * | 1993-03-19 | 1993-07-08 | Richard Hirschmann GmbH & Co, 7300 Esslingen | Schaltungsanordnung und Vorrichtung zum Betreiben einer Antennenempfangsvorrichtung |
-
1996
- 1996-04-29 EP EP96106739A patent/EP0740434B2/de not_active Expired - Lifetime
- 1996-04-29 DK DK96106739T patent/DK0740434T4/da active
- 1996-04-29 DE DE29607766U patent/DE29607766U1/de not_active Expired - Lifetime
- 1996-04-29 ES ES96106739T patent/ES2122740T5/es not_active Expired - Lifetime
- 1996-04-29 DE DE59600261T patent/DE59600261D1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE59600261D1 (de) | 1998-07-16 |
DK0740434T3 (da) | 1999-02-01 |
EP0740434A1 (de) | 1996-10-30 |
DK0740434T4 (da) | 2006-03-06 |
EP0740434B2 (de) | 2006-01-11 |
ES2122740T5 (es) | 2006-09-01 |
DE29607766U1 (de) | 1996-09-05 |
ES2122740T3 (es) | 1998-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3246225C2 (de) | Breitbandverteilsystem hoher Kanalzahl | |
DE3874993T2 (de) | Einrichtung zur uebertragung von signalen, insbesondere von videosignalen. | |
DE69108476T2 (de) | Vorrichtung zum Verteilen von Video- und/oder Audiosignalen zwischen mehreren Empfängern. | |
DE19702350B4 (de) | Zentralknoten-Konverter zur Verbindung mit einem Anschluss eines Haus-Netzwerks, das mit einem Koaxialkabel verbunden ist und Verfahren zur Kommunikation | |
DE2457492C2 (de) | Fernsehverteilungssystem | |
DE4327117C2 (de) | Einrichtung für eine Antennenanlage zum Verteilen eines Satellitenempfangssignales | |
EP0740434B1 (de) | System zur Verteilung von Fernsehsatellitensignalen in einer Gemeinschaftsantennenanlage | |
DE3891107C1 (de) | ||
DE69604693T2 (de) | Verbesserungen bei rundfunksignalbehandlung | |
DE19713124C2 (de) | Satelliten-Empfangsanlage | |
DE20008239U1 (de) | Multischalter für Satelliten-Zwischenfrequenz-Verteilung | |
EP1502371B1 (de) | Verfahren sowie vorrichtung zur erzeugung zumindest einer transponderfrequenz in der satelliten-zwischenfrequenz-ebene | |
DE69614072T2 (de) | Kabelnetzwerksystem für Videoverteilung und bidirektionale Datenübertragung, mit Freqenzumsetzung im Rückkanal | |
DE202009018162U1 (de) | Multischalter für Satelliten-Zwischenfrequenz-Verteilung | |
DE2241060A1 (de) | Verstaerkerschaltung fuer ein kabel-fernsehsystem | |
EP0157145B1 (de) | Antennensteckdose | |
DE4329693C2 (de) | Satellitenfunkempfänger | |
EP3094085A1 (de) | System zum empfang von telekommunikationsignalen, insbesondere von fernsehsignalen in matv/smatv-netzen | |
EP1076457A2 (de) | Komponente für Satellitenempfangsanlage sowie Zuschaltgerät | |
DE4335617C2 (de) | Satellitenempfangsanlage | |
DE10111441B4 (de) | Schaltungsanordnung für ein HF-Modul in einer Kabel-Set-Top-Box | |
DE3808917C2 (de) | ||
DE3204507C2 (de) | Hochfrequenzübertragungssystem | |
DE3438505C1 (de) | Anordnung zum wahlweisen Sperren von Fernseh-Sonderkanälen | |
DE2354242A1 (de) | Gemeinschaftsantennenanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE DK ES FR GB IT LI PT |
|
17P | Request for examination filed |
Effective date: 19961030 |
|
17Q | First examination report despatched |
Effective date: 19961220 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE DK ES FR GB IT LI PT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59600261 Country of ref document: DE Date of ref document: 19980716 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980716 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2122740 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: INTERESSENGEMEINSCHAFT FUER RUNDFUNKSCHUTZRECHTE G Effective date: 19990310 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19990111 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBO | Opposition rejected |
Free format text: ORIGINAL CODE: EPIDOS REJO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
APBW | Interlocutory revision of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNIRAPO |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20060111 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): CH DE DK ES FR GB IT LI PT |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T4 |
|
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Date of ref document: 20060330 Kind code of ref document: T5 |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130422 Year of fee payment: 18 Ref country code: DK Payment date: 20130424 Year of fee payment: 18 Ref country code: DE Payment date: 20130430 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130523 Year of fee payment: 18 Ref country code: IT Payment date: 20130427 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20140509 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59600261 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20140430 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140429 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20141231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 59600261 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04H0001040000 Ipc: H04H0020770000 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140429 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59600261 Country of ref document: DE Effective date: 20141101 Ref country code: DE Ref legal event code: R079 Ref document number: 59600261 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04H0001040000 Ipc: H04H0020770000 Effective date: 20150127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20150428 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: MAXIMUM VALIDITY LIMIT REACHED Effective date: 20160429 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20160527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20160505 |