EP0740434B1 - System zur Verteilung von Fernsehsatellitensignalen in einer Gemeinschaftsantennenanlage - Google Patents

System zur Verteilung von Fernsehsatellitensignalen in einer Gemeinschaftsantennenanlage Download PDF

Info

Publication number
EP0740434B1
EP0740434B1 EP96106739A EP96106739A EP0740434B1 EP 0740434 B1 EP0740434 B1 EP 0740434B1 EP 96106739 A EP96106739 A EP 96106739A EP 96106739 A EP96106739 A EP 96106739A EP 0740434 B1 EP0740434 B1 EP 0740434B1
Authority
EP
European Patent Office
Prior art keywords
channel
converter
signals
frequency band
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96106739A
Other languages
English (en)
French (fr)
Other versions
EP0740434A1 (de
EP0740434B2 (de
Inventor
José Luis Fernandez Carnero
Modesto Gomez Garcia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Televes SA
Original Assignee
Televes SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26016505&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0740434(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from ES9501160U external-priority patent/ES1030963Y/es
Application filed by Televes SA filed Critical Televes SA
Publication of EP0740434A1 publication Critical patent/EP0740434A1/de
Publication of EP0740434B1 publication Critical patent/EP0740434B1/de
Application granted granted Critical
Publication of EP0740434B2 publication Critical patent/EP0740434B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving

Definitions

  • the present invention relates to a system for distributing signals, in particular a community antenna system for the distribution of television signals different channels according to the preamble of claim 1.
  • FIGS. 1 and 2 Two systems are currently used for this purpose: which are shown schematically in FIGS. 1 and 2:
  • This system consists of an antenna 1, the television signals of one polarity receives, a converter 2, in particular an LNA / LNB block, and Cables 3 connecting the LNA / LNB block to a signal processing unit 400 connect.
  • This signal processing unit 400 consists of a plurality channel-specific FM demodulators / AM modulators 19, a switching element 18, a power supply 17, connecting bridges 7, load components 8.
  • a single distribution cable (discharge line) 13 is connected to it with decouplers 14 and user or antenna sockets 15. This The disadvantage of the system is that there is one for each satellite channel received channel-specific FM demodulator / AM modulator 19 required. Should the The number of satellite channels to be received is also increased Increase the number of FM demodulators / AM modulators required.
  • EP-A-0 2 888 928 discloses a device with an internal unit which has an amplifier and signal converter function realized.
  • This internal unit points several converters, each with a tuner demodulator and an encoder modulator on.
  • Such a system is also known from DE-A-40 12 657, wherein in the system converter, each with a tunable demodulator and an AM modulator are provided.
  • the distribution of television satellite channels takes place up to System users without the signals being frequency demodulated and amplitude modulated beforehand will.
  • Such a system is from the US patent 4,608,710.
  • the signals of the television satellite channels are thus frequency modulated (e.g. in the frequency range between 950 MHz and 2050 MHz) distributed.
  • This system according to FIG. 2 requires a difference to the system according to FIG. 1, none downstream of the LNA / LNB blocks channel individual FM demodulators / AM modulators; has this system but the disadvantage that for the distribution of the satellite channels that of two different polarities or from more than one satellite, more than one distribution cable 13 is to be installed.
  • additional Distribution cable 13 can be in existing systems due to spatial Conditions in the buildings where the additional distribution cables are too install would be very complex or possibly excluded.
  • this prior art system requires multiple switching devices 16 to select different distribution cables and on the tapped selected distribution cable to pick up signals.
  • the usage of these switching devices, which are connected to the distribution cables also associated with the risk that formed by the switching devices electrical switching impulses reach the distribution cable and the transmission quality the signals transmitted there deteriorate.
  • From DE-OS 41 17 208 A1 is a device for satellite television reception devices known, wherein television signals are processed by a parabolic antenna can be received and horizontally polarized channels and have vertically polarized channels. To avoid elaborate Wiring becomes the horizontally polarized channels and the vertically polarized channels separated from each other and block by block in separate frequency bands implemented. The blocks of channels separated in this way are opened a common line switched.
  • the known device only allows the block-wise implementation of channels.
  • Systems are similarly structured also from European patent application 0 597 783 and from DE-U-93 06 499 known.
  • the signals are arranged as if they were directly from the antennas of the system have been transmitted to this node would be. Furthermore, the transponder combination devices are power inserted downstream, connected on the output side with several distribution cables are. The known system is thus complex in terms of circuitry designed.
  • the object of the invention based on a system for the distribution of signals of the aforementioned Specify the type that enables the distribution of a larger number of channels and is designed in a simple manner in terms of circuitry, as well as a corresponding channel-specific converter and a corresponding input device.
  • the system according to the invention is characterized by a number of advantages on.
  • the user has only one distribution cable predefinable channels are provided.
  • the individual from signals be selected by one or more antennas come.
  • the channel-specific provided according to the invention Converter which convert a predeterminable channel into another channel. but the system as a whole is also simple in terms of circuitry realized.
  • the channel-specific converters are in any frequencies a specifiable frequency band adjustable.
  • Individual signals or channels can be superimposed by other signals or channels, both the 1 overlaid as well as the overlaying signals transmitted to the user will. However, only the superimposed signals can be used by the user.
  • the system according to the invention thus enables a modified one System users demand regarding the use of predefined channels can be met flexibly.
  • the system according to the invention can be used, among other things, in who already have a single distribution cable installed, or in cases where which the laying of another distribution cable due to the same circumstances would be expensive or excluded.
  • the system according to the invention also has channels of two polarities or from two or more satellites via a single distribution cable to user sockets transmitted, no switching devices on the distribution cable on. This means that there are no electrical switching impulses on the distribution cable coupled in, so that corresponding disturbances are excluded.
  • An advantageous embodiment of the invention is characterized in that that the channel-specific converter of the head device in at least a converter module are integrated, with the converter module on its input with downconverters and at its output with the Distribution cable is connected.
  • the converter module preferably has at least two converters. the converters in the converter module are connected to each other in a chain connection (an input of a first Converter module is connected to the input of a second converter module, that is adjacent to the first converter module; an exit of the first converter module is connected to the output of the second converter module connected).
  • This derailleur structure is characterized by what is important in practice The advantage is that not every channel-specific converter has a separate one Cable to be connected to a down converter and beyond that not every channel-specific converter with a separate cable a mixer or adder is to be connected upstream of the distribution cable is.
  • the derailleur structure on the one hand the separate cables and on the other hand the cost of their Installation saved.
  • channel-specific converters or their inputs and / or their outputs by means of connecting bridges known per se connect with each other.
  • the system according to the invention enables processing and distribution of signals from a variety of television channels. So there are several Converter modules into which a changeable number of channel-specific Converters can be integrated, e.g. via a mixer ("9") with each other connect.
  • the system according to the invention can have a further mixer ("5") with at least one have two entrances.
  • One of the inputs is with the Output of a converter module connected while another input is directly connected to a down converter of an antenna.
  • This Mixer the output side possibly via an amplifier with the distribution cable connected, allows more channels in the distribution cable to couple, from the first channels or signals from satellites radiated and received by parabolic antennas, as well as by second channels or signals broadcast by terrestrial transmitters and received by conventional antennas, as well as by the first and second signals.
  • the channel-specific converters can each have a microprocessor have, which controls at least one oscillator.
  • the microprocessor enables an external input device to the microprocessor releasably connect and data in the converter or the microprocessor enter a predefinable input channel frequency and a predefinable Denote output channel frequency.
  • the channel-specific converter in a particularly simple manner to a predefinable Set the input frequency and a predefinable output frequency, by which the frequency conversion of a channel is determined.
  • the converter external input device can also be used as a remote control transmitter be designed.
  • the channel-specific converters have an amplifier with a controllable Profit on being a mixer ("5") with at least two inputs Signals from different channels of the same frequency with different Signal levels are supplied. This makes it easy to do different things Overlay ducts on the distribution cable.
  • the signal level difference of at least 15 dB can be overlaid Channels in the devices that can be connected to the user sockets display in good reception quality.
  • Block A is a signaling device
  • block B is a head device with a Signal processing unit
  • block C represents the distribution network.
  • Block A of the system according to the invention i.e. the signaling device, as shown for example in Fig. 3, consists of antennas 1, the the signals from television channels that are transmitted via satellites, receive. If the antennas are parabolic antennas, the focus is on each an antenna 1, a down converter 2 is arranged, which the received signals in a conventional manner from the satellite television reception frequency range from e.g. 10.7 - 12.5 GHz in the intermediate frequency range between 950 MHz and 2050 MHz (usually as "first intermediate frequency") implement.
  • Such downconverters 2 with an amplifier LNA and a channel block converter LNB known and available on the market.
  • Each antenna 1 has. one or two down converter 2 (or one Down converter with two outputs) depending on whether Receive signals of one or two polarities (horizontal, vertical) per antenna should be.
  • the antenna 1 receives signals of one polarity a down converter 2 is provided; the antenna 1 receives signals from two Polarities, two downconverters 2 are provided.
  • the downconverters 2 are each connected to a cable 3 on the output side. Introduce in different embodiments of the invention or more cables 3, as shown in FIGS. 3, 4, 5, 6 and 9 the signal processing unit 400 with at least one individual channel Converter 4. It can also be provided that one or more cables 3, as shown in Figures 3, 6 and 9, to a ("second") mixer 5 lead of a channel-specific converter 4 or a converter module 40 connected with at least one channel-specific converter 4 is.
  • the channel-specific converters 4 of the head device B are preferred integrated in at least one converter module 40, the converter module 40 at its entrance via a cable 3 with a down converter (LNA / LNB) 2 and at its output with the distribution cable 13 (coaxial cable) is connectable.
  • the distribution cable 13 is preferably at the outlet an amplifier 6 connected, which is connected downstream of the ("second") mixer 5 can be.
  • Each channel-specific converter 4 has two inputs and two outputs on.
  • the channels are individual Converter 4 of a converter module 40 connected to one another in the manner that an input (e.g. EC1 in Figure 7) of a first converter module with the input (e.g. EC2) of a second one (not shown in FIG. 7) Converter module, which is adjacent to the first converter module connected is. There is also an output (e.g. SC1) of the first converter module with the Output (z.V. SC2) of the second converter module connected (chain connection).
  • an input e.g. EC1 in Figure 7
  • Converter module which is adjacent to the first converter module connected is.
  • This derailleur structure is characterized by the practically important
  • the advantage is that not every channel-specific converter 4 has a separate one Cable 3 is to be connected to a down converter 2 and that in addition not every channel-specific converter 4 with a separate cable to connect a ("second") mixer (5) upstream of the distribution cable 13 is.
  • each of the two inputs is e.g. via a known connecting bridge 7 with an input of an upstream channel-specific converter 4 or with the input of a downstream channel-specific converter 4 is connected.
  • each of the two outputs e.g. each via a known connecting bridge 7 with an output an upstream channel-specific converter 4 or with the output a downstream channel-specific converter 4.
  • an identical housing for each channel-specific converter 4 provided, that is, a housing of the same spatial dimensions which places the input and output ports in the same locations are. This enables the use of identical connecting bridges 7, each with either an electrical connection between two Inputs or between two outputs.
  • an input of a converter 4 (first Converter 4 of a converter module 40, which in Figures 4 and 5, respectively is drawn on the right in a converter module) with a cable 3, which those generated by the downconverters 2 or in the intermediate frequency range transmits converted signals, is connected.
  • An entrance a converter 4 (last converter 4 of a converter module 40, which 4 and 5 is shown on the left) with a feed source 11 connected, the converter 4 and one per signal processing unit 400 provided amplifier 12 supplied.
  • These channel-specific converters 4 take those on the input side Down converter 2 output and transmitted via the cable 3 signals or channels in the intermediate frequency range and set the signals or Channels in the intermediate frequency range around, as with reference to Figures 9 and 10 is described.
  • outputs of the channel-specific converters 4 can be used with one Ohmic resistance 8 of 75 ohms can be completed (see FIG. 3, Block B, reference number 8 below the converter 4; right and left Converter module 40 in FIG. 5; Figures 6 and 9, reference numeral 8 below the converter 4).
  • FIG. 3, Block B, reference number 8 below the converter 4; right and left Converter module 40 in FIG. 5; Figures 6 and 9, reference numeral 8 below the converter 4 are in particular the outcome of a (with regard to the Signal flow) first converter 4 in a first converter module (right Converter module in Figure 5) and the output of a (in terms of Signal flow) last converter 4 in a last converter module (left Converter module in Figure 5).
  • a channel is selected with each channel-specific converter 4 and from an input frequency in the intermediate frequency range to a specifiable one Output frequency implemented in the intermediate frequency range.
  • Second Two neighboring modules are over one (“First") mixer 9 can be combined with one another.
  • the output of the first mixer 9 is connected by means of a connecting cable 10 introduced into the arrangement of supply source 11 and amplifier 12.
  • the amplified signal is fed to the second mixer 5.
  • the channel-specific converter 4 is preferably configured as follows: Input side Frequency range 950 ... 1950 (or 2050) MHz Input level - 50 ... -30 dBm Mirror selection (image frequency rejection) ⁇ 40 dB Intermediate frequency 479.5 MHz Bandwidth 27 MHz Looping input losses ⁇ 1.2 dB Output side Frequency range 950 ... 1950 (or 2050) MHz Max. Output level - 25 ⁇ 5 dBm Output level control range 15 dB Bandwidth 27 MHz Loop-through output losses ⁇ 1.2 dB Noise level > - 20 dBc
  • the feed source 11 is preferably configured as follows: Mains voltage 230V ⁇ 15% Output voltage 15V / 5V Intermediate frequency loop-through losses ⁇ 1.2 dB
  • the amplifier 12 is preferably configured as follows: Bandwidth 950 ... 2050 MHz Profit 23 ... 33 dB Max. Output level for two channels 115 dB ⁇ V / 6 dBm
  • the first mixer 9 is preferably configured as follows: Bandwidth 950 ... 2050 MHz Insertion loss ⁇ 4 dB Rejection between inputs 15 dB
  • first signals that a converter module 40 forms are formed (input E1), as well as second signals from the down converters 2 are formed (input E2), as well as third signals from antennas the signals received by terrestrial transmitters, the second Mixer 5 are fed.
  • the output side of this mixer 5 is Distribution cable 13 connected.
  • the mixer 5 an amplifier 6 is connected downstream, on the output side of the distribution cable 13 is connected.
  • the distribution network C consists of a single one Distribution cable 13 on which all channels that are FM-modulated are transmitted will.
  • the distribution cable 13 is formed and leads by a coaxial cable to diverters 14 which send the signal to various user sockets 15 uncouple.
  • FIG. 4 shows a signal processing unit 400 with a converter module 400 shown, which consists of four channel-specific converters 4, while in Figure 5 a signal processing unit 400 with two converter modules 400 is shown, each consisting of four channel-specific converters 4 exist.
  • the number of channel-specific converters is 4 is equal to the number of channels that are coupled into the distribution cable 13 and transmitted to the user sockets 15 via the discharge devices 14 will.
  • the channel-specific converters are at predefinable input frequencies in the intermediate frequency range and on predefinable output frequencies adjustable in the intermediate frequency range.
  • FIG. 4 An exemplary embodiment of a channel-specific converter 4 is shown in FIG.
  • Two inputs EC1 and EC2 are electrically connected to one another and via a directional coupler 41 to and an amplifier 42.
  • the inputs EC1 and EC2 are designed mechanically in such a way that known connecting bridges (7 in FIG. 4) can be used for connection to an input of an adjacent channel-specific converter. In this way, several channel-specific converters can be integrated into one converter module.
  • This form of connection therefore consists in that each of the two inputs EC1, EC2 is connected, for example in each case via a known connecting bridge, to an input of an upstream channel-specific converter 4 or to the input of a downstream channel-specific converter 4.
  • each of the two outputs SC1, SC2 of the converter 4 is connected, for example in each case via a known connecting bridge, to an output of an upstream channel-specific converter 4 or to the output of a downstream channel-specific converter 4.
  • This form of connection has the advantage that distribution devices, which would otherwise have to be connected downstream of the downconverters 2, and connecting cables between these distribution devices and channel-specific converters are not required.
  • the amplifier 42 amplifies the supplied signals e.g. in the frequency band from 950 to 2050 MHz.
  • the signals become an input Tracking filter 43 supplied.
  • This filter is a bandpass filter, that to the selected input channel frequency by means of a voltage is tuned by a phase-locked loop (PLL) circuit 46 is formed.
  • the circuit 46 is operated by a microprocessor (MP) 49 controlled.
  • MP microprocessor
  • a mixer 44 connected downstream of the after-filter 43 is operated by one local oscillator (OL) 45 driven, which in turn from the PLL circuit 46 is controlled.
  • the mixer 44 sets the at the inputs EC1 and EC2 pending frequency of the selected channel to a frequency of 479.5 MHz around.
  • the signal formed by the mixer 44 is fed to a low-pass filter 47, whose cut-off frequency is, for example, 600 MHz. So that will be Signal of the local oscillator 45 and undesirable formed during the mixing process Signals eliminated.
  • the signal is then processed using a surface acoustic wave filter Filtered SAW 50, e.g. a bandwidth of 27 MHz at a center frequency of 479.5 MHz.
  • a surface acoustic wave filter Filtered SAW 50 e.g. a bandwidth of 27 MHz at a center frequency of 479.5 MHz.
  • the SAW surface wave filter before or. downstream amplifiers 48 and 51 increase the signal level so that the losses caused by the SAW filter 50 are compensated for.
  • the mixer 52 connected downstream of the amplifier 51 mixes the signal of the signal selected at the input with a frequency of 479.5 MHz Signal generated by a local oscillator (OL) 53.
  • the local one Oscillator is controlled by a PLL circuit 54.
  • the PLL circuit 54 is also controlled by the microprocessor 49.
  • the mixer 52 is an output-side tracking filter 55 downstream, which like that Filter 43 is a bandpass filter.
  • the filter 55 eliminates the unwanted Signals formed when mixing is performed by mixer 52 will.
  • the signal of frequency is then at the output of filter 55 converted channel, which is fed to an amplifier 56.
  • the gain of amplifier 56 is controllable, so that the level of the frequency converted channel signal are set to predetermined values can (see e.g. channels 1 and 5 in Figure 8)
  • a downstream directional coupler 57 couples the amplified signal the outputs SC1, SC2.
  • the outputs SC1 and SC2 are mechanically in designed in such a way that known connecting bridges (7 in Figure 4) for Connection to one output of a neighboring individual channel Converter can be used.
  • the converter 4 can be a microprocessor 49, which controls the PLL circuits 46 and 54 and the input and Output frequency of the channel signal of the converter 4 is determined. Farther the microprocessor 49 can control the amplifier 56. To the microprocessor 49 can e.g. an input unit 16 via a 4-cable bus are turned on, in the microprocessor 49, the data one Predefinable input and output frequency and / or control data for the Amplifiers 56 (signal amplification parameters) can be entered.
  • the input unit 16 can be a control unit 162 (in particular a microprocessor MP), with a program assigned to the control unit 162 e.g. depending on the limit frequencies of the respective intermediate frequency range (950 MHz, 2050 MHz), of channel bandwidths and Channel spacing and signal level of the channel signals data forms the predetermined comply with technical specifications and those in the microprocessor 49 of the channel-specific converter 4 can be entered.
  • the input unit 16 includes a keyboard 161, the controller 162 and one Display 163.
  • the keyboard 161 is entered on the display Data, prompt information, and information displayed that the State of the converter after its setting by the entered Label data.
  • the input unit 16 can be used as a remote control transmitter be configured in a transmission device which transmits the data to be input to a Receiving device that transmits with the microprocessor 49 of the individual channel Converter is connected.
  • FIG. 8 shows a second mixer 5, which is also in FIG. 3, block B. is shown.
  • the second mixer 5 has e.g. three inputs E1, E2, E3 and an output S to which the distribution cable 13 is connected.
  • the Distribution cable 13 is preferably a coaxial cable, but it can also be one Glass fiber can be provided.
  • the input E1 is directly via a cable with one or more converter modules 40 connected;
  • a cable 3 is connected directly to the input E2 a down converter (2 in Figure 3) connected during the input E3 connected to a system for receiving terrestrial channels is.
  • signals of channels 1, 2, 3, 4, 5 and 6, which originate from a satellite and have a bandwidth of 27 MHz, and, as described, from channel-specific converters in Frequency band between 950 and 2050 MHz were implemented.
  • Signals of channels 7, 8, 9, 10, 11, 12, 13 and 14, which originate from a satellite, have a bandwidth of 27 MHz and, as described, from channel-specific converters in the frequency band between 950 and 2050 are fed to input E2 MHz were implemented.
  • the signals of the channels pending at input E1 are used by the channel-specific converters 4 supplied in which the frequency conversion and the formation of the respective levels with regard to the coupling of the Signals via the mixer output S into the distribution cable 13.
  • Channels 2, 4 and 6, which are pending at input E1 were in the channel-specific converters 4 implemented in terms of frequency that none Channels of the same frequencies are present at input E2.
  • Channels 1 and 3 at input E1 are in frequencies between the unwanted Channels 7 and 8 or 9 and 10, which are pending at the input E2, arranged.
  • the signal or power level of channel 1 is at a value of at least 15 dB above the corresponding level of channels 7 and 8 set; and the signal or power level of channel 3 is at one Value of at least 15 dB above the corresponding level of the channels 9 and 10 set.
  • Channel 5 of input E1 is arranged at the same frequency as the unwanted channel 12, which is present at input E2, the Signal or power level of channel 5 at least 20 dB above the corresponding level of the channel 12.
  • the channels are in the frequency band from 47 to 860 MHz and channels 1, 2, 3, 4, 11, 5, 13, 6 and 14 in the 950 frequency band up to 2050 MHz made available to the system user. Also be transmit channels 7, 8, 9, 10 and 12 on distribution cable 13; this are overlaid, however, so that they are not available to the system user be put.
  • the overlapping channels can be set to at least 15 dB the end devices that can be connected to the user sockets in good reception quality represent.
  • Fig. 9 shows an embodiment of the system according to the invention, which is also shown in Figure 3. It is assumed that Receive signals from different TV channels and process them further be that of three satellites of different orbital positions with horizontal and vertical position.
  • system according to the invention are circuit points d, e, f, g, h, i, j, k, l, m, n, and o specified.
  • FIG. 10 shows the channels at the circuit points shown in FIG. 9 d - o.
  • the signals are present which are from with each satellite in a frequency band between 10.7 - 12.5 GHz horizontal and vertical polarity can be received.
  • Each down converter 2 (Fig. 9) selects and sets a polarity Frequency band from 10.9 - 12.5 GHz in the frequency band from 950-2050 MHz in such a way that in each cable 3 at the switching points g, h, i, j, k the channels are present that go to the same satellites and to belong to the same polarity.
  • converter modules 40 are provided at the circuit points g, h, i, j provided, the channel-specific converter 4 of the modules 40 to the Input frequencies of each of the selected channels and on the output frequencies, on which the channels are to be arranged will. These output frequencies are occupied frequencies undesirable, channels to be superimposed or free frequencies.
  • each converter module 40 At the output of each converter module 40 according to the invention Channels are provided that face a different frequency position the frequency position at the input of the modules.
  • the channels appear at node i 72, 82, 77 and 89 in a frequency position that is different from the frequency position of the channels at the switching points g and h differs.
  • node m there are channels 65, 68, 17 and 41 that of the circuit points i and j, also in different frequency positions come.
  • node n As shown in FIG. 10 is shown, all selected channels from the circuit points g, h, i and j originate in frequency positions that differ from the differentiate original frequency positions. These channels are over the power source 11 is inserted into the amplifier 12, which is the signal level of the Channels reinforced.
  • the mixer 5 the channels that are in the circuit point n are present with the channels which are present at node k, mixed.
  • the channels at node n have a higher signal level of at least 15, but preferably 18 to 20 dB above the signal levels of the To have channels at node k to be overlaid. With This level difference ensures that the channel is another Channel superimposed without interference from the channel being received has been overlaid.
  • the channel 65 becomes the case Channel 60 superimposed (cf. larger amplitude of 65 compared to 60), the Channel 72 to channel 36, channel 68 to channel 44, channel 82 to Channel 2, channel 77 to channel 6, channel 17 to channel 12, channel 89 channel 18 and channel 41 channel 24.
  • signals in particular via satellites transmitted television signals of different channels in a common antenna system be distributed.
  • the signals are in one Signal generator device A received and the received signals of a certain Polarity (H, V) from a receive frequency band into signals in implemented an intermediate frequency band.
  • the in the intermediate frequency band converted signals are processed and the processed signals are via a single distribution cable 13 in the intermediate frequency band to user sockets 15 transferred.
  • Individual channels that can be specified are in the intermediate frequency band converted to other channels in the intermediate frequency band.
  • First channels implemented in the intermediate frequency band are used with second ones Channels mixed in the intermediate frequency band and the first and second Channels are transmitted via the distribution cable 13.
  • the signal level of the signals different channels by at least 15 dB.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Details Of Television Systems (AREA)
  • Radio Relay Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Description

Die vorliegende Erfindung betrifft ein System zur Verteilung von Signalen, insbesondere ein Gemeinschaftsantennensystem zur Verteilung von Fernsehsignalen unterschiedlicher Kanäle nach dem Oberbegriff des Anspruchs 1.
Zur Zeit werden zu diesem Zweck im wesentlichen zwei Systeme benutzt, die in den Figuren 1 und 2 schematisch dargestellt sind:
In dem ersten System nach dem Stand der Technik, welches in Figur 1 dargestellt ist, werden von der Antenne empfangene Signale nach einer Verstärkung und Umsetzung durch an sich bekannte Einheiten (low-noise amplifier LNA, low-noise block converter LNB) jeweils kanalindividuell frequenzdemoduliert. Anschließend werden die kanalindividuellen frequenzdemodulierten Signale in einem herkömmlichen UHF-Fernsehkanal amplitudenmoduliert.
Dieses System besteht aus einer Antenne 1, die Fernsehsignale einer Polarität empfängt, einem Konverter 2, insbesondere einem LNA/LNB-Block, und Kabeln 3, die den LNA/LNB-Block mit einer Signalverarbeitungseinheit 400 verbinden. Diese Signalverarbeitungseinheit 400 besteht aus einer Mehrzahl kanalindividueller FM-Demodulatoren/AM-Modulatoren 19, einem Schaltelement 18, einer Stromversorgung 17, Verbindungsbrücken 7, Lastkomponenten 8. Daran angeschlossen ist ein einziges Verteilkabel (Ableitung) 13 mit Auskopplern 14 und Benutzer- bzw. Antennensteckdosen 15. Dieses System hat den Nachteil, daß es für jeden empfangenen Satellitenkanal einen kanalindividuellen FM-Demodulator/AM-Modulator 19 benötigt. Soll die Anzahl der zu empfangenden Satellitenkanäle erhöht werden, ist auch die Anzahl der notwendigen FM-Demodulatoren/AM-Modulatoren zu erhöhen. Jeder einzelne FM-Demodulator/AM-Modulator, mit dem sowohl die Frequenzdemodulation als auch die Amplitudenmodulation durchgeführt wird, ist schaltungstechnisch relativ komplex ausgestaltet und damit kostenaufwendig. Die Kosten des Systems nach Figur 1 erhöhen sich erheblich, wenn die Anzahl der zu verteilenden Satellitenkanäle erhöht wird. Schon in relativ kleinen Gemeinschaftsantenneninstallationen mit einer kleinen Anzahl von Benutzern ergeben sich bereits bei wenigen empfangenen Satellitenkanälen erhebliche Kosten.
Ein solches System ist beispielsweise aus der EP-A-0 2 888 928 bekannt, die eine Vorrichtung mit einer internen Einheit offenbart, die eine Verstärker- und Signalumsetzerfunktion realisiert. Diese interne Einheit weist mehrere Konverter mit je einem Tuner-Demodulator und einem Kodierer-Modulator auf.
Ein solches System ist weiterhin aus der DE-A-40 12 657 bekannt, wobei in dem System Umsetzer mit jeweils einem abstimmbaren Demodulator und einem AM-Modulator vorgesehen sind.
Bei dem zweiten System nach dem Stand der Technik, welches in Figur 2 dargestellt ist, erfolgt die Verteilung von Fernsehsatellitenkanälen bis zum Systembenutzer, ohne daß die Signale zuvor frequenzdemoduliert und amplitudenmoduliert werden. Ein solches System ist aus dem US-Patent 4,608,710 bekannt. Die Signale der Fernsehsatellitenkanäle werden also frequenzmoduliert (z.B. im Frequenzbereich zwischen 950 MHz und 2050 MHz) verteilt. Dieses System nach Figur 2 erfordert zwar im Unterschied zu dem System nach Figur 1 keine den LNA/LNB-Blöcken nachgeschalteten kanal individuellen FM-Demodulatoren/AM-Modulatoren; dieses System hat aber den Nachteil, daß für die Verteilung der Satellitenkanäle, die von zwei unterschiedlichen Polaritäten oder von mehr als einem Satelliten stammen, mehr als ein Verteilkabel 13 zu installieren ist. Die Installation zusätzlicher Verteilkabel 13 kann in bereits bestehenden Anlagen aufgrund räumlicher Gegebenheiten in den Gebäuden, in denen die zusätzlichen Verteilkabel zu installieren wären, sehr aufwendig oder eventuell ausgeschlossen sein. Weiterhin erfordert dieses System nach dem Stand der Technik mehrere Schalteinrichtungen 16, um unterschiedliche Verteilkabel auszuwählen und auf dem ausgewählten Verteilkabel übertragene Signale abzugreifen. Die Verwendung dieser Schalteinrichtungen, die an den Verteilkabeln angeschlossen sind, ist zudem mit der Gefahr verbunden, daß von den Schalteinrichtungen gebildete elektrische Schaltimpulse auf die Verteilkabel gelangen und die die Übertragungsqualität der dort übertragenen Signale verschlechtern.
Aus der DE-OS 41 17 208 A1 ist ein Gerät für Satellitenfernseh-Empfangseinrichtungen bekannt, wobei Fernsehsignale verarbeitet werden, die von einer Parabol-Antenne empfangen werden und horizontal polarisierte Kanäle und vertikal polarisierte Kanäle aufweisen. Zur Vermeidung einer aufwendigen Verkabelung werden die horizontal polarisierten Kanäle und die vertikal polarisierten Kanäle voneinander getrennt und blockweise in getrennte Frequenzbänder umgesetzt. Die so getrennten Blöcke von Kanälen werden auf eine gemeinsame Leitung geschaltet. Das bekannte Gerät ermöglicht lediglich die blockweise Umsetzung von Kanälen. Ähnlich strukturierte Systeme sind auch aus der Europäischen Patentanmeldung 0 597 783 und aus der DE-U-93 06 499 bekannt.
Aus dem US-Patent 5,073,930 ist ein Verfahren und ein System zum Empfangen und Verteilen von Fernsehsignalen bekannt, die von Satelliten übertragen worden sind. Dieses vorbekannte System ist in der Weise strukturiert, daß Low-Noise Verstärkern (LNA) und Low-Noise Block-Konvertern (LNB) sogenannte powers splitter nachgeschaltet sind, wobei jede Übertragungsleitung am Ausgang eines Low-Noise-Block-Konverters (LNB) in 8 Übertragungsleitungen aufgesplittet wird. Diese Übertragungsleitungen werden über ein Verbindungsbusnetzwerk auf acht Satellitentransponder-Prozessoren geführt. Die Satellitentransponder-Prozessoren setzen jeweils Signale eines Kanals in eine neue Frequenzlage um. Ausgangsseitig sind die Satellitentransponder-Prozessoren mit Transponder-Kombinationseinrichtungen verbunden. Die Transponder-Kombinationseinrichtungen führen dann die von den Satellitentransponder-Prozessoren gebildeten Signale zwammen ("frequency mapping"). Dabei werden die Signale so angeordnet, als ob sie direkt von den Antennen des Systems zu diesem Schaltungspunkt übertragen worden wären. Weiterhin sind den Transponder-Kombinationseinrichtungen power inserter nachgeschaltet, die ausgangsseitig mit mehreren Verteilkabeln verbunden sind. Das bekannte System ist damit schaltungstechnisch komplex ausgestaltet.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein System zur Verteilung von Signalen der eingangs genannten Art anzugeben, welche die Verteilung einer größeren Kanalanzahl ermöglicht und schaltungstechnisch in einfacher Weise ausgestaltet ist, sowie einen entsprechenden kanalindividuellen Konverter und eine entsprechenden Eingabeeinrichtung.
Diese Aufgabe wird erfindungsgemäß durch ein System nach Anspruch 1, einen kanalindividuellen Konverter nach Anspruch 14 und eine Eingabeeinrichtung nach Anspruch 15 gelöst.
Das erfindungsgemäße System zeichnet sich durch eine Mehrzahl von Vorteilen auf. Erfindungsgemäß werden dem Benutzer über nur ein Verteilkabel vorgebbare Kanäle zur Verfügung gestellt. die individuell aus Signalen ausgewählt werden, die von einer Antenne oder von mehreren Antennen stammen. Mit der individuellen Auswahl von Kanälen kann der Nachfrage von Systembenutzern hinsichtlich des Empfangs vorgebbarer Kanäle individuell entsprochen werden. Die erfindungsgemäß vorgesehenen kanalindividuellen Konverter. die einen vorgebbaren Kanal in einen anderen Kanal umsetzen. aber auch das System insgesamt sind schaltungstechisch in einfacher Weise realisiert. Die kanalindividuellen Konverter sind auf beliebige Frequenzen in einem vorgebbaren Frequenzband einstellbar. Einzelne Signale bzw. Kanäle lassen sich durch andere Signale bzw. Kanäle überlagern, wobei sowohl die 1 überlagerten als auch die überlagernden Signale zum Benutzer übertragen werden. Nutzbar für den Benutzer sind jedoch nur die überlagernden Signale. Damit ermöglicht das erfindungsgemäße System, daß einer geänderten Nachfrage der Systembenutzer hinsichtlich der Nutzung vorgebbarer Kanäle flexibel entsprochen werden kann.
Das erfindungsgemäße System ist unter anderem in den Fällen einsetzbar, in denen bereits ein einziges Verteilkabel verlegt ist bzw. in den Fällen, in denen die Verlegung eines weiteren Verteilkabels aufgrund nämlicher Gegebenheiten aufwendig oder ausgeschlossen wäre.
Auch weist das erfindungsgemäße System, in dem Kanäle zweier Polaritäten oder von zwei oder mehr Satelliten über ein einziges Verteilkabel zu Benutzersteckdosen übertragen werden, an dem Verteilkabel keine Schaltvorrichtungen auf. Damit werden keine elektrischen Schaltimpulse auf das Verteilkabel eingekoppelt, so daß entsprechende Störungen ausgeschlossen werden.
Eine vorteilhafte der Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die kanalindividuellen Konverter der Kopfeinrichtung in wenigstens einem Konvertermodul integriert sind, wobei das Konvertermodul an seinem Eingang mit Abwärtsumsetzern und an seinem Ausgang mit dem Verteilkabel verbunden ist. Vorzugsweise weist das Konvertermodul wenigstens zwei Konverter auf. wobei die Konverter in dem Konvertermodul untereinander in Kettenschaltung verbunden sind (ein Eingang eines ersten Konvertermoduls ist mit dem Eingang eines zweiten Konvertermoduls verbunden, das dem ersten Konvertermodul benachbart ist; ein Ausgang des ersten Konvertermoduls ist mit dem Ausgang des zweiten Konvertermoduls verbunden).
Diese Kettenschaltungs-Struktur zeichnet sich durch den in der Praxis wichtigen Vorteil aus, daß nicht jeder kanalindividuelle Konverter über ein separates Kabel mit einem Abwärtsumsetzer zu verbinden ist und daß darüberhinaus nicht jeder kanalindividuelle Konverter über ein separates Kabel mit einem Mischer bzw. Addierer zu verbinden ist, der dem Verteilkabel vorgeschaltet ist. Durch die Verwendung der Kettenschaltungs-Struktur werden zum einem die separaten Kabel und zum anderen die Kosten für deren Installation eingespart.
Insbesondere lassen sich die kanalindividuellen Konverter bzw. deren Eingänge und/oder deren Ausgänge durch an sich bekannte Verbindungsbrücken miteinander verbinden.
Das erfindungsgemäße System ermöglicht die Verarbeitung und Verteilung von Signalen einer Vielzahl von Fernsehkanälen. So lassen sich mehrere Konvertermodule, in die eine veränderbare Anzahl von kanalindividuellen Konvertern integriert werden können, z.B. über einen Mischer ("9") miteinander verbinden.
Das erfindungsgemäße System kann einen weiteren Mischer ("5") mit wenigstens zwei Eingängen aufweisen. Dabei ist einer der Eingänge mit dem Ausgang eines Konvertermoduls verbunden, während ein weiterer Eingang direkt mit einem Abwärtskonverter einer Antenne verbunden ist. Dieser Mischer, der ausgangsseitig eventuell über einen Verstärker mit dem Verteilkabel verbunden ist, ermöglicht es, weitere Kanäle in das Verteilkabel einzukoppeln, und zwar von ersten Kanälen bzw. Signalen, die von Satelliten abgestrahlt und von Parabolantennen empfangen werden, als auch von zweiten Kanälen bzw. Signalen, die von terrestrischen Sendern ausgestrahlt und von herkömmlichen Antennen empfangen werden, als auch von ersten und zweiten Signalen.
Die kanal individuellen Konverter können jeweils einen Mikroprozessor aufweisen, der mindestens einen Oszillator steuert. Der Mikroprozessor ermöglicht es, eine konverterexterne Eingabeeinrichtung an den Mikroprozessor lösbar anzuschließen und Daten in den Konverter bzw. den Mikroprozessor einzugeben, die eine vorgebbare Eingangskanalfrequenz und eine vorgebbare Ausgangskanalfrequenz bezeichnen. Auf diese Weise lassen sich die kanalindividuellen Konverter in besonders einfacher Weise auf eine vorgebbare Eingangsfrequenz und auf eine vorgebbare Ausgangsfrequenz einstellen, durch die die Frequenzumsetzung eines Kanals bestimmt wird. Die konverterexterne Eingabeeinrichtung kann auch als Fernbedienungsgeber ausgestaltet sein.
Die kanalindividuellen Konverter weisen einen Verstärker mit steuerbarem Gewinn auf, wobei einem Mischer ("5") mit wenigstens zwei Eingängen Signale unterschiedlicher Kanäle derselben Frequenz mit unterschiedlichen Signalpegeln zugeführt werden. Damit lassen sich auf einfache Weise unterschiedliche Kanäle auf dem Verteilkabel überlagern. Bei dem erfindungsgemäß vorgesehen Signalpegelunterschied von mindestens 15 dB lassen sich die überlagernden Kanäle in den an den Benutzersteckdosen anschließbaren Endgeräten in guter Empfangsqualität darstellen.
Die dargestellten Eigenschaften der Erfindung sowie weitere Eigenschaften und Vorteile werden nun anhand der Zeichnungen beschrieben, in denen Ausführungsbeispiele der Erfindung dargestellt sind.
Es zeigt:
Fig. 1 und 2
Signalverteilsysteme nach dem Stand der Technik;
Fig. 3
ein erstes Ausführungsbeispiel des Signalverteilsystems gemäß der Erfindung;
Fig. 4 - 6
Ausführungsbeispiele von Signalverarbeitungseinheiten eines erfindungsgemäßen Signalverteilsystems nach Figur 3;
Fig. 7
ein Ausführungsbeispiel eines kanalindividuellen Konverters in einer Signalverarbeitungseinheit nach den Figuren 3 - 6;
Fig. 8
ein Ausführungsbeispiel eines Mischers, der in einer Signalverarbeitungseinheit nach den Figuren 3 - 6 mindestens einem kanalindividuellen Konverter nachgeschaltet ist;
Fig. 9
ein Ausführungsbeispiel eines erfindungsgemäßen Signalverteilsystems mit ausgewählten Schaltungspunkten, und
Figur 10
Diagramme von Kanalsignalfrequenzen an den Schaltungspunkten des erfindungsgemäßen Signalverteilsystems nach Figur 9.
Das in den Zeichnungen dargestellte Signalverteilsystem, so wie es auch in Fig. 3 dargestellt ist, besteht aus drei Blöcken A, B und C. Block A ist eine Signalgebereinrichtung, Block B ist eine Kopfeinrichtung mit einer Signalverarbeitungseinheit und Block C stellt das Verteilnetz dar.
Die Blöcke A, B und C sind wie folgt ausgestaltet:
  • 1. Block A ist eine Signalgebereinrichtung, die aus mindestens einer Antenne 1 sowie aus bekannten Abwärtsumsetzern 2 (low-noise amplifier LNA, low-noise block converter LNB) besteht. Die empfangenen Signale können von verschiedenen Rundfunk- und/oder Fernmeldesatelliten stammen und/oder verschiedene Polaritäten (horizontal, vertikal) aufweisen. Die Abwärtsumsetzer 2 setzen die empfangenen Signale in an sich bekannter Weise aus dem Empfangsfrequenzbereich von z.B. 11,7 - 12,5 GHz; 10,7 - 11,7 GHz; 12,5 - 12,75 GHz oder vorzugsweise 10,7 - 12,5 GHz in einen Zwischenfrequenzbereich von z.B. 950 - 1760 MHz oder vorzugsweise 950 MHz und 2050 MHz um;
  • 2. Block B ist eine Kopfeinrichtung mit einer Signalverarbeitungseinrichtung 400, in der kanalindividuelle Konverter 4 angeordnet sind. Die kanalindividuellen Konverter 4 werden noch detailliert insbesondere anhand von Figur 7 beschrieben. Verschiedene Ausgestaltungen der Signalverarbeitungseinrichtung 400 sind in den Figuren 3, 4, 5 und 6 dargestellt;
  • 3. Das Verteilungsnetz C weist ein einziges Verteilkabel 13 auf, über das die Signale über Abgreif- bzw. Ableiteinrichtungen 14 bis zu Benutzersteckdosen 15 übertragen werden.
  • Block A des erfindungsgemäßen Systems, d.h., die Signalgebereinrichtung, wie sie beispielsweise in Fig. 3 dargestellt ist, besteht aus Antennen 1, die die Signale von Fernsehkanälen, die über Satelliten übertragen werden, empfangen. Sofern die Antennen Parabolantennen sind, ist jeweils im Brennpunkt einer Antenne 1 ein Abwärtsumsetzer (down converter) 2 angeordnet, die die empfangenen Signale in an sich bekannter Weise aus dem Satellitenfernsehempfangsfrequenzbereich von z.B. 10,7 - 12,5 GHz in den Zwischenfrequenzbereich zwischen 950 MHz und 2050 MHz (üblicherweise als "erste Zwischenfrequenz" bezeichnet) umsetzen. Derartige Abwärtsumsetzer 2 mit einem Verstärker LNA und einem Kanalblockumsetzer LNB sind bekannt und auf dem Markt erhältlich.
    Jede Antenne 1 weist. einen oder zwei Abwärtsumsetzer 2 (bzw. einen Abwärtsumsetzer mit zwei Ausgängen) in Abhängigkeit davon auf, ob Signale einer oder zweier Polaritäten (horizontal, vertikal) pro Antenne empfangen werden sollen. Empfängt die Antenne 1 Signale einer Polarität, ist ein Abwärtsumsetzer 2 vorgesehen; empfängt die Antenne 1 Signale zweier Polaritäten, sind zwei Abwärtsumsetzer 2 vorgesehen.
    Die Abwärtsumsetzer 2 sind ausgangsseitig jeweils mit einem Kabel 3 verbunden. In unterschiedlichen Ausführungsformen der Erfindung führen ein oder mehrere Kabel 3, wie in den Figuren 3, 4, 5, 6 und 9 dargestellt, zu der Signalverarbeitungseinheit 400 mit mindestens einem kanalindividuellen Konvertern 4. Es kann auch vorgesehen sein, daß ein oder mehrere Kabel 3, wie in den Figuren 3, 6 und 9 dargestellt, zu einem ("zweiten") Mischer 5 führen, der einem kanalindividuellen Konverter 4 oder einem Konvertermodul 40 mit mindestens einem kanalindividuellen Konverter 4 nachgeschaltet ist.
    Die kanalindividuellen Konverter 4 der Kopfeinrichtung B sind vorzugsweise in wenigstens einem Konvertermodul 40 integriert, wobei das Konvertermodul 40 an seinem Eingang über ein Kabel 3 mit einem Abwärtsumsetzer (LNA/LNB) 2 und an seinem Ausgang mit dem Verteilkabel 13 (Koaxialkabel) verbindbar ist. Vorzugsweise ist das Verteilkabel 13 an den Ausgang eines Verstärkers 6 angeschlossen, der dem ("zweiten") Mischer 5 nachgeschaltet sein kann.
    Jeder kanalindividueller Konverter 4, deren schaltungstechnischer Aufbau noch anhand von Figur 7 detailliert erläutert wird, weist zwei Eingänge und zwei Ausgänge auf.
    Wie in den Figuren 3, 4, 5, 6 und 9 dargestellt, sind die kanalindividuellen Konverter 4 eines Konvertermoduls 40 in der Weise miteinander verbunden, daß ein Eingang (z.B. EC1 in Figur 7) eines ersten Konvertermoduls mit dem Eingang (z.B. EC2) eines zweiten (in Figur 7 nicht dargestellten) Konvertermoduls, das dem ersten Konvertermodul benachbart ist, verbunden ist. Ebenso ist ein Ausgang (z.B. SC1) des ersten Konvertermoduls mit dem Ausgang (z.V. SC2) des zweiten Konvertermoduls verbunden (Kettenschaltung).
    Diese Kettenschaltungs-Struktur zeichnet sich durch den praktisch wichtigen Vorteil aus, daß nicht jeder kanalindividuelle Konverter 4 über ein separates Kabel 3 mit einem Abwärtsumsetzer 2 zu verbinden ist und daß darüberhinaus nicht jeder kanalindividueller Konverter 4 über ein separates Kabel mit einem ("zweiten") Mischer (5) zu verbinden, der dem Verteilkabel 13 vorgeschaltet ist.
    Dabei kann vorgesehen sein, daß jeder der beiden Eingänge jeweils z.B. über je eine bekannte Verbindungsbrücke 7 mit einem Eingang eines vorgeschalteten kanalindividuellen Konverters 4 bzw. mit dem Eingang eines nachgeschalteten kanalindividuellen Konverters 4 verbunden ist. Ebenso kann hinsichtlich der Ausgänge vorgesehen sein, daß jeder der beiden Ausgänge jeweils z.B. über je eine bekannte Verbindungsbrücke 7 mit einem Ausgang eines vorgeschalteten kanalindividuellen Konverters 4 bzw. mit dem Ausgang eines nachgeschalteten kanalindividuellen Konverters 4 ist. Vorzugsweise ist für jeden kanalindividuellen Konverter 4 jeweils ein identisches Gehäuse vorgesehen, das heißt ein Gehäuse derselben räumlichen Abmessungen, an welchem die Eingangs- und Ausgangsanschlüsse an denselben Stellen angeordnet sind. Dies ermöglicht den Einsatz identischer Verbindungsbrücken 7, mit denen jeweils entweder eine elektrische Verbindung zwischen zwei Eingängen oder zwischen zwei Ausgängen hergestellt werden.
    Weiterhin kann vorgesehen sein, daß ein Eingang eines Konverters 4 (erster Konverter 4 eines Konvertermoduls 40, welcher in Figuren 4 und 5 jeweils rechts in einem Konvertermodul eingezeichnet ist) mit einem Kabel 3, welches die von den Abwärtsumsetzern 2 generierten bzw. in den Zwischenfrequenzbereich umgesetzten Signale überträgt, verbunden ist. Ein Eingang eines Konverters 4 (letzter Konverter 4 eines Konvertermoduls 40, welcher in den Figuren 4 und 5 links eingezeichnet ist) ist mit einer Speisequelle 11 verbunden, die die Konverter 4 sowie einen pro Signalverarbeitungseinheit 400 vorgesehenen Verstärker 12 versorgt.
    Diese kanalindividuellen Konverter 4 nehmen eingangsseitig die von den Abwärtsumsetzern 2 abgegebenen und über die Kabel 3 übertragenen Signale bzw. Kanäle im Zwischenfrequenzbereich auf und setzen die Signale bzw. Kanäle im Zwischenfrequenzbereich um, wie noch anhand der Figuren 9 und 10 beschrieben wird.
    Eingänge der kanalindividuellen Konverter 4, welche nicht mit dem Eingang eines benachbarten Konverters verbunden bzw. an welche kein Kabel 3 angeschaltet ist, können mit einem Ohmschen Widerstand 8 von 75 Ohm abgeschlossen werden (vgl. Figur 3, Block B, Bezugszeichen 8 oberhalb der Konverter 4; rechtes Konvertermodul 40 in Figur 5; Figur 9, Bezugszeichen 8 oberhalb der Konverter 4).
    Ebenso können Ausgänge der kanalindividuellen Konverter 4 mit einem Ohmschen Widerstand 8 von 75 Ohm abgeschlossen werden (vgl. Figur 3, Block B, Bezugszeichen 8 unterhalb der Konverter 4; rechtes und linkes Konvertermodul 40 in Figur 5; Figuren 6 und 9, Bezugszeichen 8 unterhalb der Konverter 4). Dies sind insbesondere der Ausgang eines (hinsichtlich des Signalflusses) ersten Konverters 4 in einem ersten Konvertermodul (rechtes Konvertermodul in Figur 5) sowie der Ausgang eines (hinsichtlich des Signalflusses) letzten Konverters 4 in einem letzten Konvertermodul (linkes Konvertermodul in Figur 5).
    Mit jedem kanalindividuellen Konverter 4 wird ein Kanal ausgewählt und von einer Eingangsfrequenz im Zwischenfrequenzbereich auf eine vorgebbare Ausgangsfrequenz im Zwischenfrequenzbereich umgesetzt.
    Wie schon beschrieben,. kann eine Mehrzahl von kanalindividuellen Konvertern 4, mindestens zwei, vorzugsweise vier Konverter 4 in einem Konvertermodul 40 integriert werden. Zwei benachbarte Module sind über einen ("ersten") Mischer 9 miteinander kombinierbar.
    Der Ausgang des ersten Mischers 9 wird mittels eines Verbindungskabels 10 in die Anordnung aus Speisequelle 11 und Verstärker 12 eingeführt. Das verstärkte Signal wird dem zweiten Mischer 5 zugeführt.
    Der kanalindividuelle Konverter 4 ist vorzugsweise folgendermaßen ausgestaltet:
    Eingangsseitig
    Frequenzbereich 950 ... 1950 (oder 2050) MHz
    Eingangspegel - 50 ... -30 dBm
    Spiegelselektion (image frequency rejection) ≥ 40 dB
    Zwischenfrequenz 479,5 MHz
    Bandbreite 27 MHz
    Durchschleifeingangsverluste < 1,2 dB
    Ausgangsseitig
    Frequenzbereich 950 ... 1950 (oder 2050) MHz
    Max. Ausgangspegel - 25 ± 5 dBm
    Ausgangspegel-Regelbereich 15 dB
    Bandbreite 27 MHz
    Durchschleifausgangsverluste < 1,2 dB
    Störpegel > - 20 dBc
    Die Speisequelle 11 ist vorzugsweise folgendermaßen ausgestaltet:
    Netzspannung 230V ± 15 %
    Ausgangsspannung 15V/5V
    Zwischenfrequenz-Durchschleifverluste < 1,2 dB
    Der Verstärker 12 ist vorzugsweise folgendermaßen ausgestaltet:
    Bandbreite 950 ... 2050 MHz
    Gewinn 23 ... 33 dB
    Max. Ausgangspegel für zwei Kanäle 115 dBµV/6 dBm
    Der erste Mischer 9 ist vorzugsweise folgendermaßen ausgestaltet:
    Bandbreite 950 ... 2050 MHz
    Einfügungsdämpfung < 4 dB
    Rückweisung zwischen Eingaben (rejection between inputs) 15 dB
    Wie in Figur 6 dargestellt, können erste Signale, die ein Konvertermodul 40 bildet (Eingang E1), als auch zweite Signale, die von den Abwärtskonvertern 2 gebildet werden (Eingang E2), als auch dritte Signale, die von Antennen abgegeben werden, die Signale terrestrischer Sender empfangen, dem zweiten Mischer 5 zuführt werden. An diesen Mischer 5 ist ausgangsseitig das Verteilkabel 13 angeschlossen. Alternativ ist vorgesehen, daß dem Mischer 5 ein Verstärker 6 nachgeschaltet ist, an den ausgangsseitig das Verteilkabel 13 angeschlossen ist.
    Wie in Fig. 3 dargestellt ist, besteht das Verteilnetz C aus einem einzigen Verteilkabel 13, auf dem alle Kanäle, die FM-moduliert sind, übertragen werden. Das Verteilkabel 13 ist durch ein Koaxialkabel gebildet und führt zu Ableitvorrichtungen 14, die das Signal zu verschiedenen Benutzersteckdosen 15 auskoppeln.
    In Figur 4 ist eine Signalverarbeitungseinheit 400 mit einem Konvertermodul 400 dargestellt, das aus vier kanalindividuellen Konvertern 4 besteht, während in Figur 5 eine Signalverarbeitungseinheit 400 mit zwei Konvertermodulen 400 dargestellt ist, die jeweils aus vier kanalindividuellen Konvertern 4 bestehen.
    In dem erfindungsgemäßen System ist die Zahl der kanalindividuellen Konverter 4 gleich der Anzahl der Kanäle, die in das Verteilkabel 13 eingekoppelt und über die Ableiteinrichtungen 14 zu den Benutzersteckdosen 15 übertragen werden. Die kanalindividuellen Konverter sind auf vorgebbare Eingangsfrequenzen im Zwischenfrequenzbereich und auf vorgebbare Ausgangsfrequenzen in dem Zwischenfrequenzbereich einstellbar.
    In Figur 7 ist ein Ausführungsbeispiel eines kanalindividuellen Konverters 4 dargestellt. Zwei Eingänge EC1 und EC2 sind elektrisch miteinander und über einen Richtungskoppler 41 mit und einem Verstärker 42 verbunden. Die Eingänge EC1 und EC2 sind mechanisch in der Weise ausgestaltet, daß bekannte Verbindungsbrücken (7 in Figur 4) zur Verbindung mit jeweils einem Eingang eines benachbarten kanalindividuellen Konverters verwendet werden können. Aus diese Weise lassen sich mehrere kanalindividuelle Konverter in ein Konvertermodul integrieren.
    Diese Verbindungsform besteht also darin, daß jeder der beiden Eingänge EC1, EC2 jeweils z.B. über je eine bekannte Verbindungsbrücke mit einem Eingang eines vorgeschalteten kanalindividuellen Konverters 4 bzw. mit dem Eingang eines nachgeschalteten kanalindividuellen Konverters 4 verbunden ist. Ebenso ist jeder der beiden Ausgänge SC1, SC2 des Konverters 4 jeweils z.B. über je eine bekannte Verbindungsbrücke mit einem Ausgang eines vorgeschalteten kanalindividuellen Konverters 4 bzw. mit dem Ausgang eines nachgeschalteten kanalindividuellen Konverters 4 verbunden. Diese Verbindungsform hat den Vorteil, daß Verteileinrichtungen, die sonst den Abwärtskonvertern 2 nachzuschalten wären, und Verbindungskabel zwischen diesen Verteileinrichtungen und kanalindividuellen Konvertern nicht benötigt werden.
    Der Verstärker 42 verstärkt die zugeführten Signale z.B. in dem Frequenzband von 950 bis 2050 MHz. Die Signale werden einem eingangsseitigen Nachlauf-Filter (tracking filter) 43 zugeführt. Dieses Filter ist ein Bandpaßfilter, das auf die ausgewählte Eingangskanalfrequenz mittels einer Spannung abgestimmt wird, die von einer Phase-Locked Loop (PLL)-Schaltung 46 gebildet wird. Die Schaltung 46 wird von einem Mikroprozessor (MP) 49 gesteuert.
    Ein dem Nachlauf-Filter 43 nachgeschalteter Mischer 44 wird von einem lokalen Oszillator (OL) 45 angesteuert, der seinerseits von der PLL-Schaltung 46 angesteuert wird. Der Mischer 44 setzt die an den Eingängen EC1 und EC2 anstehende Frequenz des ausgewählten Kanals auf eine Frequenz von 479,5 MHz um.
    Das vom Mischer 44 gebildete Signal wird einem Tiefpaß 47 zugeführt, dessen Grenzfrequenz beispielsweise 600 MHz beträgt. Damit werden das Signal des lokalen Oszillators 45 und beim Mischvorgang gebildete, unerwünschte Signale eliminiert.
    Im Anschluß daran wird das Signal mittels eines Oberflächenwellenfilters SAW 50 gefiltert, das z.B. eine Bandbreite von 27 MHz bei einer Mittenfrequenz von 479.5 MHz hat. Die dem Oberflächenwellenfilter SAW vor-bzw. nachgeschalteten Verstärker 48 und 51 erhöhen den Signalpegel so, daß die durch das SAW-Filter 50 bewirkten Verluste kompensiert werden.
    Der dem Verstärker 51 nachgeschaltete Mischer 52 mischt das Signal des am Eingang ausgewählten Signals der Frequenz 479.5 MHz mit einem Signal, das von einem lokalen Oszillator (OL) 53 gebildet wird. Der lokale Oszillator wird durch eine PLL-Schaltung 54 gesteuert. Die PLL-Schaltung 54 wird ebenfalls von dem Mikroprozessor 49 gesteuert. Dem Mischer 52 ist ein ausgangsseitiges Nachlauf-Filter 55 nachgeschaltet, das ebenso wie das Filter 43 ein Bandpaßfilter ist. Das Filter 55 eliminiert die unerwünschten Signale, die bei der vom Mischer 52 vorgenommenen Mischung gebildet werden. Am Ausgang des Filters 55 steht dann das Signal des frequenzmäßig umgesetzten Kanals an, das einem Verstärker 56 zugeführt wird.
    Der Gewinn des Verstärkers 56 ist steuerbar, so daß die Pegel des frequenzmäßig umgesetzten Kanalsignals auf vorgebbare Werte gesetzt werden können (vgl. z.B. in Figur 8 die Kanäle 1 und 5)
    Ein nachgeschalteter Richtungskoppler 57 koppelt das verstärkte Signal an die Ausgänge SC1, SC2. Die Ausgänge SC1 und SC2 sind mechanisch in der Weise ausgestaltet, daß bekannte Verbindungsbrücken (7 in Figur 4) zur Verbindung mit jeweils einem Ausgang eines benachbarten kanalindividuellen Konverters verwendet werden können.
    Wie in Figur 7 dargestellt, können die Konverter 4 einen Mikroprozessor 49 aufweisen, der die PLL-Schaltungen 46 und 54 steuert und die Eingangs-und Ausgangsfrequenz des Kanalsignals der Konverter 4 bestimmt. Weiterhin kann der Mikroprozessor 49 den Verstärker 56 steuern. An den Mikroprozessor 49 kann z.B. über einen 4-Kabelbus eine Eingabeeinheit 16 angeschaltet werden, über die in den Mikroprozessor 49 die Daten einer vorgebbaren Eingangs- und Ausgangsfrequenz und/oder Steuerdaten für den Verstärker 56 (Signalverstärkungsparameter) eingebbar sind.
    Die Eingabeeinheit 16 kann ein Steuerwerk 162 (insbesondere einen Mikroprozessor MP) aufweisen, wobei ein dem Steuerwerk 162 zugeordnetes Programm z.B. in Abhängigkeit von den Grenzfrequenzen des jeweiligen Zwischenfrequenzbereichs (950 MHz, 2050 MHz), von Kanalbandbreiten und Kanalabständen und Signalpegel der Kanalsignale Daten bildet, die vorgegebenen technischen Spezifikationen entsprechen und die in den Mikroprozessor 49 des kanalindividuellen Konverters 4 eingegeben werden. Die Eingabeeinheit 16 enthält eine Tastatur 161, das Steuerwerk 162 und ein Display 163. Auf dem Display werden in die Tastatur 161 eingegebene Daten, Bedienerführungsinformationen, und Informationen angezeigt, die den Zustand des Konverters nach seiner Einstellung durch die eingegebenen Daten bezeichnen. Die Eingabeeinheit 16 kann als Fernbedienungsgeber mit einer Sendeeinrichtung ausgestaltet sein, die die einzugebenden Daten an eine Empfangseinrichtung überträgt, die mit dem Mikroprozessor 49 des kanalindividuellen Konverters verbunden ist.
    Figur 8 zeigt einen zweiten Mischer 5, der auch in Figur 3, Block B dargestellt ist. Der zweite Mischer 5 weist z.B. drei Eingänge E1, E2, E3 und einen Ausgang S auf, an den das Verteilkabel 13 angeschlossen ist. Das Verteilkabel 13 ist vorzugsweise ein Koaxialkabel, es kann jedoch auch eine Glasfaser vorgesehen sein.
    Der Eingang E1 ist direkt über ein Kabel mit einem oder mehreren Konvertermodulen 40 verbunden; an den Eingang E2 ist direkt ein Kabel 3 mit einem Abwärtsumsetzer (2 in Figur 3) angeschlossen, während der Eingang E3 mit einem System zum Empfang von terrestrischen Kanälen verbunden ist.
    Wie dies beispielhaft in Figur 8 dargestellt ist, werden dem Eingang E1 Signale der Kanäle 1, 2, 3, 4, 5 und 6 zugeführt, die von einem Satelliten stammen, eine Bandbreite von 27 MHz haben, und wie beschrieben, von kanalindividuellen Konvertern im Frequenzband zwischen 950 und 2050 MHz umgesetzt wurden.
    Dem Eingang E2 werden Signale der Kanäle 7, 8, 9, 10, 11, 12, 13 und 14 zugeführt, die von einem Satelliten stammen, eine Bandbreite von 27 MHz haben, und wie beschrieben, von kanalindividuellen Konvertern im Frequenzband zwischen 950 und 2050 MHz umgesetzt wurden.
    Am Eingang E3 stehen 6 terrestrische Fernsehkanäle mit 8 MHz Bandbreite in dem Frequenzband zwischen 47 und 860 MHz an.
    Die Signale der Kanäle, die am Eingang E1 anstehen, werden von den kanalindividuellen Konvertern 4 zugeführt, in denen die Frequenzumsetzung und die Bildung der jeweiligen Pegel im Hinblick auf die Einkopplung der Signale über den Mischerausgang S in das Verteilkabel 13 erfolgt.
    Die Kanäle 2, 4 und 6, die am Eingang E1 anstehen, wurden in den kanalindividuellen Konvertern 4 so frequenzmäßig umgesetzt, daß keine Kanäle derselben Frequenzen am Eingang E2 anstehen. Die Kanäle 1 und 3 am Eingang E1 werden in Frequenzen zwischen den nicht gewünschten Kanälen 7 und 8 bzw. 9 und 10, die am Eingang E2 anstehen, angeordnet. Der Signal- bzw. Leistungspegel des Kanals 1 ist auf einen Wert von wenigstens 15 dB oberhalb des entsprechenden Pegels der Kanäle 7 und 8 gesetzt; und der Signal- bzw. Leistungspegel des Kanals 3 ist auf einen Wert von wenigstens 15 dB oberhalb des entsprechenden Pegels der Kanäle 9 und 10 gesetzt.
    Der Kanal 5 des Eingangs E1 wird in derselben Frequenz angeordnet wie der nicht gewünschte Kanal 12, der am Eingang E2 ansteht, wobei der Signal- bzw. Leistungspegel des Kanals 5 wenigstens 20 dB oberhalb des entsprechenden Pegels des Kanals 12 ist.
    Die Pegeldifferenz (wenigstens 15 dB oder wenigstens 20 dB) hängt von den Frequenzen des überlagernden Kanals und der Frequenz des bzw. der zu überlagernden Kanäle ab: bei unterschiedlicher Frequenz (vgl. Kanal 1, der die Kanäle 7 und 8 überlagert) beträgt die Pegeldifferenz wenigstens 15 dB; bei derselben Frequenz (vgl. Kanal 5, der Kanal 12 überlagert) beträgt die Pegeldifferenz wenigstens 20 dB.
    Die in dieser Weise hinsichtlich Frequenz und Pegel ausgestalteten Kanäle an den Eingängen E1, E2 und E3 des Mischers 5 werden durch den Mischer am Ausgang S in das Verteilkabel 13 in derjenigen Anordnung eingekoppelt, die in Figur 8 dargestellt ist:
    • im Frequenzband zwischen 47 und 860 MHz sind am Ausgang S dieselben Kanäle in derselben Frequenzposition und mit denselben Pegeln vorhanden wie am Eingang E3;
    • im Frequenzband zwischen 950 und 2050 MHz werden am Ausgang S die Kanäle 7 und 8 des Eingangs E2 vom Kanal 1 des Eingangs E1 überlagert. Da der Kanal 1 auf einen Signalpegel gesetzt ist, der wenigstens 15 dB oberhalb der Pegel der Kanäle 7 und 8 liegt, ist für den Systembenutzer nur Kanal 1 sichtbar, ohne daß die Kanäle 7 und 8 Störungen erzeugen.
      Ebenso werden am Ausgang S die Kanäle 9 und 10 des Eingangs E2 vom Kanal 3 des Eingangs E1 überlagert.
      Außerdem ist in das Verteilkabel 13 am Ausgang S der Kanal 5 des Eingangs E1 in der Frequenzposition des Kanals 12 des Eingangs E2 eingekoppelt, wobei Kanal 5 den Kanal 12 überlagert, da der Signalpegel von Kanal 5 mindestens 20 dB oberhalb des Kanals 12 liegt.
      Außerdem sind in das Verteilkabel 13 der Kanal 4 (ursprünglich am Eingang E1) zwischen die Kanäle 3 (ursprünglich am Eingang E1) und 11 (ursprünglich am Eingang E2) eingekoppelt und der Kanal 6 (ursprünglich am Eingang E1) ist zwischen die Kanäle 13 (ursprünglich am Eingang E2) und 14 (ursprünglich am Eingang E2) eingekoppelt. Die Kanäle 4 und 6 werden also frequenzmäßig in am Eingang E2 freie Frequenzpositionen eingefügt.
    Insgesamt werden also die Kanäle im Frequenzband von 47 bis 860 MHz und die Kanäle 1, 2, 3, 4, 11, 5, 13, 6 und 14 im Frequenzband von 950 bis 2050 MHz dem Systembenutzer zur Verfügung gestellt. Ebenfalls werden auf dem Verteilkabel 13 die Kanäle 7,8,9,10 und 12 übertragen; diese werden jedoch überlagert, so daß sie dem Systembenutzer nicht zur Verfügung gestellt werden. Bei dem erfindungsgemäß vorgesehen Signalpegelunterschied von mindestens 15 dB lassen sich die überlagernden Kanäle in den an den Benutzersteckdosen anschließbaren Endgeräten in guter Empfangsqualität darstellen.
    Fig. 9 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Systems, welches auch in Figur 3 dargestellt ist. Dabei wird davon ausgegangen, daß Signale unterschiedlicher Fernsehkanäle empfangen und weiterverarbeitet werden, die von drei Satelliten unterschiedlicher Orbitalposition mit horizontaler und vertikaler Position stammen. In dem in Fig. 9 dargestellten erfindungsgemäßen System sind Schaltungspunkte d, e, f, g, h, i, j, k, l, m, n, und o angegeben.
    Fig. 10 zeigt die Kanäle an den in Fig. 9 dargestellten Schaltungspunkten d - o.
    An den Punkten d, e und f der Fig. 9 liegen die Signale an, die von jedem Satelliten in einem Frequenzband zwischen 10,7 - 12,5 GHz mit horizontaler und vertikaler Polarität empfangen werden.
    Wie dies in Fig. 10 dargestellt ist, liegen am Schaltungspunkt d (Parabolantenne links in Figur 9) die Kanäle 70, 72 92 in vertikaler Polarität und die Kanäle 71, 93 93 in horizontaler Polarität an. Am Schaltungspunkt e (mittlere Parabolantenne in Figur 9) liegen die Kanäle 65, ..., 69 in nur einer Polarität an. Am Schaltungspunkt f (Parabolantenne rechts in Figur 9) liegen die Kanäle 49, 51, ...63; 33, 35, ...47; 1, 3, ...31 in vertikaler Polarität und die Kanäle 50, 52, ...64; 34, 36, ...48; 2, 4, ..., 32 in horizontaler Polarität an.
    Jeder Abwärtsumsetzer 2 (Fig. 9) wählt eine Polarität aus und setzt das Frequenzband von 10,9 - 12,5 GHz in das Frequenzband von 950-2050 MHz in der Weise um, daß in jedem Kabel 3 an den Schaltungspunkten g, h, i, j, k die Kanäle vorhanden sind, die zu denselben Satelliten und zu derselben Polarität gehören.
    Wie in Fig. 10 dargestellt, liegen am Schaltungspunkt g die Kanäle 70, 72, ...92, an, am Schaltungspunkt h die Kanäle 71, 73, ...93, am Schaltungspunkt i die Kanäle 65 - 69, am Schaltungspunkt j die Kanäle 49, 51...63, 33....47, 1, 3, ...31 und am Schaltungspunkt k die Kanäle 50, 52 ... 64; 34, 36, ... 48; 2, 4 ... 32.
    Aus sämtlichen verfügbaren Kanälen an den Schaltungspunkten d - k werden gewünschte Kanäle ausgewählt. So werden bspw. die am Schaltungspunkt k vorhandenen Kanäle 60, 36, 44, 2, 6, 12, 18 und 24 nicht weiter verarbeitet, während stattdessen die an den Schaltungspunkten g, h, i, j, anstehenden Kanäle 65, 72, 68, 82, 77, 17, 89 und 41 weiter verarbeitet werden.
    Hierzu werden an den Schaltungspunkten g, h, i, j, Konvertermodule 40 vorgesehen, wobei die kanalindividuellen Konverter 4 der Module 40 auf die Eingangsfrequenzen eines jeden der ausgewählten Kanäle und auf die Ausgangsfrequenzen, auf die die Kanäle angeordnet werden sollen, eingestellt werden. Diese Ausgangsfrequenzen sind besetzte Frequenzen unerwünschter, zu überlagernder Kanäle oder freie Frequenzen.
    Am Ausgang eines jeden Konvertermoduls 40 werden erfindungsgemäß Kanäle bereitgestellt, die eine unterschiedliche Frequenzposition gegenüber der Frequenzposition am Eingang der Module aufweisen.
    Wie anhand von Fig. 10 ersichtlich, treten am Schaltungspunkt i die Kanäle 72, 82, 77 und 89 in einer Frequenzposition auf, die sich von der Frequenzposition der Kanäle an den Schaltungspunkten g und h unterscheidet. Am Schaltungspunkt m bestehen die Kanäle 65, 68, 17 und 41, die von den Schaltungspunkten i und j, ebenfalls in unterschiedlicher Frequenzposition stammen. Nachdem die Kanäle einem Mischvorgang im Mischer 9 unterzogen worden sind, liegen am Schaltungspunkt n, wie dies in Fig. 10 dargestellt ist, alle ausgewählten Kanäle an, die von den Schaltungspunkten g, h, i und j stammen, und zwar in Frequenzpositionen, die sich von den ursprünglichen Frequenzpositionen unterscheiden. Diese Kanäle werden über die Speisequelle 11 in den Verstärker 12 eingeführt, der die Signalpegel der Kanäle verstärkt. Danach werden im Mischer 5 die Kanäle, die im Schaltungspunkt n anliegen, mit den Kanälen, die am Schaltungspunkt k anliegen, gemischt. Bei diesem Mischvorgang werden die Kanäle, die am Schaltungspunkt n anliegen, den Kanälen derselben Frequenz, die am Schaltungspunkt k anliegen, überlagert.
    Die Kanäle am Schaltungspunkt n haben einen höheren Signalpegel von wenigstens 15, vorzugsweise aber 18 bis 20 dB über den Signalpegeln der Kanäle am Schaltungspunkt k aufzuweisen, die zu überlagern sind. Mit diesem Pegelunterschied wird sichergestellt, daß der Kanal, der einen anderen Kanal überlagert, ohne Störungen durch den Kanal empfangen wird, der überlagert worden ist.
    Nach Durchführung des Mischvorgangs im zweiten Mischer 5 erhält man einen oder mehrere Kanäle, die in Fig. 10 dargestellt sind, wobei diese Kanäle dann über das einzige Verteilkabel 13 verteilt werden. In diesem Fall wird, wie dies in Fig. 10 beispielhaft dargestellt ist, der Kanal 65 dem Kanal 60 überlagert (vgl. größere Amplitude von 65 gegenüber 60), der Kanal 72 dem Kanal 36, der Kanal 68 dem Kanal 44, der Kanal 82 dem Kanal 2, der Kanal 77 dem Kanal 6, der Kanal 17 dem Kanal 12, Kanal 89 dem Kanal 18 und Kanal 41 dem Kanal 24.
    Erfindungsgemäß ist also vorgesehen, daß Signale, insbesondere über Satelliten übertragene Fernsehsignale unterschiedlicher Kanäle in einem Gemeinschaftsantennensystem verteilt werden. Dabei werden die Signale in einer Signalgebereinrichtung A empfangen und die empfangenen Signale einer bestimmten Polarität (H, V) aus einem Empfangsfrequenzband in Signale in ein Zwischenfrequenzband umgesetzt. Die in das Zwischenfrequenzband umgesetzten Signale werden verarbeitet und die verarbeiteten Signale werden über ein einziges Verteilkabel 13 im Zwischenfrequenzband zu Benutzersteckdosen 15 übertragen. Dabei werden einzelne vorgebbare Kanäle im Zwischenfrequenzband in andere Kanäle im Zwischenfrequenzband umgesetzt.
    Im Zwischenfrequenzband umgesetzte erste Kanäle werden mit zweiten Kanälen im Zwischenfrequenzband gemischt und die ersten und zweiten Kanäle werden über das Verteilkabel 13 übertragen. Insbesondere werden für zwei in das Zwischenfrequenzband umgesetzte Kanäle derselben Frequenz unterschiedliche Signalpegel gebildet, wobei sich die Signalpegel der Signale unterschiedlicher Kanäle um mindestens 15 dB unterscheiden.
    Bezugszeichenliste
    A
    Signalgebereinrichtung
    B
    Kopfeinrichtung
    C
    Verteilnetz
    EC1, EC2
    Eingänge von 4
    SC1, SC2
    Ausgänge von 4
    OL
    lokaler Oszillator 45, 53 (in 4)
    1
    Antenne
    2
    Abwärtsumsetzer LNA/LNB
    3
    Kabel
    4
    kanal individueller Konverter
    41, 57
    Richtungskoppler
    42
    Verstärker
    43, 55
    Nachlauf-Filter
    44, 52
    Mischer
    45, 53
    lokaler Oszillator OL
    46, 54
    PLL-Schaltung
    47
    Tiefpaß
    48, 51
    Verstärker
    49
    Mikroprozessor
    50
    SAW-Filter
    40
    Konvertermodul
    400
    Signalverarbeitungseinrichtung
    5
    zweiter Mischer
    6
    Verstärker
    7
    Verbindungsbrücke
    8
    Last
    9
    erster Mischer
    10
    Verbindungskabel
    11
    Speisequelle
    12
    Verstärker
    13
    Verteilkabel (Ableitung)
    14
    Ableitungsvorrichtungen
    15
    Benutzersteckdosen
    16
    Eingabeeinheit
    161
    Tastatur
    162
    Steuerwerk
    163
    Display

    Claims (15)

    1. System zur Verteilung von Signalen, insbesondere Gemeinschaftsantennensystem zur Verteilung von Fernsehsignalen unterschiedlicher Kanäle, die insbesondere über Satelliten übertragen werden, wobei das System aufweist
      eine Signalgebereinrichtung (A) mit wenigstens einer Antenne (1), die Signale empfängt, und wenigstens einem Abwärtsumsetzer (LNA/LNB 2), der empfangene Signale einer bestimmten Polarität (H, V) aus einem Empfangsfrequenzband in Signale in einem Zwischenfrequenzband umsetzt,
      eine Kopfeinrichtung (B), die der Signalgebereinrichtung (A) nachgeschaltet ist und die wenigstens eine Signalverarbeitungseinheit (400) aufweist, die eingangseitig über ein Kabel (3) mit dem Abwärtsumsetzer (LNA/LNB 2) verbunden ist und die ausgangseitig mit einem einzigen Verteilkabel (13) verbindbar ist, über welches die verarbeiteten Signale im Zwischenfrequenzband zu Benutzersteckdosen (15) übertragen werden, wobei die Signalverarbeitungseinheit (400) der Kopfeinrichtung (B) kanalindividuelle Konverter (4) aufweist, wobei jeder kanalindividuelle Konverter (4) einen vorgebbaren Kanal im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband umsetzt,
      dadurch gekennzeichnet,
         daß der kanalinidividuelle Konverter (4) einen steuerbaren Verstärker (56) aufweist, mit dem dem kanalindividuellen Konverter (4) zugeführte Fernsehsignale verstärkt werden, und daß das System eine Einrichtung (5) aufweist, die die vom steuerbaren Verstärker (56) des kanalindividuellen Konverters (4) verstärkten Fernsehsignale anderen Femsehsignalen überlagert, die der Einrichtung (5) zugeführt werden.
    2. System nach Anspruch 1, dadurch gekennzeichnet, daß der kanalindividuelle Konverter (4) einen Mikroprozessor (49) aufweist, der den Verstärker (56) steuert.
    3. System nach Anspruch 2, dadurch gekennzeichnet, daß der Mikroprozessor (49) die Umsetzung eines vorgebbaren Kanals im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband steuert.
    4. System nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der Mikroprozessor (49) des kanalindividuellen Konverters mit einer konverterexternen Eingabeeinrichtung (16) verbindbar ist, über die Daten eingebbar sind, die Signalverstärkungsparameter zur Steuerung des Verstärkers (56) bezeichnen.
    5. System nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß der Mikroprozessor (49) des kanalindividuellen Konverters mit einer konverterexternen Eingabeeinrichtung (16) verbindbar ist, über die Daten eingebbar sind, die eine vorgebbare Eingangssignalfrequenz eines umzusetzenden Kanals und eine vorgebbare Ausgangssignalfrequenz eines umgesetzten Kanals bezeichnen.
    6. System nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die konverterexteme Eingabeeinrichtung (16) ein Steuerwerk (162) aufweist.
    7. System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß kanalindividuelle Konverter (4) der Kopfeinrichtung (B) in wenigstens einem Konvertermodul (40) integriert sind, und daß das Konvertermodul (40) an seinem Eingang über das Kabel (3) mit den Abwärtsumsetzern (LNA/LNB2) und an seinem Ausgang mit dem Verteilkabel (13) verbindbar ist.
    8. System nach Anspruch 7, dadurch gekennzeichnet, daß das Konvertermodul (40) wenigstens zwei kanalindividuelle Konverter (4) aufweist, und daß die kanalindividuellen Konverter (4) in dem Konvertermodul (40) untereinander in der Weise verbunden sind, daß ein Eingang (EC1) eines ersten kanalindividuellen Konverters mit einem Eingang (EC2) eines zweiten kanalindividuellen Konverters, das dem ersten kanalindividuellen Konverter benachbart ist, verbunden ist, und daß ein Ausgang (SC 1) des ersten kanalindividuellen Konverters mit einem Ausgang(SC2) des zweiten kanalindividuellen Konverters verbunden ist.
    9. System nach Anspruch 8, dadurch gekennzeichnet, daß die Verbindung der Eingänge zweier benachbarter kanalindividueller Konverter (4) und/oder die Verbindung der Ausgänge zweier benachbarter kanalindividueller Konverter (4) durch Verbindungsbrücken (7) realisiert ist.
    10. System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der kanalindividuelle Konverter (4) eingangseitig und/oder ausgangseitig ein Nachlauffilter (43, 55) aufweist.
    11. System nach einem der Ansprüche 7 - 10, dadurch gekennzeichnet, daß mehrere Konvertermodule (40) mit einem ersten Mischer (9) verbunden sind, dessen Ausgang über eine Stromversorgungsquelle (11) mit dem Verteilkabel (13) verbindbar ist.
    12. System nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das System einen zweiten Mischer (5) mit wenigstens zwei Eingängen (E1, E2, E3) aufweist, daß einer der Eingänge (E1) mit dem Ausgang des Konvertermoduls (40) verbindbar ist, daß ein zweiter Eingang (E2, E3) mit einem Abwärtskonverter (LNA/LNB 2) verbindbar ist und daß der zweite Mischer (5) einen Ausgang (S) aufweist, mit dem das Verteilkabel (13) verbindbar ist.
    13. System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sich die Signalpegel überlagernder und überlagerter Fernsehsignale unterschiedlicher Kanäle um mindestens 15 dB unterscheiden.
    14. Kanalindividueller Konverter (4) in einem System zur Verteilung von Signalen, insbesondere Gemeinschaftsantennensystem zur Verteilung von Fernsehsignalen unterschiedlicher Kanäle, die insbesondere über Satelliten übertragen werden, wobei das System aufweist
      eine Signalgebereinrichtung (A) mit wenigstens einer Antenne (1), die Signale empfängt, und wenigstens einem Abwärtsumsetzer (LNA/LNB 2), der empfangene Signale einer bestimmten Polarität (H, V) aus einem Empfangsfrequenzband in Signale in einem Zwischenfrequenzband umsetzt,
      eine Kopfeinrichtung (B), die der Signalgebereinrichtung (A) nachgeschaltet ist und die wenigstens ein Signalverarbeitungseinheit (400) aufweist, die eingangseitig über ein Kabel (3) mit dem Abwärtsumsetzer (LNA/LNB 2) verbunden ist und die ausgangseitig mit einem einzigen Verteilkabel (13) verbindbar ist, über welches die verarbeiteten Signale im Zwischenfrequenzband zu Benutzersteckdosen (15) übertragen werden, wobei die Signalverarbeitungseinheit (400) der Kopfeinrichtung (B) kanalindividuelle Konverter (4) aufweist, wobei jeder kanalindividuelle Konverter (4) einen vorgebbaren Kanal im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband umsetzt,
      dadurch gekennzeichnet,
         daß der kanalinidividuelle Konverter (4) einen steuerbaren Verstärker (56) aufweist, mit dem dem kanalindividuellen Konverter (4) zugeführte Fernsehsignale verstärkt werden, und daß das System eine Einrichtung (5) aufweist, die die vom steuerbaren Verstärker (56) des kanalindividuellen Konverters (4) verstärkten Fernsehsignale anderen Fernsehsignalen überlagert, die der Einrichtung (5) zugeführt werden.
    15. Eingabeeinrichtung (16) zur Eingabe von Daten in einen kanalindividuellen Konverter (4) eines Systems zur Verteilung von Signalen, insbesondere Gemeinschaftsantennensystem zur Verteilung von Fernsehsignalen unterschiedlicher Kanäle, die insbesondere über Satelliten übertragen werden, wobei das System aufweist
      eine Signalgebereinrichtung (A) mit wenigstens einer Antenne (1), die Signale empfängt, und wenigstens einem Abwärtsumsetzer (LNA/LNB 2), der empfangene Signale einer bestimmten Polarität (H, V) aus einem Empfangsfrequenzband in Signale in einem Zwischenfrequenzband umsetzt,
      eine Kopfeinrichtung (B), die der Signalgebereinrichtung (A) nachgeschaltet ist und die wenigstens eine Signalverarbeitungseinheit (400) auf weist, die eingangseitig über ein Kabel (3) mit dem Abwärtsumsetzer (LNA/LNB 2) verbunden ist und die ausgangseitig mit einem einzigen Verteilkabel (13) verbindbar ist, über welches die verarbeitetenSignale im Zwischenfrequenzband zu Benutzersteckdosen (15) übertragen werden, wobei die Signalverarbeitungseinheit (400) der Kopfeinrichtung (B) kanalindividuelle Konverter (4) aufweist, wobei jeder kanalindividuelle Konverter (4) einen vorgebbaren Kanal im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband umsetzt,
      dadurch gekennzeichnet,
         daß der kanalinidividuelle Konverter (4) einen steuerbaren Verstärker (56) aufweist, mit dem dem kanalindividuellen Konverter zugeführte Fernsehsignale verstärkt werden, daß der kanalinidividuelle Konverter (4) mit einer Einrichtung (5) verbindbar ist, die die vom steuerbaren Verstärker (56) des kanalindividuellen Konverters verstärkten Femsehsignale anderen Fernsehsignalen überlagert, die der Einrichtung (5) zugeführt werden, daß der kanalindividuelle Konverter einen Mikroprozessor (49) aufweist, der den Verstärker (56) und/oder die Umsetzung eines vorgebbaren Kanals im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband steuert, und daß die Eingabeeinrichtung (16) ein Steuerwerk (162) aufweist, das in der Weise ausgestaltet ist, daß in den Mikroprozessor (49) Daten eingebbar sind, die Signalverstärkungsparameter zur Steuerung des Verstärkers (56) bezeichnen und/oder die die Umsetzung eines vorgebbaren Kanals im Zwischenfrequenzband in einen anderen Kanal im Zwischenfrequenzband bezeichnen.
    EP96106739A 1995-04-27 1996-04-29 System zur Verteilung von Fernsehsatellitensignalen in einer Gemeinschaftsantennenanlage Expired - Lifetime EP0740434B2 (de)

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    ES9501160U ES1030963Y (es) 1995-04-27 1995-04-27 Sistema de distribucion de señales de television procedentes de satelite.
    ES9501160U 1995-04-27
    DE19524201 1995-07-03
    DE19524201 1995-07-03

    Publications (3)

    Publication Number Publication Date
    EP0740434A1 EP0740434A1 (de) 1996-10-30
    EP0740434B1 true EP0740434B1 (de) 1998-06-10
    EP0740434B2 EP0740434B2 (de) 2006-01-11

    Family

    ID=26016505

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96106739A Expired - Lifetime EP0740434B2 (de) 1995-04-27 1996-04-29 System zur Verteilung von Fernsehsatellitensignalen in einer Gemeinschaftsantennenanlage

    Country Status (4)

    Country Link
    EP (1) EP0740434B2 (de)
    DE (2) DE29607766U1 (de)
    DK (1) DK0740434T4 (de)
    ES (1) ES2122740T5 (de)

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19749120C2 (de) * 1997-11-06 2002-07-18 Kathrein Werke Kg Satelliten-Empfangsanlage sowie zugehöriges Verfahren zum Betrieb einer Antennen-Empfangsanlage
    ES2148067B1 (es) * 1998-03-27 2001-04-16 Kathrein Werke Kg Dispositivo de recepcion de satelites.
    US7352991B2 (en) * 2002-03-21 2008-04-01 National Antenna Systems Satellite signal distribution systems
    JP2006500863A (ja) * 2002-09-24 2006-01-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ チャネル事前選択周波数マルチプレクサの低ノイズコンバータを有する電波中継局
    DE102005040012A1 (de) 2005-08-23 2007-03-01 Christian Schwaiger Gmbh Verfahren und Vorrichtung zur Konfiguration von n unabhängigen Teilnehmern einer Satelliten-Empfangsanlage
    DE102013002477B4 (de) 2013-02-14 2019-01-10 Tesat-Spacecom Gmbh & Co.Kg Steuervorrichtung für ein Sendeverstärkerelement

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5915335A (ja) * 1982-07-15 1984-01-26 Maspro Denkoh Corp 衛星放送受信装置
    US5073930A (en) * 1989-10-19 1991-12-17 Green James A Method and system for receiving and distributing satellite transmitted television signals
    DE4012657C2 (de) * 1990-04-20 1995-06-01 Comtec Ag Gemeinschaftsantennenanlage
    DE9306499U1 (de) * 1993-03-19 1993-07-08 Richard Hirschmann GmbH & Co, 7300 Esslingen Schaltungsanordnung und Vorrichtung zum Betreiben einer Antennenempfangsvorrichtung

    Also Published As

    Publication number Publication date
    DE59600261D1 (de) 1998-07-16
    DK0740434T3 (da) 1999-02-01
    EP0740434A1 (de) 1996-10-30
    DK0740434T4 (da) 2006-03-06
    EP0740434B2 (de) 2006-01-11
    ES2122740T5 (es) 2006-09-01
    DE29607766U1 (de) 1996-09-05
    ES2122740T3 (es) 1998-12-16

    Similar Documents

    Publication Publication Date Title
    DE3246225C2 (de) Breitbandverteilsystem hoher Kanalzahl
    DE3874993T2 (de) Einrichtung zur uebertragung von signalen, insbesondere von videosignalen.
    DE69108476T2 (de) Vorrichtung zum Verteilen von Video- und/oder Audiosignalen zwischen mehreren Empfängern.
    DE19702350B4 (de) Zentralknoten-Konverter zur Verbindung mit einem Anschluss eines Haus-Netzwerks, das mit einem Koaxialkabel verbunden ist und Verfahren zur Kommunikation
    DE2457492C2 (de) Fernsehverteilungssystem
    DE4327117C2 (de) Einrichtung für eine Antennenanlage zum Verteilen eines Satellitenempfangssignales
    EP0740434B1 (de) System zur Verteilung von Fernsehsatellitensignalen in einer Gemeinschaftsantennenanlage
    DE3891107C1 (de)
    DE69604693T2 (de) Verbesserungen bei rundfunksignalbehandlung
    DE19713124C2 (de) Satelliten-Empfangsanlage
    DE20008239U1 (de) Multischalter für Satelliten-Zwischenfrequenz-Verteilung
    EP1502371B1 (de) Verfahren sowie vorrichtung zur erzeugung zumindest einer transponderfrequenz in der satelliten-zwischenfrequenz-ebene
    DE69614072T2 (de) Kabelnetzwerksystem für Videoverteilung und bidirektionale Datenübertragung, mit Freqenzumsetzung im Rückkanal
    DE202009018162U1 (de) Multischalter für Satelliten-Zwischenfrequenz-Verteilung
    DE2241060A1 (de) Verstaerkerschaltung fuer ein kabel-fernsehsystem
    EP0157145B1 (de) Antennensteckdose
    DE4329693C2 (de) Satellitenfunkempfänger
    EP3094085A1 (de) System zum empfang von telekommunikationsignalen, insbesondere von fernsehsignalen in matv/smatv-netzen
    EP1076457A2 (de) Komponente für Satellitenempfangsanlage sowie Zuschaltgerät
    DE4335617C2 (de) Satellitenempfangsanlage
    DE10111441B4 (de) Schaltungsanordnung für ein HF-Modul in einer Kabel-Set-Top-Box
    DE3808917C2 (de)
    DE3204507C2 (de) Hochfrequenzübertragungssystem
    DE3438505C1 (de) Anordnung zum wahlweisen Sperren von Fernseh-Sonderkanälen
    DE2354242A1 (de) Gemeinschaftsantennenanlage

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE DK ES FR GB IT LI PT

    17P Request for examination filed

    Effective date: 19961030

    17Q First examination report despatched

    Effective date: 19961220

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE DK ES FR GB IT LI PT

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59600261

    Country of ref document: DE

    Date of ref document: 19980716

    ET Fr: translation filed
    ITF It: translation for a ep patent filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980716

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2122740

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: INTERESSENGEMEINSCHAFT FUER RUNDFUNKSCHUTZRECHTE G

    Effective date: 19990310

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19990111

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000430

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PLBO Opposition rejected

    Free format text: ORIGINAL CODE: EPIDOS REJO

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    APAE Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOS REFNO

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    APBW Interlocutory revision of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNIRAPO

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    PUAH Patent maintained in amended form

    Free format text: ORIGINAL CODE: 0009272

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT MAINTAINED AS AMENDED

    27A Patent maintained in amended form

    Effective date: 20060111

    AK Designated contracting states

    Kind code of ref document: B2

    Designated state(s): CH DE DK ES FR GB IT LI PT

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T4

    GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: DC2A

    Date of ref document: 20060330

    Kind code of ref document: T5

    ET3 Fr: translation filed ** decision concerning opposition
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20130422

    Year of fee payment: 18

    Ref country code: DK

    Payment date: 20130424

    Year of fee payment: 18

    Ref country code: DE

    Payment date: 20130430

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20130523

    Year of fee payment: 18

    Ref country code: IT

    Payment date: 20130427

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20140509

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59600261

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    Effective date: 20140430

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20140429

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20141231

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R079

    Ref document number: 59600261

    Country of ref document: DE

    Free format text: PREVIOUS MAIN CLASS: H04H0001040000

    Ipc: H04H0020770000

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140429

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20141101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140430

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59600261

    Country of ref document: DE

    Effective date: 20141101

    Ref country code: DE

    Ref legal event code: R079

    Ref document number: 59600261

    Country of ref document: DE

    Free format text: PREVIOUS MAIN CLASS: H04H0001040000

    Ipc: H04H0020770000

    Effective date: 20150127

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140429

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140430

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20150428

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: MAXIMUM VALIDITY LIMIT REACHED

    Effective date: 20160429

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20160527

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20160505