EP0733871B1 - Austauscherrohr für einen Wärmeaustauscher - Google Patents

Austauscherrohr für einen Wärmeaustauscher Download PDF

Info

Publication number
EP0733871B1
EP0733871B1 EP96103390A EP96103390A EP0733871B1 EP 0733871 B1 EP0733871 B1 EP 0733871B1 EP 96103390 A EP96103390 A EP 96103390A EP 96103390 A EP96103390 A EP 96103390A EP 0733871 B1 EP0733871 B1 EP 0733871B1
Authority
EP
European Patent Office
Prior art keywords
ribs
exchanger tube
tube according
hollows
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96103390A
Other languages
English (en)
French (fr)
Other versions
EP0733871A1 (de
Inventor
Ulrich Naumann
Martin Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KM Europa Metal AG
Original Assignee
KM Europa Metal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7757210&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0733871(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KM Europa Metal AG filed Critical KM Europa Metal AG
Publication of EP0733871A1 publication Critical patent/EP0733871A1/de
Application granted granted Critical
Publication of EP0733871B1 publication Critical patent/EP0733871B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/51Heat exchange having heat exchange surface treatment, adjunct or enhancement
    • Y10S165/515Patterned surface, e.g. knurled, grooved

Definitions

  • the invention relates to an exchanger tube for a heat exchanger according to the features in the preamble of the claim 1.
  • the troughs formed in the ribs are rolled manufactured.
  • the deformed from the ribs bulges Material into the channels at the front of the troughs.
  • the floors the troughs are at a distance from the canal bases.
  • the known exchanger tube is manufactured by that first in a two-stage rolling process Structure of the later inner surface on one side Metal band created, then the metal band into one Slotted tube with internal surface structure formed is and then the slot edges are welded.
  • the two-stage rolling of the inner surface structure leads at a high manufacturing cost.
  • the troughs of the ribs are created by rolling over an initially existing volume fraction of that in the first rolling step pronounced ribs. This former volume share the ribs are distributed only in the immediate vicinity. A notable reduction in meter weight can but cannot be achieved.
  • the object of the invention is based on the prior art is based on an exchanger tube with an internal surface structure to create, in which on the one hand the Advantages of an equally good evaporation or condensation performance connect with reduced rib weight and on the other hand, a one-stage for the production of the exchanger tube Embossing process can be applied.
  • the core of the invention is such an internal rough surface structure, which has only rounded transitions and avoids sharp edges. Consequently, it can be particularly advantageous Way the rough surface structure by roll embossing generated in a single stage.
  • the apparatus technology This significantly reduces effort.
  • the ribs rounded at the head have in particular the advantage that when pulling in an exchanger tube in fins of a heat exchanger, in particular by Widening by means of a moving through the exchanger tube Tool, the head areas of the ribs flattened only slightly be, so that with this also the formation of heavy tearable condensate films are effectively counteracted. Nevertheless, due to the large roughness due to the micro Rib surfaces which are advantageous for effective evaporation large number of projections, edges, tips and depressions can be provided as vapor bubble germs without that larger quantities of material are required for this.
  • the surfaces of the slats can also be coated with a Coarse structure corresponding to the internal structure of the exchanger tubes and / or be provided with a micro roughness.
  • exchanger tubes Metal, but especially copper or copper alloys.
  • exchanger tubes can e.g. a round or oval Have cross-section.
  • Round exchanger tubes are preferred an outer diameter of about 6 mm to 20 mm.
  • the embodiment according to claim 2 provides that the median longitudinal planes of the troughs of adjacent ribs run in alignment.
  • micro-roughness of the fin surfaces can vary Way to be realized. For example a diffuse roughening by blasted corundum is conceivable. It is also conceivable to notch the rib surfaces in Form of linear micro-grooves (claim 3). These micro grooves then preferably extend parallel to each other. However, their longitudinal direction deviates from the longitudinal direction of the Ribs off.
  • micro-roughness can also claim accordingly 4 by intersecting, from the longitudinal direction deviating micro grooves are formed in the ribs.
  • Recesses are provided. These can also be linear or arranged in a cross in a row at a distance his.
  • micro roughness can also be different Way.
  • a preferred variant is here seen in the features of claim 5.
  • micro roughness of the fin surfaces by radiation with hard particles, e.g. Corundum, or by texturing produced by means of laser beams. It is possible either that already provided with the surface structure To process the starting material (sheet metal strip) accordingly an embossing roller itself with the desired negative micro roughness to provide.
  • the flank angle of the ribs 5 ° to 60 °, however, preferably 10 ° to 40 °. In this way a very slim rib contour can be produced.
  • the course of the fins relative to the longitudinal axis of the exchanger tube takes place according to the features of claim 8 an angle of 1 ° to 89 °, preferably 20 ° to 55 °.
  • the distance between two adjacent ribs 0.10 mm to 2.0 mm, preferably 0.26 mm up to 0.6 mm.
  • the height of the fins will vary depending on the pipe diameter Claim 11 suitably between 0.03 mm to 1.0 mm, preferably 0.05 mm to 0.35 mm, dimensioned.
  • the distance between two adjacent troughs one Rib is 0.2 mm to 4.0 mm, preferably 0.3 mm to 1.0 mm.
  • the floors of the troughs and the channel soles must meet the requirements 13 do not lie on one level.
  • the minimum distance the trough bottoms from the canal bases should then at least 0.01 mm.
  • FIG. 1 in FIG. 1 is a longitudinal section of a longitudinally welded seam Exchanger tube otherwise not closer to you heat exchanger shown for condensation and evaporation referred to by refrigerants.
  • the exchanger tube which is circular in the outside and inside cross section 1 has a smooth outer surface 2 and a structured inner surface 3.
  • Exchanger tubes 1 pass through fins of a heat exchanger is the exchanger tube 1 in one at its Outside diameter adapted opening introduced in the lamella and set by widening in the opening.
  • the exchanger tube 1 has one Outside diameter D of 9.52 mm.
  • the exchanger tube 1 is produced from a Flat sheet metal strip, not shown, on both sides Copper.
  • the sheet metal strip is a one-step roll stamping process subjected, whereby according to the representation of Figures 2 and 3 one side of the metal strip 4 remains smooth (the later one outer surface 2 of the exchanger tube 1) and the other Side with a textured surface (the later inside 3 of the exchanger tube 1) is provided. Only that the edge regions 5 of the sheet metal strip 4 used for welding ( Figure 2) remain unstructured. After the roll embossing the metal strip 4 is formed into a slotted tube and then longitudinally welded and divided to length.
  • both the head regions 10 of the ribs 7 and the transitions 11 are rounded from the flanks 8 to the channel soles 12.
  • the Cross-sectional volume of the ribs 7 is smaller than the cross-sectional volume the channels 13 dimensioned between the ribs 7.
  • each rib 7 seen in longitudinal section with a sinusoidal Comb line. Because of this sinusoidal wave crest the ribs 7 in their longitudinal directions LR are in the Ribs 7 transverse troughs 14 are formed. Like this one 2 shows, troughs 14 are adjacent Ribs 7 at an angle ⁇ of 45 ° to the longitudinal axis ⁇ of the exchanger tube 1 aligned one behind the other. The between the longitudinal direction LR of the ribs 7 and the central longitudinal planes MLE of the troughs 14 included angle ⁇ 90 °.
  • the distance A1 between two in the longitudinal direction of a rib 7 adjacent troughs 14 0.50 mm ( Figures 2 and 5) and the Distance A2 of the trough floors 15 from the channel soles 12 is 0.01 mm.
  • the troughs 14 have a depth T1 of 0.25 mm ( Figures 4 and 5).
  • the depth T is 0.005 mm.
  • microroughness 16 is produced in the exemplary embodiment immediately during roll stamping. This is the embossing roller by means of radiation from corundum with a negative diffuse surface structure has been provided then the creation of the surface structure at the later inner surface 3 of the exchanger tube 1 guaranteed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)

Description

Die Erfindung betrifft ein Austauscherrohr für einen Wärmeaustauscher gemäß den Merkmalen im Oberbegriff des Anspruchs 1.
Ein derartiges Austauscherrohr zählt durch die US-PS 53 32 034 zum Stand der Technik. Hierbei weisen sowohl die Rippen als auch die von den Rippen seitlich begrenzten Kanäle jeweils einen trapezförmigen Querschnitt auf. Das Querschnittsvolumen der Rippen ist etwa halb so groß wie das Querschnittsvolumen der Kanäle bemessen.
Die in den Rippen ausgeformten Mulden werden durch Walzen hergestellt. Hierbei wölbt sich das aus den Rippen verformte Material stirnseitig der Mulden in die Kanäle hinein. Die Böden der Mulden liegen im Abstand zu den Kanalsohlen.
Die Herstellung des bekannten Austauscherrohrs erfolgt dadurch, daß zunächst in einem zweistufigen Walzprozeß die Struktur der späteren inneren Oberfläche einseitig an einem Metallband erzeugt, anschließend das Metallband zu einem Schlitzrohr mit innenliegender Oberflächenstruktur umgeformt wird und danach die Schlitzkanten verschweißt werden.
Das zweistufige Walzen der inneren Oberflächenstruktur führt zu einem hohen Fertigungsaufwand. Es sind mehrere Walzprägewerkzeuge erforderlich, welche die Wirtschaftlichkeit beeinträchtigen. Die Mulden der Rippen entstehen durch Überwalzen eines zunächst vorhandenen Volumenanteils der im ersten Walzschritt ausgeprägten Rippen. Dieser ehemalige Volumenanteil der Rippen wird nur in die unmittelbare Nachbarschaft verteilt. Eine nennenswerte Verringerung des Metergewichts kann aber nicht erreicht werden.
Ferner kann es aufgrund der Ebenflächigkeit der Kopfseiten und der Flanken der Rippen im praktischen Einsatz zur Bildung von schwer aufreißbaren, die Kondensation verzögernden Kondensatfilmen kommen, so daß sich Sperrschichten mit wärmeisolierenden Eigenschaften bilden. Für die Verdampfung stehen nur wenige Kanten als Dampfblasenkeime zur Verfügung.
Der Erfindung liegt ausgehend vom Stand der Technik die Aufgabe zugrunde, ein Austauscherrohr mit einer inneren Oberflächenstruktur zu schaffen, bei welcher sich einerseits die Vorteile einer gleichermaßen guten Verdampfungs- bzw. Kondensationsleistung bei reduziertem Rippengewicht verbinden und andererseits zur Herstellung des Austauscherrohrs ein einstufiges Prägeverfahren angewendet werden kann.
Die Lösung dieser Aufgabe besteht nach der Erfindung in den im kennzeichnenden Teil des Anspruchs 1 aufgeführten Merkmalen.
Kern der Erfindung bildet eine solche innere grobe Oberflächenstruktur, die nur gerundete Übergänge aufweist und scharfe Kanten vermeidet. Folglich kann in besonders vorteilhafter Weise die grobe Oberflächenstruktur durch Walzprägen in einer einzigen Stufe erzeugt werden. Der apparatetechnische Aufwand wird dadurch erheblich gesenkt.
Ferner ist es jetzt hinsichtlich der Intensivierung des Wärmeübergangs zwischen dem in dem Austauscherrohr strömenden Fluid und der groben Oberflächenstruktur von Vorteil, daß die Oberflächen der Rippen bis hin zu den Kanalsohlen zusätzlich mit einer gezielten Mikrorauhigkeit versehen werden. Dies macht sich insbesondere bei der Kondensation und Verdampfung von Kältemitteln bemerkbar, wenn das Austauscherrohr in einen entsprechenden Wärmeaustauscher eingegliedert wird. Das Querschnittsvolumen der Rippen ist zugunsten der Erhöhung der Rippenanzahl verringert worden. Hierdurch ist es möglich, die wärmeaustauschende Oberflächenstruktur zu vergrößern und somit den Wärmeübergang zu verbessern. Auch können in diesem Zusammenhang sehr schlanke Rippen und damit schmale Kanäle erzeugt werden. Die kopfseitig gerundeten Rippen haben insbesondere den Vorteil, daß beim Einziehen eines Austauscherrohrs in Lamellen eines Wärmeaustauschers, insbesondere durch Aufweiten mittels eines durch das Austauscherrohr bewegten Werkzeugs, die Kopfpartien der Rippen nur unwesentlich abgeplattet werden, so daß hiermit auch der Bildung von schwer aufreißbaren Kondensatfilmen wirksam entgegengetreten wird. Dennoch kann durch die Mikrorauhigkeit aufgrund der großen Rippenoberflächen die für eine effektive Verdampfung vorteilhafte große Anzahl von Vorsprüngen, Kanten, Spitzen und Vertiefungen als Dampfblasenkeime bereitgestellt werden, ohne daß hierfür größere Materialmengen erforderlich sind.
Auch die Oberflächen der Lamellen können bei Bedarf mit einer Grobstruktur entsprechend der Innenstruktur der Austauscherrohre und/oder mit einer Mikrorauhigkeit versehen werden.
Die Anwendung der Erfindung erfolgt bei Austauscherrohren aus Metall, insbesondere aber aus Kupfer oder Kupferlegierungen. Derartige Austauscherrohre können z.B. einen runden oder ovalen Querschnitt besitzen. Runde Austauscherrohre weisen bevorzugt einen Außendurchmesser von etwa 6 mm bis 20 mm auf.
Grundsätzlich ist es erfindungsgemäß vorstellbar, daß die Mittellängsebenen der Mulden zwar parallel zueinander, jedoch in Längsrichtung der Rippen zueinander versetzt verlaufen.
Die Ausführungsform gemäß Anspruch 2 sieht demgegenüber vor, daß die Mittellängsebenen der Mulden benachbarter Rippen fluchtend verlaufen.
Die Mikrorauhigkeit der Rippenoberflächen kann auf verschiedene Art und Weise verwirklicht werden. So ist beispielsweise eine diffuse Aufrauhung durch gestrahlten Korund denkbar. Vorstellbar ist ferner eine Kerbung der Rippenoberflächen in Form von linienförmigen Mikrorillen (Anspruch 3). Diese Mikrorillen erstrecken sich dann bevorzugt parallel zueinander. Ihre Längsrichtung weicht jedoch von der Längsrichtung der Rippen ab.
Die Mikrorauhigkeit kann darüberhinaus entsprechend Anspruch 4 durch sich kreuzförmig schneidende, von der Längsrichtung der Rippen abweichende Mikrorillen gebildet sein.
Statt durchgehender Mikrorillen können aber auch punktuelle Vertiefungen vorgesehen werden. Diese können ebenfalls linienförmig oder kreuzförmig im Abstand hintereinander angeordnet sein.
Auch die Erzeugung der Mikrorauhigkeit kann auf verschiedene Art und Weise erfolgen. Eine bevorzugte Variante wird hierbei in den Merkmalen des Anspruchs 5 gesehen. Hier wird die Mikrorauhigkeit der Rippenoberflächen durch eine Bestrahlung mit Hartpartikeln, wie z.B. Korund, oder durch eine Texturierung mittels Laserstrahlen hergestellt. Dabei ist es möglich, entweder das bereits mit der Oberflächenstruktur versehene Ausgangsmaterial (Blechband) entsprechend zu bearbeiten oder eine Prägewalze selber mit der gewünschten negativen Mikrorauhigkeit zu versehen.
Auch eine Profilgebung der Prägewalze durch Funkenerodieren ist möglich.
Interne Untersuchungen haben ergeben, daß es zur Erzielung einer gleichermaßen guten Kondensations- und Verdampfungsleistung entsprechend Anspruch 6 vorteilhaft ist, wenn die Tiefe der Mikrorauhigkeit 0,075 mm oder geringer bemessen wird.
Nach Anspruch 7 kann der Flankenwinkel der Rippen 5° bis 60°, vorzugsweise jedoch 10° bis 40°, betragen. Auf diese Weise ist eine sehr schlanke Rippenkontur herstellbar.
Der Verlauf der Rippen relativ zur Längsachse des Austauscherrohrs erfolgt gemäß den Merkmalen des Anspruchs 8 unter einem Winkel von 1° bis 89°, vorzugsweise 20° bis 55°.
Ferner ist es sinnvoll, wenn nach Anspruch 9 der zwischen der Längsrichtung der Rippen und den Mittellängsebenen der Mulden eingeschlossene Winkel 90° und kleiner bemessen ist.
Gemäß Anspruch 10 ist es vorteilhaft, wenn der Abstand zweier benachbarter Rippen 0,10 mm bis 2,0 mm, vorzugsweise 0,26 mm bis 0,6 mm, beträgt.
Die Höhe der Rippen wird je nach Rohrdurchmesser entsprechend Anspruch 11 zweckmäßig zwischen 0,03 mm bis 1,0 mm, vorzugsweise 0,05 mm bis 0,35 mm, bemessen.
Desweiteren ist es von Vorteil, wenn nach Anspruch 12 der Abstand zweier benachbarter Mulden einer Rippe 0,2 mm bis 4,0 mm, vorzugsweise 0,3 mm bis 1,0 mm, beträgt.
Die Böden der Mulden und die Kanalsohlen müssen gemäß Anspruch 13 nicht auf einer Ebene liegen. Der minimale Abstand der Muldenböden von den Kanalsohlen sollte dann mindestens 0,01 mm betragen.
Entsprechend den Merkmalen des Anspruchs 14 ist es aber auch denkbar, daß die Muldenböden und die Kanalsohlen in derselben Ebene liegen.
Die Erfindung ist nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
Figur 1
in der Perspektive einen Längenabschnitt eines Austauscherrohrs;
Figur 2
in der Draufsicht einen Längenabschnitt eines strukturierten Blechbands;
Figur 3
in der Perspektive den Ausschnitt III der Figur 2;
Figur 4
in vergrößerter Darstellung einen vertikalen Querschnitt entlang der Linie IV-IV der Figur 2;
Figur 5
einen vertikalen Längsschnitt entlang der Linie V-V der Figur 4 und die
Figuren 6 und 7
anhand von Diagrammen einen Leistungsvergleich an Wärmeaustauschern in Koaxialbauweise mit verschiedenen Rohrausführungen.
Mit 1 ist in der Figur 1 ein Längenabschnitt eines längsnahtgeschweißten Austauscherrohrs für einen ansonsten nicht näher dargestellten Wärmeaustauscher zur Kondensation und Verdampfung von Kältemitteln bezeichnet.
Das im Außen- und Innenquerschnitt kreisrunde Austauscherrohr 1 besitzt eine glatte äußere Oberfläche 2 und eine strukturierte innere Oberfläche 3. Zur Festlegung des Austauscherrohrs 1 in einer ggf. von mehreren zueinander parallel verlaufenden Austauscherrohren 1 durchsetzten Lamelle eines Wärmeaustauschers wird das Austauscherrohr 1 in eine an seinen Außendurchmesser angepaßte Öffnung in der Lamelle eingeführt und durch Aufweiten in der Öffnung festgelegt. Zu diesem Zweck wird ein entsprechend ausgebildetes nicht näher dargestelltes Aufweitwerkzeug durch das Austauscherrohr 1 verlagert.
Beim Ausführungsbeispiel besitzt das Austauscherrohr 1 einen Außendurchmesser D von 9,52 mm.
Die Herstellung des Austauscherrohrs 1 erfolgt aus einem nicht näher dargestellten beidseitig ebenen Blechband aus Kupfer. Das Blechband wird einem einstufigen Walzprägevorgang unterworfen, wobei entsprechend der Darstellung der Figuren 2 und 3 eine Seite des Blechbands 4 glatt bleibt (die spätere äußere Oberfläche 2 des Austauscherrohrs 1) und die andere Seite mit einer strukturierten Oberfläche (die spätere Innenseite 3 des Austauscherrohrs 1) versehen wird. Lediglich die dem Verschweißen dienenden Randbereiche 5 des Blechbands 4 (Figur 2) bleiben unstrukturiert. Nach dem Walzprägen wird das Blechband 4 zu einem Schlitzrohr eingeformt und dann längsnahtgeschweißt sowie auf Länge abgeteilt.
Die Struktur der inneren Oberfläche 3 des Austauscherrohrs 1 wird anschließend anhand der Figuren 2 bis 5 näher erläutert.
Sie umfaßt unter einem Winkel α von 45° zur Längsachse 6 des Austauscherrohrs 1 verlaufende parallele Rippen 7 (Figuren 2 und 3) mit geneigten Flanken 8 (Figuren 3 und 4). Der Flankenwinkel β der Rippen 7 beträgt beim Ausführungsbeispiel 20° und der Abstand A zweier benachbarter Rippen 7 0,35 mm (Figuren 2 und 4). Ihre Höhe H beläuft sich auf 0,30 mm (Figur 4). Der die Rippen 7 im Fußbereich verbindende Basisabschnitt 9 hat eine Dicke D1 von 0,30 mm (Figur 5).
Ferner ist aus den Figuren 3 und 4 zu erkennen, daß sowohl die Kopfbereiche 10 der Rippen 7 als auch die Übergänge 11 von den Flanken 8 auf die Kanalsohlen 12 gerundet sind. Das Querschnittsvolumen der Rippen 7 ist kleiner als das Querschnittsvolumen der Kanäle 13 zwischen den Rippen 7 bemessen.
Wie insbesondere die Figuren 3 und 5 veranschaulichen, ist jede Rippe 7 im Längsschnitt gesehen mit einem sinusförmigen Kammverlauf versehen. Aufgrund dieses sinusförmigen Wellenkamms der Rippen 7 in ihren Längsrichtungen LR werden in den Rippen 7 quer verlaufende Mulden 14 gebildet. Wie in diesem Zusammenhang die Figur 2 zeigt, sind Mulden 14 benachbarter Rippen 7 in einem Winkel γ von 45° zur Längsachse δ des Austauscherrohrs 1 fluchtend hintereinander angeordnet. Der zwischen der Längsrichtung LR der Rippen 7 und den Mittellängsebenen MLE der Mulden 14 eingeschlossene Winkel δ beträgt 90°. Der Abstand A1 zweier in Längsrichtung einer Rippe 7 benachbarter Mulden 14 0,50 mm (Figuren 2 und 5) und der Abstand A2 der Muldenböden 15 von den Kanalsohlen 12 beträgt 0,01 mm. Die Mulden 14 haben eine Tiefe T1 von 0,25 mm (Figuren 4 und 5).
Wie die Figur 5 in bewußt übertriebener Darstellung anhand des Wellenkamms der Rippen 7 erkennen läßt, sind die Oberflächen 8, 10, 11 der Rippen 7, d.h. die Kopfbereiche 10, die Flanken 8 und die Übergänge 11 von den Flanken 8 auf die Kanalsohlen 12, ggf. aber auch die Kanalsohlen 12, mit einer Mikrorauhigkeit 16 versehen, deren Tiefe T 0,005 mm beträgt.
Die Herstellung der Mikrorauhigkeit 16 erfolgt beim Ausführungsbeispiel unmittelbar beim Walzprägen. Dazu ist die Prägewalze mittels einer Bestrahlung durch Korunde mit einer negativen diffusen Oberflächenstruktur versehen worden, die dann die Erzeugung der Oberflächenstruktur an der späteren inneren Oberfläche 3 des Austauscherrohrs 1 gewährleistet.
Aufgrund der strukturierten inneren Oberfläche 3 hat das in Figur 1 veranschaulichte Austauscherrohr 1 im Vergleich nicht nur zu einem Austauscherrohr mit einer glatten inneren Oberfläche, sondern auch zu einem innen gerillten Austauscherrohr einen wesentlich besseren Wärmedurchgangskoeffizienten k' (W/mK).
Dieser Sachverhalt ist aus den aufgrund vergleichender Untersuchungen erstellten Diagrammen gemäß den Figuren 6 und 7 ohne zusätzliche Erläuterungen erkennbar (Figur 6 -Kondensation, Fig. 7 - Verdampfung).
Bezugszeichenaufstellung
1
Austauscherrohr
2
äußere Oberfläche v. 1
3
innere Oberfläche v. 1
4
Blechband
5
Randbereiche v. 4
6
Längsachse v. 1
7
Rippen
8
Flanken v. 7
9
Basisabschnitt v. 4
10
Kopfbereiche v. 7
11
Übergänge v. 8 auf 12
12
Kanalsohlen
13
Kanäle
14
Mulden
15
Muldenböden
16
Mikrorauhigkeit
A
Abstand zweier benachbarter Rippen 7
A1
Abstand zweier benachbarter MLE auf einer Rippe 7
A2
Abstand v. 12 zu 15
D
Außendurchmesser v. 1
D1
Dicke v. 9
H
Höhe v. 7
LR
Längsrichtung v. 7
MLE
Mittellängsebenen direkt benachbarter Mulden 14 auf verschiedenen Rippen 7
T
Tiefe v. 16
T1
Tiefe v. 14
α
Winkel zw. 6 u. 7
β
Flankenwinkel v. 7
γ
Winkel zw. 6 u. MLE
δ
Winkel zw. LR u. MLE

Claims (14)

  1. Austauscherrohr für einen Wärmeaustauscher, das eine glatte äußere Oberfläche (2) und eine strukturierte innere Oberfläche (3) aufweist, die aus in einem von 90° abweichenden Winkel (α) zur Längsachse (6) des Austauscherrohrs (1) verlaufenden parallelen Rippen (7) mit geneigten Flanken (8), von den Rippen (7) seitlich begrenzten Kanälen (13) und in den Rippen (7) ausgeformten quer verlaufenden Mulden (14) gebildet ist, wobei die Mittellängsebenen (MLE) der Mulden (14) in einem von 90° abweichenden Winkel (γ) zur Längsachse (6) des Austauscherrohrs (1) verlaufen, dadurch gekennzeichnet, daß die Mulden (14) durch eine im Längsschnitt sinusförmige Gestaltung der hinsichtlich ihrer Oberflächen (8, 10, 11) mit einer Mikrorauhigkeit (16) versehenen und kopfseitig gerundeten Rippen (7) gebildet sind, wobei die einander gegenüberliegenden Flanken (8) benachbarter Rippen (7) durch gerundete Übergänge (11) mit den Kanalsohlen (12) verbunden sind.
  2. Austauscherrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Mittellängsebenen (MLE) der Mulden (14) benachbarter Rippen (7) fluchtend verlaufen.
  3. Austauscherrohr nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Mikrorauhigkeit (16) der Rippenoberflächen (8, 10, 11) durch parallel zueinander verlaufende, von der Längsrichtung (LR) der Rippen (7) abweichende Mikrorillen gebildet ist.
  4. Austauscherrohr nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Mikrorauhigkeit (16) der Rippenoberflächen (8, 10, 11) durch sich kreuzförmig schneidende, von der Längsrichtung (LR) der Rippen (7) abweichende Mikrorillen gebildet ist.
  5. Austauscherrohr nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Mikrorauhigkeit (16) durch Partikelstrahlen oder mittels Laserstrahlen hergestellt ist.
  6. Austauscherrohr nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Tiefe (T) der Mikrorauhigkeit (16) 0,075 mm oder geringer bemessen ist.
  7. Austauscherrohr nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Flankenwinkel (β) der Rippen (7) 5° bis 60°, vorzugsweise 10° bis 40°, beträgt.
  8. Austauscherrohr nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Längsrichtung (LR) der Rippen (7) unter einem Winkel (α) von 1° bis 89°, bevorzugt 20° bis 55°, zur Längsachse (6) des Austauscherrohrs (1) verläuft.
  9. Austauscherrohr nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der zwischen der Längsrichtung (LR) der Rippen (7) und den Mittellängsebenen (MLE) der Mulden (14) eingeschlossene Winkel (δ) 90° und kleiner bemessen ist.
  10. Austauscherrohr nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Abstand (A) zweier benachbarter Rippen (7) 0,10 mm bis 2,0 mm, vorzugsweise 0,26 mm bis 0,6 mm, beträgt.
  11. Austauscherrohr nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Höhe (H) der Rippen (7) 0,03 mm bis 1,0 mm, vorzugsweise 0,05 mm bis 0,35 mm, beträgt.
  12. Austauscherrohr nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Abstand (A1) zweier benachbarter Mulden (14) einer Rippe (7) 0,2 mm bis 4,0 mm, vorzugsweise 0,3 mm bis 1,0 mm, beträgt.
  13. Austauscherrohr nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Muldenböden (15) im Abstand (A2) von den Kanalsohlen (12) angeordnet sind.
  14. Austauscherrohr nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Muldenböden (15) in derselben Ebene wie die Kanalsohlen (12) angeordnet sind.
EP96103390A 1995-03-21 1996-03-05 Austauscherrohr für einen Wärmeaustauscher Expired - Lifetime EP0733871B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19510124 1995-03-21
DE19510124A DE19510124A1 (de) 1995-03-21 1995-03-21 Austauscherrohr für einen Wärmeaustauscher

Publications (2)

Publication Number Publication Date
EP0733871A1 EP0733871A1 (de) 1996-09-25
EP0733871B1 true EP0733871B1 (de) 2000-02-02

Family

ID=7757210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96103390A Expired - Lifetime EP0733871B1 (de) 1995-03-21 1996-03-05 Austauscherrohr für einen Wärmeaustauscher

Country Status (9)

Country Link
US (1) US5682946A (de)
EP (1) EP0733871B1 (de)
JP (1) JPH08327273A (de)
AT (1) ATE189518T1 (de)
DE (2) DE19510124A1 (de)
DK (1) DK0733871T3 (de)
ES (1) ES2143102T3 (de)
GR (1) GR3033193T3 (de)
PT (1) PT733871E (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612470A1 (de) * 1996-03-28 1997-10-02 Km Europa Metal Ag Austauscherrohr
IT1283468B1 (it) * 1996-07-19 1998-04-21 Alcan Alluminio S P A Laminato per la realizzazione di scambiatori di calore e relativo metodo di produzione
US5785088A (en) * 1997-05-08 1998-07-28 Wuh Choung Industrial Co., Ltd. Fiber pore structure incorporate with a v-shaped micro-groove for use with heat pipes
US6182743B1 (en) 1998-11-02 2001-02-06 Outokumpu Cooper Franklin Inc. Polyhedral array heat transfer tube
US6176301B1 (en) 1998-12-04 2001-01-23 Outokumpu Copper Franklin, Inc. Heat transfer tube with crack-like cavities to enhance performance thereof
EP1194712B1 (de) * 1999-07-14 2004-09-29 FITR Gesellschaft für Innovation im Tief- und Rohrleitungsbau Weimar m.b.H. Rohrleitungen und leitungselemente zum transportieren fliessfähiger medien
US6254631B1 (en) 1999-09-23 2001-07-03 Intratherapeutics, Inc. Stent with enhanced friction
US6644388B1 (en) 2000-10-27 2003-11-11 Alcoa Inc. Micro-textured heat transfer surfaces
FR2837270B1 (fr) * 2002-03-12 2004-10-01 Trefimetaux Tubes rainures a utilisation reversible pour echangeurs thermiques
ES2292991T3 (es) * 2002-06-10 2008-03-16 Wolverine Tube Inc. Tubo de transparencia de calor y metodo y herramienta para su fabricacion.
US7311137B2 (en) * 2002-06-10 2007-12-25 Wolverine Tube, Inc. Heat transfer tube including enhanced heat transfer surfaces
US8573022B2 (en) * 2002-06-10 2013-11-05 Wieland-Werke Ag Method for making enhanced heat transfer surfaces
US20040099409A1 (en) * 2002-11-25 2004-05-27 Bennett Donald L. Polyhedral array heat transfer tube
US20040244958A1 (en) * 2003-06-04 2004-12-09 Roland Dilley Multi-spiral upset heat exchanger tube
US20060112535A1 (en) * 2004-05-13 2006-06-01 Petur Thors Retractable finning tool and method of using
EP1866119B1 (de) * 2005-03-25 2012-06-27 Wolverine Tube, Inc. Werkzeug zur herstellung von verbesserten wärmeübertragungsflächen
DE502006006218D1 (de) * 2005-06-17 2010-04-08 Behr Gmbh & Co Kg Wärmeübertrager, insbesondere Sorptions-,Reaktions- und/oder Wärmerohr
JP4554557B2 (ja) * 2006-06-13 2010-09-29 トヨタ自動車株式会社 冷却器
CN100547339C (zh) * 2008-03-12 2009-10-07 江苏萃隆精密铜管股份有限公司 一种强化传热管及其制作方法
FR2960815B1 (fr) * 2010-06-02 2012-05-25 Jean Pierre Darlet Ensemble de refroidissement d'un film en matiere synthetique
DE102011110458A1 (de) * 2011-08-05 2013-02-07 Witzenmann Gmbh Leitungselement mit Oberflächenstruktur sowie Verfahren zum Herstellen und Verwendung eines solchen Leitungselement
CN103851945B (zh) * 2012-12-07 2017-05-24 诺而达奥托铜业(中山)有限公司 具有粗糙内表面的内螺纹管
US20140251573A1 (en) * 2013-03-07 2014-09-11 Alfredo A. Ciotola Mechanical seal cooler
US9638413B2 (en) 2014-03-05 2017-05-02 Progreen Labs, Llc Treatment device of a heating system
US9488373B2 (en) 2014-03-06 2016-11-08 Progreen Labs, Llc Treatment device of a heating system
US9593857B2 (en) 2014-03-07 2017-03-14 ProGreen Labs, LLC. Heating system
USD1009227S1 (en) 2016-08-05 2023-12-26 Rls Llc Crimp fitting for joining tubing
JP6663899B2 (ja) * 2017-11-29 2020-03-13 本田技研工業株式会社 冷却装置
DE102019112213A1 (de) * 2019-05-10 2020-11-12 Norma Germany Gmbh Fluidleitung für ein Kühlwassersystem von elektrischen Fahrzeugen, Elektrisches Fahrzeug und Verwendung einer Fluidleitung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825064A (en) * 1961-12-26 1974-07-23 K Inoue Heat exchanger
US3885622A (en) * 1971-12-30 1975-05-27 Olin Corp Heat exchanger tube
DE2808080C2 (de) * 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Wärmeübertragungs-Rohr für Siedewärmetauscher und Verfahren zu seiner Herstellung
JPS5465865A (en) * 1977-11-05 1979-05-26 Ishikawajima Harima Heavy Ind Co Ltd Heat conducting pipe for condenser
JPS5813837B2 (ja) * 1978-05-15 1983-03-16 古河電気工業株式会社 凝縮伝熱管
DE3010450A1 (de) * 1980-03-19 1981-09-24 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover Rohr fuer waermetauscherzwecke, insbesondere fuer verdampfer
JPS5758092A (en) * 1980-09-25 1982-04-07 Agency Of Ind Science & Technol Condensing heat transfer pipe
JPS57104095A (en) * 1980-11-26 1982-06-28 Furukawa Electric Co Ltd:The Heat transfer tube with groove on inner face
JPS5941795A (ja) * 1982-09-01 1984-03-08 Toshiba Corp 伝熱管及びその製造方法
US4733698A (en) * 1985-09-13 1988-03-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
JP2524983B2 (ja) * 1986-09-01 1996-08-14 古河電気工業株式会社 小径伝熱管
US4819719A (en) * 1987-01-20 1989-04-11 Mcdonnell Douglas Corporation Enhanced evaporator surface
JPH0313202A (ja) * 1989-06-09 1991-01-22 Furukawa Electric Co Ltd:The 溶接伝熱管におけるフィンないし凹凸面の形成方法
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
US5070937A (en) * 1991-02-21 1991-12-10 American Standard Inc. Internally enhanced heat transfer tube
JP3219811B2 (ja) * 1991-11-15 2001-10-15 株式会社神戸製鋼所 内面溝付伝熱管
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube

Also Published As

Publication number Publication date
US5682946A (en) 1997-11-04
PT733871E (pt) 2000-06-30
DK0733871T3 (da) 2000-07-24
GR3033193T3 (en) 2000-08-31
EP0733871A1 (de) 1996-09-25
DE59604338D1 (de) 2000-03-09
JPH08327273A (ja) 1996-12-13
DE19510124A1 (de) 1996-09-26
ATE189518T1 (de) 2000-02-15
ES2143102T3 (es) 2000-05-01

Similar Documents

Publication Publication Date Title
EP0733871B1 (de) Austauscherrohr für einen Wärmeaustauscher
EP0798529B1 (de) Wärmeaustauscherrohr
DE19628280C2 (de) Wärmeübertragungsrohr mit einer gerillten Innenfläche
DE60219538T2 (de) Wärmetauscher
EP0990828B1 (de) Mehrkanal-Flachrohr
DE60028660T2 (de) Rohr sowie Verfahren und Vorrichtung zu seiner Herstellung
DE60209750T2 (de) Verbessertes wärmeübertragungsrohr mit genuteter innenfläche
DE10038624C2 (de) Wärmeübertragungsrohr mit gedrallten Innenrippen
DE4404357C1 (de) Wärmeaustauschrohr zum Kondensieren von Dampf
DE4340378C2 (de) Wärmeaustauscher und Verfahren zur Herstellung derselben
EP3359902B1 (de) Verfahren zur herstellung einer lamelle und plattenwärmetauscher mit einer lamelle hergestellt nach dem verfahren
DE10101589C1 (de) Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
EP0672882A1 (de) Rippe für Wärmetauscher
DE19963353A1 (de) Beidseitig strukturiertes Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
EP1179167B1 (de) Wärmeaustauscher sowie verfahren zur herstellung eines wärmeaustauschers
DE2950563C2 (de)
EP1327846A2 (de) Wärmetauscher sowie Verfahren zur Herstellung eines Wärmetauschers
DE60015701T2 (de) Gebogenes Rohr für Wärmetauscher und dessen Herstellung
EP1148312B1 (de) Kühler für Kraftfahrzeuge
EP0268831B1 (de) Lamelle
DE10210016B9 (de) Wärmeaustauschrohr mit berippter Innenoberfläche
CH661584A5 (de) Waermeaustauscher und verfahren zur herstellung derselben.
DE202004020294U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
EP3359900B1 (de) Randleisten mit oberflächenstruktur für plattenwärmetauscher
DE4120442A1 (de) Flachrohrwaermetauscher, herstellungsverfahren desselben und anwendungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19970306

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990330

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 189518

Country of ref document: AT

Date of ref document: 20000215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59604338

Country of ref document: DE

Date of ref document: 20000309

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2143102

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000411

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000331

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: WIELAND-WERKE AG

Effective date: 20001031

NLR1 Nl: opposition has been filed with the epo

Opponent name: WIELAND-WERKE AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20020727

NLR2 Nl: decision of opposition

Effective date: 20020727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: KME GERMANY AG

Free format text: KM EUROPA METAL AKTIENGESELLSCHAFT#POSTFACH 3320#D-49023 OSNABRUECK (DE) -TRANSFER TO- KME GERMANY AG#KLOSTERSTRASSE 29#49074 OSNABRUECK (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110325

Year of fee payment: 16

Ref country code: MC

Payment date: 20110329

Year of fee payment: 16

Ref country code: IE

Payment date: 20110323

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20110209

Year of fee payment: 16

Ref country code: SE

Payment date: 20110329

Year of fee payment: 16

Ref country code: AT

Payment date: 20110325

Year of fee payment: 16

Ref country code: CH

Payment date: 20110330

Year of fee payment: 16

Ref country code: IT

Payment date: 20110323

Year of fee payment: 16

Ref country code: LU

Payment date: 20110330

Year of fee payment: 16

Ref country code: FI

Payment date: 20110323

Year of fee payment: 16

Ref country code: NL

Payment date: 20110330

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20110323

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110428

Year of fee payment: 16

Ref country code: FR

Payment date: 20110414

Year of fee payment: 16

Ref country code: GB

Payment date: 20110331

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110526

Year of fee payment: 16

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20120905

BERE Be: lapsed

Owner name: *KM EUROPA METAL A.G.

Effective date: 20120331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121001

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120306

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120905

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20000400887

Country of ref document: GR

Effective date: 20121008

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 189518

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120305

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59604338

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002