EP0728940A1 - Kombiniertes Anlasser-, Bypass- und Sicherheitsdruckentladungsventil für ein Brennstoffsystem - Google Patents

Kombiniertes Anlasser-, Bypass- und Sicherheitsdruckentladungsventil für ein Brennstoffsystem Download PDF

Info

Publication number
EP0728940A1
EP0728940A1 EP96101823A EP96101823A EP0728940A1 EP 0728940 A1 EP0728940 A1 EP 0728940A1 EP 96101823 A EP96101823 A EP 96101823A EP 96101823 A EP96101823 A EP 96101823A EP 0728940 A1 EP0728940 A1 EP 0728940A1
Authority
EP
European Patent Office
Prior art keywords
valve
pump
fuel
output
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96101823A
Other languages
English (en)
French (fr)
Other versions
EP0728940B1 (de
Inventor
Russell J. Wakeman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Automotive Corp
Original Assignee
Siemens Automotive Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Automotive Corp filed Critical Siemens Automotive Corp
Publication of EP0728940A1 publication Critical patent/EP0728940A1/de
Application granted granted Critical
Publication of EP0728940B1 publication Critical patent/EP0728940B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • F02M69/34Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines with an auxiliary fuel circuit supplying fuel to the engine, e.g. with the fuel pump outlet being directly connected to injection nozzles

Definitions

  • the present invention relates generally to a fuel system for an engine, and more particularly to a method and apparatus for providing fuel to an engine in a high pressure fuel injection system.
  • High pressure fuel injection systems typically include positive displacement pumps such as a swash plate pump or cam ring piston pump to provide highly pressurized fuel (e.g., 30-150 bar system pressure) to fuel injectors in an engine.
  • the positive displacement pump or high pressure pump is mechanically coupled to the engine via a belt, gear, or clutch drive which turns the pump at a ratio of the engine speed.
  • the performance of the high pressure pump is dependent on the speed of cranking, rotating, or turning of the engine.
  • the high pressure pump which is driven by the engine, is not able to provide full or operating pressure at its output until the engine has been started. Providing the fuel at the operating pressure is necessary for the fuel injectors in the high pressure fuel system to provide proper atomization and high delivery rates.
  • High pressure fuel systems are typically equipped with a feed pump or conventional low pressure pump in the fuel tank which supplies the fuel to the high pressure pump in the engine compartment.
  • the output of the low pressure pump is generally coupled to the input of the high pressure pump.
  • the low pressure pumps are often electric pumps such as a vane pump, turbine pump, or roller pump and cannot create high system pressures required for atomization and high delivery rates. However, these pumps are able to relatively quickly provide low pressure fuel from the tank independent of engine revolutions.
  • the low pressure pumps provide the fuel at the specified low pressure as soon as the electrical system of the vehicle or other engine system is turned on.
  • fuel cannot be directly provided by the low pressure pump through the high pressure pump to the engine because restrictive clearances in the pistons of the high pressure pump prevent fuel flow through the high pressure pump.
  • starting an engine equipped with a high pressure pump is an objectionably slow process because the high pressure pump is not able to provide the fuel until the engine has been started, or cranked (e.g., turned over) a significant number of times.
  • Another problem associated with high pressure pumps involves the generation of extremely high output pressures when the high pressure pump is deadheaded, such as when the high pressure fuel system becomes a closed system due to a system failure. If the regulator or other parts of the high pressure fuel system malfunction, the high pressure pump can be deadheaded (e.g., have no path back to the fuel tank) and can generate extremely high pressures at the output of the pump. The high pressures may even exceed the proof pressure of the system, resulting in catastrophic failure of hoses or seals in the high pressure fuel system of the engine.
  • the present invention relates to a check valve for use in a fuel system including a feed pump and a high pressure pump.
  • the feed pump has a feed output coupled to a pump inlet of the high pressure pump.
  • the feed pump provides fuel at a first pressure to the pump inlet.
  • the check valve includes a valve inlet coupled to the pump inlet, a valve output coupled to a pump outlet of the high pressure pump, and a bypass assembly disposed between the valve inlet and the valve outlet.
  • the bypass assembly is configured to allow fuel to flow from the valve inlet to the valve outlet when the first pressure is in a first predetermined relationship with a second pressure at the pump outlet. The bypass assembly thereby allows the fuel at the first pressure to bypass the high pressure pump.
  • the present invention also relates to a method of providing fuel in a fuel system from a tank to an engine as the engine is started.
  • the fuel system includes a feed pump in fluid communication with the tank, a high pressure pump having a pump input and a pump output, and a bypass valve.
  • the feed pump has a feed output in fluid communication with the pump input.
  • the bypass valve includes a valve input in fluid communication with the pump input and a valve output in fluid communication with the pump output.
  • the method includes the steps of providing the fuel at a first pressure with the feed pump to the pump input, allowing the fuel at the first pressure to flow from the valve input to the valve output through the bypass valve and preventing the fuel from flowing through the bypass valve from the valve output to the valve input as the engine is started, providing the fuel at the second pressure with the high pressure pump at the pump output, and preventing the fuel at the first pressure from flowing from the valve input through the bypass valve to the valve output after the engine is started.
  • the present invention even further relates to a fuel system for providing fuel from a tank to an engine.
  • the fuel system includes a feed pump in fluid communication with the tank, a high pressure pump and a pump output, and a bypass valve including a valve input in fluid communication with the pump input, a valve output in fluid communication with the pump output, and a valve assembly disposed between the valve input and the valve output.
  • the feed pump provided the fuel at a first pressure at a feed output.
  • the feed output is in fluid communication with the pump input.
  • the high pressure pump provides the fuel at a second pressure at the pump output. The second pressure is higher than the first pressure under normal conditions.
  • the valve assembly allows the fuel to flow from the valve input to the valve output and prevents the fuel from flowing from the valve output to the valve input.
  • the present invention additionally relates to a combined start bypass and safety pressure relief valve for use in a fuel system in an engine.
  • the fuel system includes a low pressure pump and a high pressure pump.
  • the low pressure pump has a feed outlet and the high pressure pump has a pump inlet and a pump outlet.
  • the feed outlet is coupled to the pump inlet and the low pressure pump provides fuel at a low pressure to the pump inlet.
  • the high pressure pump provides the fuel at a high pressure exceeding the low pressure after the engine has been started.
  • the combined start bypass and safety pressure relief valve includes a valve inlet coupled to the pump inlet, a valve output coupled to the pump outlet, a bypass means disposed between the valve inlet and the valve output and an overpressure means disposed between the valve inlet and the valve outlet.
  • the bypass means provides fuel at the low pressure to the valve outlet before the engine has been started.
  • the overpressure means provides the fuel from the valve outlet to the pump inlet when the high pressure exceeds an overpressure threshold.
  • a combined start bypass and safety pressure relief valve can be provided across a high pressure pump in a high pressure gasoline fuel injection system.
  • the valve advantageously provides a bypass for the low pressure fuel before the high pressure pump reaches operating pressure. Once the high pressure pump reaches operating pressure, the valve is closed and prevents fuel from flowing across the high pressure pump. Additionally, the valve can provide a relief outlet for the high pressure system when the high pressure fuel system reaches an overpressure condition such as when the high pressure pump is deadheaded.
  • the start bypass valve can include a bypass assembly including a check ball, and check spring.
  • the bypass assembly is disposed in a floating valve body.
  • the floating valve body is also configured to cooperate with the valve housing to provide an overpressure release mechanism.
  • the valve body is preferably mounted in a stepped bore in the housing of the high pressure pump and is in fluid communication with a pump inlet and a pump outlet of the high pressure pump.
  • the combined start bypass and safety pressure release valve advantageously reduces the amount of time to start an engine by providing low pressure fuel to the fuel system with a low pressure pump until the high pressure pump is driven by the engine.
  • the high pressure pump may reach operating pressure during the cranking of the engine.
  • the valve also advantageously returns fuel to the pump inlet without need for an added line to the fuel tank in the event of an overpressure condition.
  • a relief mechanism in the valve is preferably a spring and piston relief assembly. The relief assembly is held closed until the force of an overpressure condition moves the assembly against the spring and opens a relief output.
  • a high pressure fuel system 10 is coupled to fuel injectors 12 of an engine 14.
  • Engine 14 may be a gasoline powered automobile engine or other combustion motor which utilizes fuel.
  • High pressure fuel system 10 supplies fuel to fuel injectors 12 of engine 14.
  • the fuel is provided at a high pressure such as 30 to 150 bar.
  • the pressure of the fuel must be high enough for proper atomization and high delivery rates for engine 14.
  • High pressure fuel system 10 includes a fuel tank 16 having an in-tank electric pump or low pressure pump 18, a fuel filter 20, a positive displacement pump or high pressure pump 22, a combination check and relief valve 24, a high pressure regulator 28, a solenoid 33, a fuel rail 30, a regulator control circuit 36, an electronic control circuit 38, an injector driver circuit 40, and a pressure sensor 42.
  • Low pressure fuel pump 18 is in fluid communication with fuel 15 in tank 16.
  • Fuel 15 is preferably gasoline.
  • Fuel pump 18 is a feed pump and has a feed outlet 29 coupled through fuel filter 20 to a pump input or inlet 44 of high pressure pump 22.
  • Pump inlet 44 is coupled to a valve input or inlet 46 of valve 24, and a pump output or outlet 47 of high pressure pump 22 is coupled to a valve output or outlet 48 of valve 24.
  • Pump outlet 47 is also coupled to a regulator input 49 of regulator 28.
  • Regulator 28 includes a tank outlet 52 coupled to tank 16 and a fuel rail output 54 coupled to fuel rail 30.
  • Fuel rail 30 provides fuel to fuel injectors 12 at outputs 56.
  • Fuel rail 30 is also in fluid communication with pressure sensor 42.
  • Low pressure pump 18 also includes electrical inputs 58 which receive electrical power for driving pump 18. Pump 18 is turned on by providing the electrical power to inputs 58.
  • Electronic control circuit 38 receives a pressure signal from sensor 42 via a conductor 61 and provides electronic system control signals to regulator control circuit 36 and injector driver circuit 40 in response to the pressure signal on conductor 61 as well as other control criteria.
  • regulator control circuit 36 receives the pressure signal on conductor 61 and provides regulator control signals to solenoid 33 in response to the system control signals from electronic control circuit 38 and the pressure signal on conductor 61. Solenoid 33 controls regulator 28 in response to the regulator control signals.
  • Electronic driver circuit 40 is coupled to injectors 12 and provides drive signals to injectors 12 which control the distribution of the fuel to engine 14.
  • Electronic control circuit 38 can cause driver circuit 40 to adjust the drive signals to compensate for different pressures and conditions in system 10. For example, the pulse widths of the drive signals can be increased to compensate for lower pressures in system 10.
  • High pressure fuel pump 22 is mechanically coupled to engine 14 via a valve, gear, or clutch (e.g., dog) drive (not shown).
  • Pump 22 may be a swash plate or cam ring piston pump which is mechanically coupled to engine 14 to rotate at a slower rate than engine 14.
  • Low pressure pump 18 may be a vain pump, turbine pump, or roller pump which provides low pressure fuel at feed output or outlet 29 in response to the electrical power at inputs 58.
  • the electrical power at inputs 58 is provided as soon as electrical control system 38 is turned ON such as when an ignition key (not shown) is placed in the ignition (not shown) of engine 14.
  • high pressure fuel system 10 The operation of high pressure fuel system 10 is discussed generally below as follows. Before engine 14 is started or cranked, a key is placed in the ignition (not shown) and the electrical power is provided on electrical inputs 58 to low pressure fuel pump 18. Low pressure fuel pump 18 pumps fuel 15 from tank 16 at a low pressure through fuel filter 20 to pump inlet 44 of high pressure pump 22.
  • high pressure pump 22 does not pump the fuel provided by pump 18 because engine 14 has not begun rotating, turning over, or cranking.
  • High pressure pump 22 begins pumping when engine 14 begins cranking and does not provide highly pressured fuel at pump outlet 47 until engine 14 has rotated many times such as after engine 14 has been started.
  • high pressure pump 22 may be configured to provide the highly pressurized fuel at outlet 47 during the cranking or starting of engine 14.
  • high pressure pump 22 is not able to provide the fuel at full pressure or rated output until engine 14 has been rotated or cranked a significant number of times.
  • High pressure pump 22 prevents the fuel at pump inlet 22 from reaching pump outlet 47 because restrictive clearances in the pistons (not shown) of high pressure pump 22 block the path from inlet 44 to outlet 47.
  • the fuel is provided to valve inlet 46 of combination check and relief valve 24. If the pressure at pump outlet 47 is less than the pressure at pump inlet 44, valve 24 allows fuel to flow from valve inlet 46 to valve outlet 48 so the fuel reaches regulator 28.
  • the fuel provided at feed outlet 29 to pump inlet 44 generally exceeds the pressure of fuel provided at pump outlet 47 when engine 14 is initially started.
  • Valve 24 is also configured to prevent fuel from flowing from valve outlet 48 to valve inlet 46.
  • valve 24 When high pressure pump 22 provides the fuel at pump outlet 47 at a higher pressure than the fuel at pump inlet 44 (e.g., after engine 14 is started), valve 24 is closed and the fuel is prevented from flowing from valve inlet 46 to valve outlet 48. Additionally, the fuel is always preventing from flowing from valve outlet 48 to valve inlet 46 under normal conditions. Therefore, the fuel is able to bypass high pressure pump 22 when engine 14 is initially started or before pump 22 provides the fuel at full pressure. The fuel is essentially directly provided by low pressure pump 18 to engine 14 before engine 14 is completely started.
  • Combination check and relief valve 24 also advantageously provides a path from valve outlet 48 to valve inlet 46 when the pressure at pump outlet 47 reaches a predetermined threshold representative of an overpressure condition.
  • the predetermined threshold is generally a pressure threshold below the proof pressure of the high pressure fuel system 10 and above the full pressure of pump 22. If high pressure pump 22 is deadheaded (e.g., pressure pump 22 is pumping into a closed system) due to a malfunction of regulator 28 or other portion of system 10, pump 22 can generate significant pressures at pump outlet 47. The pressures can exceed the proof pressure of system 10.
  • valve 24 When the pressure at pump outlet 47 reaches the predetermined threshold or overpressure threshold (e.g., preferably slightly above the full pressure or normal operating pressure of pump 22), valve 24 provides a path from valve outlet 48 to valve inlet 46 so that the fuel at outlet 47 is returned to tank 16, thereby preventing catastrophic failure of system 10.
  • the configuration of valve 24 advantageously returns the fuel to tank 16 during an overpressure condition without the need for an additional fuel line or path to tank 16.
  • FIG. 2 is a cross-sectional view along the centerline of combination check and relief valve 24.
  • Check and relief valve 24 is preferably a cylindrical valve integrated within a stepped bore 70 in a housing 72 of high pressure fuel pump 22 ( Figure 1).
  • Bore 70 includes a cylindrical section 74 and a chamfered section 76.
  • a floating valve body 80 is seated within cylindrical section 74 of stepped bore 70.
  • Valve body 80 is sealed within cylindrical section 74 by an O-ring 82.
  • cylindrical section 74, valve body 80, and O-ring 82 are sized to prevent leakage from valve inlet 46 to valve outlet 48.
  • Valve 24 includes a bypass assembly 86 and a relief assembly 92.
  • Bypass assembly 86 is disposed within valve body 80 and includes a check ball 88, a check spring 90, and a body inlet 91.
  • Check spring 90 biases check ball 88 against a body inlet 91.
  • Body inlet 91 is in fluid communication with valve inlet 46 via chamfered section 76.
  • Relief assembly 92 includes a relief spring 96, floating valve body 80, O-ring 82, and a fuel inlet fitting 99. Fuel inlet fitting 99 is threaded and engaged with threads 98 of chamfered section 76 to prove a leak proof seal.
  • Relief spring 96 is disposed between valve body 80 and fitting 99 and biases valve body 80 in cylindrical section 74.
  • Valve 24 also includes valve inlet 46 and valve outlet 48.
  • Valve inlet 46 is in fluid communication with chamfered section 76.
  • Valve outlet 48 is in fluid communication with pump outlet 47.
  • Valve inlet 46 is in fluid communication with pump inlet 44 via chamfered section 76.
  • valve 24 The operation of valve 24 is discussed in more detail with reference to Figure 2.
  • check ball 88 in bypass assembly 86 is moved against spring 90 and the fuel flows from valve inlet 46 through body inlet 91 to valve outlet 48.
  • check ball 88 is forced against body inlet 91, thereby preventing fuel flow from valve inlet 46 and to valve outlet 48 and valve outlet 48 to valve inlet 46.
  • valve body 80 If an overpressure condition exists such as when high pressure pump 22 is deadheaded, excessive pressure builds at valve output 48. If the pressure is above a predetermined threshold below the proof pressure of system 10, floating valve body 80 is moved against relief spring 96. As body 80 is moved against relief spring 96 in relief assembly 92, O-ring 82 enters chamfered section 76 and the fuel is able to flow from valve outlet 48 around valve body 80 into chamfered section 76 and to valve inlet 46.
  • relief assembly 92 is designed so that the preload force of relief spring 96 is equal to the force on valve body 80 when the pressure at valve outlet 48 is at the predetermined threshold.
  • relief spring 96 pushes valve body 80 back into cylindrical section 74 for normal operation of valve 24.
  • the preload force of relief spring 96 is chosen so that it corresponds to a pressure slightly above the normal operating pressure.
  • Such a configuration ensures that valve body 80 is stationary during normal operation to protect valve body 80 and O-ring 82 from excessive wear.
  • the distance from the nominal position of O-ring 82 when valve body 80 is seated within cylindrical section 74 to the position of O-ring 82 where it loses compression is chosen so that relief spring 96 is compressed the proper distance by the pressure difference between operating pressure of pump 22 and the predetermined threshold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Safety Valves (AREA)
EP96101823A 1995-02-21 1996-02-07 Kombiniertes Anlasser-, Bypass- und Sicherheitsdruckentladungsventil für ein Brennstoffsystem Expired - Lifetime EP0728940B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US391739 1995-02-21
US08/391,739 US5572974A (en) 1995-02-21 1995-02-21 Combined start bypass and safety pressure relief valve for a fuel system

Publications (2)

Publication Number Publication Date
EP0728940A1 true EP0728940A1 (de) 1996-08-28
EP0728940B1 EP0728940B1 (de) 2002-01-09

Family

ID=23547740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96101823A Expired - Lifetime EP0728940B1 (de) 1995-02-21 1996-02-07 Kombiniertes Anlasser-, Bypass- und Sicherheitsdruckentladungsventil für ein Brennstoffsystem

Country Status (4)

Country Link
US (1) US5572974A (de)
EP (1) EP0728940B1 (de)
KR (1) KR960031784A (de)
DE (1) DE69618361T2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19645243A1 (de) * 1996-11-02 1998-05-14 Orange Gmbh Druckspeicher-Einspritzvorrichtung
DE19753155A1 (de) * 1997-11-29 1999-06-02 Mannesmann Rexroth Ag Kraftstoffversorgungssystem für eine Brennkraftmaschine und darin verwendete Hochdruckpumpe
EP0877162A3 (de) * 1997-05-10 2001-08-08 Volkswagen Aktiengesellschaft Einrichtung zur Hochdruck-Einspritzung von Kraftstoff

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705456B2 (ja) * 1995-10-09 2005-10-12 株式会社デンソー 燃料供給装置
US6833408B2 (en) * 1995-12-18 2004-12-21 Cohesion Technologies, Inc. Methods for tissue repair using adhesive materials
DE19548280A1 (de) * 1995-12-22 1997-06-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US6024064A (en) * 1996-08-09 2000-02-15 Denso Corporation High pressure fuel injection system for internal combustion engine
JPH10318069A (ja) * 1997-05-20 1998-12-02 Honda Motor Co Ltd 自動二輪車用燃料ポンプの駆動装置
DE19748420A1 (de) * 1997-11-03 1999-05-06 Bosch Gmbh Robert Verfahren zum Betrieb einer selbstzündenden, luftverdichtenden Brennkraftmaschine
JP2003083191A (ja) * 2001-09-05 2003-03-19 Hitachi Unisia Automotive Ltd 燃料噴射装置
DE10327411B4 (de) * 2002-10-15 2015-12-17 Robert Bosch Gmbh Druckbegrenzungsventil sowie Kraftstoffsystem mit einem solchen Druckbegrenzungsventil
ES2256621T3 (es) * 2002-10-15 2006-07-16 Robert Bosch Gmbh Valvula de limitacion de presion para un sistema de inyeccion de combustible.
US6988488B2 (en) * 2003-04-15 2006-01-24 Visteon Global Technologies, Inc. Fuel pressure relief valve
US6817343B1 (en) * 2003-04-23 2004-11-16 Caterpillar Inc. Electronic control system for fuel system priming
KR100580720B1 (ko) * 2004-07-12 2006-05-15 현대자동차주식회사 압축 천연 가스 차량의 연료 제어 장치
JP2009062834A (ja) * 2007-09-04 2009-03-26 Toyota Industries Corp 固定容量型ピストン式圧縮機における冷媒吸入構造
DE102007050304A1 (de) * 2007-10-22 2009-04-23 Robert Bosch Gmbh Verfahren zur Steuerung eines Kraftstoffversorgungssystems einer Brennkraftmaschine
US7640916B2 (en) * 2008-01-29 2010-01-05 Ford Global Technologies, Llc Lift pump system for a direct injection fuel system
US20100031930A1 (en) * 2008-08-06 2010-02-11 Caterpillar Inc. Fuel system for selectively providing fuel to an engine and a regeneration system
US8230841B2 (en) * 2009-03-25 2012-07-31 Denso International America, Inc. Two step pressure control of fuel pump module
US8312863B2 (en) * 2010-03-11 2012-11-20 Caterpillar Inc. Fuel delivery system for selectively providing fuel to various engine components
DE102010002801A1 (de) * 2010-03-12 2011-09-15 Robert Bosch Gmbh Kraftstoffeinspritzsystem einer Brennkraftmaschine
US8622047B2 (en) * 2010-09-24 2014-01-07 Denso Corporation Cleaning a pressure control function valve
US20180340501A1 (en) * 2017-05-23 2018-11-29 Weishun Willaim Ni Variable displacement fuel pump with position sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210256A (ja) * 1986-03-10 1987-09-16 Nippon Denso Co Ltd 内燃機関用燃料供給装置
JPH0777118A (ja) * 1993-09-10 1995-03-20 Mitsubishi Motors Corp 内燃機関用燃料供給装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1347260A (en) * 1970-08-27 1974-02-27 Cav Ltd Delivery valves
DE2419159C2 (de) * 1974-04-20 1986-06-05 Daimler-Benz Ag, 7000 Stuttgart Einspritzvorrichtung für eine Dieselbrennkraftmaschine
US4246876A (en) * 1979-01-19 1981-01-27 Stanadyne, Inc. Fuel injection system snubber valve assembly
DE3516537A1 (de) * 1985-05-08 1986-11-13 M A N Nutzfahrzeuge GmbH, 8000 München Kraftstoffeinspritzvorrichtung fuer selbstzuendende brennkraftmaschinen
DE3631579C1 (de) * 1986-09-17 1992-02-20 Daimler Benz Ag Niederdruckkraftstoffkreislauf mit Kraftstoffvorwaermung fuer eine luftverdichtende Einspritzbrennkraftmaschine,insbesondere fuer Nutzfahrzeuge
DE3710807A1 (de) * 1987-03-31 1988-10-13 Daimler Benz Ag Niederdruckkraftstoffkreislauf mit kraftstoffvorwaermung fuer eine luftverdichtende einspritzbrennkraftmaschine
US5295469A (en) * 1990-07-09 1994-03-22 Nippondenso Co., Ltd. Safety valve for fuel injection apparatus
US5168855A (en) * 1991-10-11 1992-12-08 Caterpillar Inc. Hydraulically-actuated fuel injection system having Helmholtz resonance controlling device
GB2268225B (en) * 1992-06-29 1995-07-05 Ford Motor Co A fuel supply arrangement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210256A (ja) * 1986-03-10 1987-09-16 Nippon Denso Co Ltd 内燃機関用燃料供給装置
JPH0777118A (ja) * 1993-09-10 1995-03-20 Mitsubishi Motors Corp 内燃機関用燃料供給装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 64 (M - 672) 26 February 1988 (1988-02-26) *
PATENT ABSTRACTS OF JAPAN vol. 95, no. 003 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19645243A1 (de) * 1996-11-02 1998-05-14 Orange Gmbh Druckspeicher-Einspritzvorrichtung
DE19645243C2 (de) * 1996-11-02 1998-10-29 Orange Gmbh Druckspeicher-Einspritzvorrichtung
EP0877162A3 (de) * 1997-05-10 2001-08-08 Volkswagen Aktiengesellschaft Einrichtung zur Hochdruck-Einspritzung von Kraftstoff
DE19753155A1 (de) * 1997-11-29 1999-06-02 Mannesmann Rexroth Ag Kraftstoffversorgungssystem für eine Brennkraftmaschine und darin verwendete Hochdruckpumpe

Also Published As

Publication number Publication date
US5572974A (en) 1996-11-12
KR960031784A (ko) 1996-09-17
DE69618361T2 (de) 2009-09-17
DE69618361D1 (de) 2002-02-14
EP0728940B1 (de) 2002-01-09

Similar Documents

Publication Publication Date Title
US5572974A (en) Combined start bypass and safety pressure relief valve for a fuel system
US6345609B1 (en) Supply pump for gasoline common rail
EP0643219B1 (de) Brennstoffversorgungssystem für eine Brennkraftmaschine
EP0531533B1 (de) Druckakkumulier-kraftstoffeinspritzvorrichtung
US4361121A (en) Control device for shutting off a diesel engine
US6314947B1 (en) Fuel delivery system
JP4637433B2 (ja) 高圧ポンプ内の燃料導入圧を制御するバルブシステム
US8826889B2 (en) Pressure regulating valve for regulating the pressure in a high-pressure reservoir
EP1519031A1 (de) Vorrichtung zur Regelung des Durchflusses einer Hochdruckpumpe in einem Common-rail Kraftstoffeinspritzsystem einer Brennkraftmaschine
US6129518A (en) Perfected pumping device for feeding fuel from a tank to an internal combustion engine
US20040208753A1 (en) High-pressure fuel supplying apparatus
US20110251776A1 (en) Fuel accumulator and fuel system using the same
US4957084A (en) Fuel injection apparatus for internal combustion engines
US6497215B1 (en) Device for rapidly building-up pressure in a device of a motor vehicle, said device being supplied with a pressure medium by means of a feed pump
US5076227A (en) Arrangement for controlling fuel flow to an internal-combustion engine
US9360025B2 (en) Hydraulic soft start system
US6189517B1 (en) Internal combustion engine with low viscosity fuel system
US4379442A (en) Electromagnetically controlled fuel injection pump
US11236717B2 (en) Assembly having a high-pressure pump and a control device arranged upstream of the high-pressure pump
US20090000673A1 (en) Electronically controlled pressure regulator for a mechanical returnless fuel system
CA1182356A (en) Electromagnetically controlled fuel injection pump
JPH10184483A (ja) ポンプ装置
JP2943340B2 (ja) 蓄圧式燃料噴射装置
JP4893698B2 (ja) 燃料供給装置
JP4518004B2 (ja) レギュレートバルブ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19970407

17Q First examination report despatched

Effective date: 19981016

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69618361

Country of ref document: DE

Date of ref document: 20020214

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120229

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120224

Year of fee payment: 17

Ref country code: GB

Payment date: 20120221

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130207

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69618361

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130207