EP0715655B1 - Verfahren zur detektion und zählung von mikroorganismen - Google Patents

Verfahren zur detektion und zählung von mikroorganismen Download PDF

Info

Publication number
EP0715655B1
EP0715655B1 EP94924197A EP94924197A EP0715655B1 EP 0715655 B1 EP0715655 B1 EP 0715655B1 EP 94924197 A EP94924197 A EP 94924197A EP 94924197 A EP94924197 A EP 94924197A EP 0715655 B1 EP0715655 B1 EP 0715655B1
Authority
EP
European Patent Office
Prior art keywords
medium
weight
parts
microorganisms
selector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94924197A
Other languages
English (en)
French (fr)
Other versions
EP0715655A1 (de
Inventor
Bianca Meyer
Gerhard Sauermann
Bernd Traupe
Florian Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beiersdorf AG
Original Assignee
Beiersdorf AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beiersdorf AG filed Critical Beiersdorf AG
Publication of EP0715655A1 publication Critical patent/EP0715655A1/de
Application granted granted Critical
Publication of EP0715655B1 publication Critical patent/EP0715655B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2304/00Chemical means of detecting microorganisms
    • C12Q2304/40Detection of gases
    • C12Q2304/46Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/848Escherichia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/848Escherichia
    • Y10S435/849Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/882Staphylococcus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/882Staphylococcus
    • Y10S435/883Staphylococcus aureus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/882Staphylococcus
    • Y10S435/884Staphylococcus epidermidis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • Y10S435/921Candida
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • Y10S435/921Candida
    • Y10S435/922Candida albicans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • Y10S435/921Candida
    • Y10S435/923Candida lipolytica

Definitions

  • Gram-positive and negative bacteria have through which Structure of their cell wall, different properties, For example, penicillin acts in the Process of cell wall formation interferes, mainly on Gram-positive bacteria (but also some Gram-negative bacteria Bacteria).
  • Microorganisms in general, but also bacteria in general special ones are practically ubiquitous. On the healthy human skin for example are mainly Mycobacteria, streptococci, staphylococci and propionibacteria to find. Also occurring on the skin Coryneform bacteria are now emerging unpleasant body odor due to the decomposition of apocrine Sweat blamed.
  • mycobionts include yeasts, for example (Protoascomycetes), mold (Plectomycetes), powdery mildew (Pyrenomycetes), downy mildew (Phycomycetes) and of course the mushrooms (Basidiomycetes).
  • Dermatomycoses are diseases in which certain types of fungi, especially dermatophytes, in the skin and hair follicles penetration.
  • the symptoms of dermatomycoses are for example vesicles, exfoliation, rhagades and erosion, mostly associated with itching or allergic eczema.
  • Dermatomycoses can essentially be broken down into four Groups are divided into: dermatophytia (e.g. epidermophytia, Favus, microsporie, trichophytia), yeast mycoses (e.g. Pityriasis, candida infections, blastomycosis, Busse-Buschke disease, Torulose, Piedra alba, Torulopsidose, Trichosporosis), mold mycoses (e.g. aspergillosis, Cephalosporidosis, phycomycosis, scopulariopsidosis), system mycoses (e.g. chromomycosis, coccidiomycosis, histoplasmosis).
  • dermatophytia e.g. epidermophytia, Favus, microsporie, trichophytia
  • yeast mycoses e.g. Pityriasis, candida infections, blastomycosis, Buss
  • Pathogenic or facultative pathogens include from the group of the yeast Candida species (e.g. Candida albicans) and those of the Pityrosporum family.
  • the areas of the body are particularly affected which are dampened by clothing, jewelry or footwear and can accumulate heat. So the athlete's foot belongs to the best known and most widespread dermatomycoses. Fungal diseases are still particularly unpleasant the finger and toenail areas.
  • the object of the present invention was therefore the abuses to remedy the state of the art. Especially should methods for qualitative detection or quantitative enumeration of the bacterial numbers provided be reproducible in a simple and fast way Deliver results.
  • the expert should have assumed that the representative and reproducible sampling and sample preparation for human samples or animal skin microflora would be impossible.
  • the food technician at whose Food products comparatively large and easily reproducible sample quantities occur works under completely different conditions than the dermatologist or Beautician who has to try, representative quantities of one - to him as well unknown - isolate microorganism from the skin.
  • alternating current is essential for the present invention, since the Use of direct current for electrolytic decomposition of the test medium and would lead to an uncontrollable change in the measurement parameters.
  • the AC resistance of an object is made up of the following Individual phenomena together: the ohmic or pure resistance, the inductive resistance and the capacitive resistance of the object.
  • the reciprocal Ohmic resistance is called conductivity.
  • the term 1 / (G 0 + G B ) describes the reciprocal of the ohmic resistance of the medium.
  • the variable G B depends on the metabolic activity of the microorganism to be detected, G 0 is constant.
  • the term 1 / ( ⁇ C) relating to the capacitive resistance can be regarded as constant during a measurement, so that under the measurement conditions to be selected, the change in impedance during a measurement depends only on G B.
  • the qualitative detection is therefore through the choice of the selective medium reached. Determining the number of in microorganisms of a particular sample Type in turn correlates with the concentration of metabolites, what according to the invention by the impedance measurement can be determined.
  • FIG. 1 shows the basic circuit diagram of a resistance measurement, the measuring device labeled V being a voltage measuring device, the device labeled A representing a current measuring device.
  • the other measuring method which is shown in FIG. 2, is preferred in particular in the case of large amounts of CO 2 -producing microorganisms.
  • the microorganism sample is in selective medium (B) in a vessel (C). This vessel is connected via the air space to an indicator medium (D) which collects the gaseous metabolic products produced by the microorganism sample or the microorganism colony formed therein.
  • Vessel (C) and indicator medium (D) are located in a gas-tight vessel (E).
  • the measuring electrodes (A, A ') are immersed in this indicator medium. What has been said for FIG. 1 applies to the calculation of the resistance Z.
  • KOH agar has proven to be a particularly advantageous indicator medium.
  • the commercial impedance measuring devices usually work according to this method.
  • a skin area of a defined size is defined over a Period with a defined amount of an aqueous Rinsed a surfactant solution, whereby advantageously buffered this aqueous solution to a pH which is between 5.0 and 8.0, and where said skin area advantageously simultaneously while exercising light pressure with a scraping tool, in particular one coated with plastic (e.g. Teflon) Spatula being scraped off.
  • a scraping tool in particular one coated with plastic (e.g. Teflon) Spatula being scraped off.
  • the sample obtained in this way is then treated with a disinhibiting medium transferred. You can then with a selective medium as Breeding ground are united, although it is quite possible a period between these latter two events of up to six hours.
  • Disinhibition media is to be understood as a medium which a repair of the bacteria damaged by the rinsing causes.
  • Disinhibition media preferred according to the invention are distinguished by the following compositions: Brain-heart extract and peptone 0 to 50 g / l D - (*) - glucose 0 to 5 g / l NaCl 0 to 20 g / l Na 2 HPO 4 * H 2 O 0 to 10 g / l Tween 80 0 to 50 g / l Lecithin 0 to 5 g / l Histidine 0 to 5 g / l
  • the substance mixture is advantageously distilled in 1.0 liters Dissolved water, autoclaved and the pH to 5.5 set to 8.5.
  • the detection method is based on the fact that the detected metabolic product, preferably CO 2 , changes the resistance of the test medium or indicator medium.
  • Selective media which can preferably be used according to the invention are as follows be described in more detail. Nevertheless, within the the method according to the invention also other, as such selective media belonging to the technology can be used.
  • these selective media can be used in others Detection methods or also in rearing methods for Microorganisms find application.
  • the selective media that can be used according to the invention are marked through a basic medium, which is a food source for microorganisms serves, and moreover one or more Substances that inhibit the growth of certain microorganisms inhibits other microorganisms, namely those to be detected, leaves unmolested.
  • Selective media for staphylococci consist of 40-50 parts by weight of a customary basic medium, to which an individual substance or a mixture of substances (called selector or selectors in the context of the present patent application) selected from the following constituents are added: Parts by weight Sodium pyruvate 0.2 to 20.0 Glycine 0.05 to 5.0 KSCN 0.05 to 5.0 NaH 2 PO 4 0.05 to 2.0 Na 2 HPO 4 0.02 to 2.0 LiCl 0.1 to 10.0 Aztreonam 0 to 0.01 Linolenic acid 0 to 50.0
  • the lower limit of selectors is advantageously 2 Parts by weight to 50 parts by weight of basic medium.
  • a basic medium which is favorable for the production of a selective medium for staphylococci has, for example, the following composition: Parts by weight Casein peptone 10.0 Meat extract 5.0 Yeast extract 3.0 Glycerin 10.0 Agar 13.0
  • Selective media for Propionibacterium spec. consist of 35 - 50 parts by weight of a common basic medium, to which one or more selectors selected from the following components are added: Parts by weight Sodium thioglycolate 0.05 to 5.0 NaCl 0.1 to 10.0 L-cysteine HCl 0.05 to 5.0 Resazurin 0.001 to 0.10 NaHCO 3 0.05 to 5.0 Phosphomycin 0.01 to 1.0
  • the lower limit of selectors is advantageously 0.5 Parts by weight to 50 parts by weight of basic medium.
  • Favorable basic medium has, for example, the following composition: Parts by weight Peptone 15.0 Yeast extract 10.0 Agar 15.0
  • Selective media for anaerobes consist of 35-50 parts by weight of a customary basic medium, to which one or more selectors selected from the following constituents are added: Parts by weight Sodium thioglycolate 0.05 to 5.0 NaCl 0.1 to 10.0 L-cysteine HCl 0.05 to 5.0 Resazurin 0.001 to 0.10 NaHCO 3 0.05 to 5.0
  • the lower limit of selectors is advantageously 0.5 Parts by weight to 50 parts by weight of basic medium.
  • a basic medium which is favorable for the production of a selective medium for anaerobes has, for example, the following composition: Parts by weight Peptone 15.0 Yeast extract 10.0 Agar 15.0
  • Selective media for Pityrosporum spec. consist of 40 - 90 parts by weight of a common basic medium, to which one or more selectors, selected from the following components, are added: Parts by weight Glycerol monostearate 0.05 to 5.0 Tween 80 0.05 to 5.0 Chloramphenicol 0.01 to 1.0 Gentamycin 0.005 to 0.5
  • the lower limit of selectors is advantageously 0.1 Parts by weight to 50 parts by weight of basic medium.
  • a selective medium for Pityrosporum spec One for the production of a selective medium for Pityrosporum spec.
  • Favorable basic medium has, for example, the following composition: Parts by weight Neopeptones 15.0 Yeast extract 0.1 Agar 18.0 olive oil 20.0
  • Yeasts for example of the Candida genus:
  • Selective media for yeasts which can be used according to the invention, for example of the Candida genus, consist of 30-50 parts by weight of a customary basic medium, to which one or more selectors selected from the following constituents are added: Parts by weight Bismuth sulfite 0.1 to 10.0 Neomycin 0.005 to 0.5
  • the lower limit of selectors is advantageously 0.05 Parts by weight to 50 parts by weight of basic medium.
  • a basic medium which is favorable for the production of a selective medium for yeasts has, for example, the following composition: Parts by weight Yeast extract 1.0 Agar 15.0 Glycocoll 10.0 glucose 10.0
  • Selective media for molds and Dermatophytes consist of 20-75 parts by weight of one usual basic medium, the 10 to 100 parts by weight of NaCl be added.
  • Selective media for enterococci which can be used according to the invention, but also streptococci (for example Streptococcus mutans) consist of 30-60 parts by weight of a customary basic medium, to which one or more selectors selected from the following constituents are added: Parts by weight Sodium citrate 0.5 to 50.0 Sodium azide 0.1 to 10.0 Thallium acetate 0.2 to 20.0 2,3,5-triphenyltetrazole (or its acid adducts) 0.001 to 0.10
  • the lower limit of selectors is advantageously 5 Parts by weight to 50 parts by weight of basic medium.
  • a basic medium which is favorable for the production of a selective medium for enterococci but also streptococci has the following composition: Parts by weight Casein peptone 10.0 Agar 15.0 Meat extract 10.0 glucose 10.0
  • Selective media which can be used according to the invention for coryneform germs and Corynebacterium consist of 30-50 parts by weight of a customary basic medium, to which one or more selectors selected from the following constituents are added: Parts by weight Furazolidone (Aldrich) 0.5 to 50.0 acetone 0.5 to 50.0 Tween 80 0.1 to 10.0 Bovine serum 2.0 to 200 Phosphomycin (Sigma Chemie) 5.0 to 500 Water autoclaved ad 1000
  • a basic medium which is favorable for the production of a selective medium for coliform germs and E. coli has, for example, the following composition: Parts by weight Caso agar 44.00 g Yeast extract 1.10 g Water VES ad 1000.00 ml
  • Selective media for coliform germs and E. coli consist of 30-50 parts by weight of a conventional base medium, to which one or more selectors selected from the following constituents are added: Parts by weight NaCl 0.1 to 10.0 Lactose 0.2 to 20.0 basic fuchsin 0.02 to 2.0 Na 2 SO 3 0.05 to 5.0
  • the lower limit of selectors is advantageously 2 Parts by weight to 40 parts by weight of basic medium.
  • a basic medium which is favorable for the production of a selective medium for coliform germs and E. coli has, for example, the following composition: Parts by weight Peptone made of meat 10.0 Agar 20.0 Meat extract 10.0
  • Selective media for Enterobacteriaceen which can be used according to the invention and which completely suppress the growth of gram-positive bacteria and coliform germs consist of 30-55 parts by weight of a customary basic medium, to which one or more selectors selected from the following constituents are added: Parts by weight Sodium citrate 0.1 to 10.0 Na 2 S 2 O 3 0.1 to 10.0 Sodium deoxycholate 0.1 to 10.0 Ammonium iron (III) citrate 0.05 to 5.0 Neutral red 0.001 to 0.1
  • the lower limit of selectors is advantageously 5 Parts by weight to 40 parts by weight of basic medium.
  • a basic medium which is favorable for the production of a selective medium for Enterobacteria has, for example, the following composition: Parts by weight Peptone 5.0 Agar 13.0 Meat extract 5.0 Lactose 10.0 Sucrose 10.0
  • the method is particularly advantageous cosmetic or dermatological detection method to apply.
  • the facts to be examined are changes the microflora of the skin.
  • the boundaries between cosmetic and dermatological examination are natural fluently.
  • the focus is primarily on the invention cosmetic detection in the determination of the change of absolute or relative bacterial counts, less detection certain germs.
  • the detection of the Presence of certain apathogenic germs in certain cosmetic Skin changes an advantageous embodiment the inventive method, for example Body odor (head, foot, armpit odor), impure skin, in oral hygiene and all other cosmetic skin changes, in which microorganisms play a role.
  • a particularly advantageous selective medium for staphylococci is characterized by the following composition: Casein peptone 10.00 g Meat extract 5.00 g Yeast extract 3.00 g Glycerin 10.00 g Na pyruvate 10.00 g Glycine 0.50 g KSCN 2.25 g NaH 2 PO 4 * H 2 O 0.60 g Na 2 HPO 4 * 2 H 2 O 0.90 g LiCl 2.00 g Agar 13.00 g
  • the components are dissolved in 1 liter of water and autoclaved and adjusted the pH to 7.2. After cooling to approx. 50 ° C 10 ml of a 0.45% sodium azide solution are added and poured the mixture into slant agar tubes.
  • the medium selects for staphylococci. Coryneform bacteria show no growth, and Micrococcus spec. grows only after about 40 hours, i.e. far outside the detection time for staphylococci, noticeably.
  • Another particularly advantageous selective medium for staphylococci is characterized by the following composition: Casein peptone 8.50 g Liver peptone 2.00 g Yeast extract 2.00 g Lactalbumin 5.50 g Na pyruvate 10.00 g Glycine 0.50 g NaH 2 PO 4 * H 2 O 0.60 g Na 2 HPO 4 * 2 H 2 O 0.90 g LiCl 5.00 g Aztreonam 0.005 g Agar 13.00 g
  • the components are dissolved in 1 liter of water and autoclaved and adjusted the pH to 7.2. After cooling to approx. The mixture is poured into inclined agar tubes at 50 ° C.
  • the medium selects for staphylococci.
  • An advantageous selective medium for Staphylococcus epidermidis compared to Staphylococcus aureus is characterized by the following composition: Casein peptone 8.50 g Liver peptone 2.00 g Yeast extract 2.00 g Lactalbumin 5.50 g Na pyruvate 10.00 g Glycine 0.50 g NaH 2 PO 4 * H 2 O 0.60 g Na 2 HPO 4 * 2 H 2 O 0.90 g LiCl 5.00 g Aztreonam 0.005 g Linolenic acid 0.60 g Agar 13.00 g
  • the components are dissolved in 1 liter of water and autoclaved and adjusted the pH to 7.2. After cooling to approx. The mixture is poured into inclined agar tubes at 50 ° C.
  • Staphylococcus aureus is also after 40 Hours of detection time not proven.
  • a particularly advantageous selective medium for Propionibacterium spec. is characterized by the following composition: Peptone 15.0 g Yeast extract 10.0 g Sodium thioglycolate 0.5 g NaCl 2.5 g L-cysteine HCl 0.5 g Resazurin 0.001 g NaHCO 3 0.4 g
  • the mixture of substances is in 1.0 l of distilled water dissolved and autoclaved. After cooling to 50 ° C 160 mg of phosphomycin added per liter of medium and the pH set to 7.2.
  • a particularly advantageous selective medium for anaerobes is characterized by the following composition: Peptone Peptone 15.0 g 15.0 g Yeast extract 10.0 g Sodium thioglycolate 0.5 g NaCl 2.5 g L-cysteine HCl 0.5 g Resazurin 0.001 g NaHCO 3 0.4 g
  • the mixture of substances is in 1.0 l of distilled water dissolved and autoclaved.
  • the pH is adjusted to 7.2.
  • the actual detection procedure takes place under anaerobic conditions.
  • the mixture of substances is made up to 1.0 with distilled water Liter filled up, the pH is adjusted to 6.0. The medium is then autoclaved. The still liquid medium is allowed to cool to about 50 ° C, 100 mg Chloramphenicol and 50 mg gentamycin per liter are added. The medium is then placed in slant agar tubes poured out.
  • a particularly advantageous selective medium for yeasts is characterized by the following composition: Yeast extract 1.0 g Agar 15.0 g Glycocoll 10.0 g glucose 10.0 g Bismuth sulfite 7.0 g
  • the mixture of substances is in 1.0 liters of distilled water dissolved and heated to boil. After cooling to approx. 50 ° C 2.0 mg / l neomycin sulfate are added and the medium then poured into slant agar tubes.
  • a particularly advantageous selective medium for enterococci, but also streptococci is characterized by the following composition: Casein peptone 10.0 g Agar 15.0 g Meat extract 10.0 g glucose 10.0 g
  • the above mixture of substances for the basic medium is in Dissolved 1.0 l of distilled water and autoclaved. After this Cooling are added: 20.0 g sodium citrate, 0.02 g Sodium azide, 30 ml of a sterile 5% aqueous solution Thallium (III) acetate solution and 10.0 ml of a sterile aqueous 1% 2,3,5-triphenyltetrazolium chloride solution. Of the pH of the selective medium thus obtained is brought to 6.2 adjusted and the medium poured into slant agar tubes.
  • the medium is particularly good for detecting faecal germs suitable. Streptococci that cause caries, can be proven equally, as well directed against such germs (especially Streptococcus mutans) antimicrobial principles of action found in dental treatment products can be included.
  • a particularly advantageous selective medium for coryneform germs and corynebacteria is characterized by the following composition: Mixture A Caso agar 44.00 g Yeast extract 1.10 g water ad 1000.00 ml
  • the furazolidone is in the 22 ml of acetone, the phosphomycin in the 16.8 ml autoclaved water dissolved.
  • the ingredients of mixture B are then combined and the resulting mixture combined with mixture A.
  • a particularly advantageous selective medium for coliform germs and E. coli is characterized by the following composition: Peptone made of meat 10.0 g Agar 20.0 g Meat extract 10.0 g NaCl 5.0 g Lactose 10.0 g basic fuchsin 0.5 g Na 2 SO 3 2.5 g
  • the above mixture of substances for the basic medium is distilled in 1.0 l Dissolved water and autoclaved. If the medium is reddish after autoclaving is colored, little more sodium sulfite is added until the reddish Hue has disappeared. The medium is then placed in inclined agar tubes poured out.
  • the selective medium After the selective medium has solidified, it is immediately closed use. After just a few days, it turns reddish which indicates that it has become unusable.
  • a particularly advantageous selective medium for Enterobacteriaceen is characterized by the following composition: Peptone 5.0 g Agar 13.0 g Meat extract 5.0 g Lactose 10.0 g Sucrose 10.0 g Sodium citrate 6.0 g Na 2 S 2 O 3 4.0 g Sodium deoxycholate 3.0 g Ammonium iron (III) citrate 1.0 g Neutral red 0.02 g
  • the medium can also be used in clinical diagnostics e.g. for the detection of Salmonella, Shigella, Vibrions and pathogenic yersinia.
  • a particularly advantageous selective medium for mold is characterized by the following composition: malt extract 20.0 g NaCl 75.0 g Agar 15.0 g
  • the mixture of substances is in 1.0 liters of distilled water dissolved, autoclaved and poured into slant agar tubes.
  • the medium is also for the culture of dermatophytes as well as for Detection of antifungal properties of test substances suitable against such germs.
  • Disinhibition medium Brain-heart extract and peptone 27.5 g D - (*) - glucose 2.0 g NaCl 5.0 g Na 2 HPO 4 * H 2 O 2.5 g Tween 80 30.0 g Lecithin 3.0 g Histidine 1.0 g
  • the mixture of substances is in 1.0 liters of distilled water dissolved, autoclaved and the pH adjusted to 7.4.
  • Staphylococcus epidermidis DSM 20044 was used as a reference strain used. It became one of thirty-four different ones Bacterial counts of existing calibration series produced by dilution and calibrated the impedance system using this calibration series.
  • CFU germ concentration
  • the sample obtained in this way is treated with 500 ⁇ l of disinhibiting medium added according to Example 11.
  • the sample obtained in this way is treated with 500 ⁇ l of disinhibiting medium added according to Example 11.
  • coryneform bacteria or corynebacteria per cm 2 skin could be detected in ten different test subjects without difficulty.
  • a RABIT from Don Whitley was used as the detection device Scientific Ltd. used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Cosmetics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur qualitativen Detektion sowie zur quantitativen Zählung von Mikroorganismen, insbesondere solchen Mikroorganismen, die auf der menschlichen Haut angesiedelt sind.
Mikroorganismen werden unterschieden in prokaryontische, also solche ohne eigentlichen Zellkern, und eukaryontische Mikroorganismen, also solche mit einem Zellkern.
Zu den Eukaryonten gehören Algen, Pilze und Protozoen. Zu den Prokaryonten gehören Bakterien. Bakterien wiederum werden klassifiziert in Eubakterien, filamentbildende Bakterien, prosthekate und knospenbildende Bakterien, Actinomyceten, obligat parasitische Bakterien, Spirochäten, Cyanobakterien, Archaebakterien und andere.
Eubakterien werden im wesentlichen unterteilt in Kokken, also kugelförmige Bakterien (z.B. Streptokokken), im wesentlichen stäbchenförmige bzw. gestreckt zylinderförmige nichtsporulierende Bakterien (z.B. coryneforme Bakterien, Propionibakterien, Pseudomonaden, Enterobakterien, sporenbildende Stäbchen (z.B. Bacilli, Clostridien) und gekrümmte Stäbchen (z.B. Spirillen, Vibrionen).
Ferner können die Eubakterien, über die vorab geschilderten Gruppen hinweg, unterteilt werden in Gram-positive und Gram-negative Bakterien, also Bakterien, deren Zellwand nach dem Gram-Test auch nach Waschen mit Alkohol blaugefärbt bleibt oder solche, deren Zellwand durch Alkohol wieder farblos gewaschen wird.
Gram-positive und -negative Bakterien haben, durch die Struktur ihrer Zellwand bedingt, unterschiedliche Eigenschaften, beispielsweise wirkt Penicillin, welches in den Prozeß der Zellwandbildung eingreift, hauptsächlich auf Gram-positive Bakterien (allerdings auch auf einige Gram-negative Bakterien) abtötend.
Mikroorganismen im allgemeinen, aber auch Bakterien im besonderen, sind praktisch allgegenwärtig. Auf der gesunden menschlichen Haut beispielsweise sind hauptsächlich Mycobakterien, Streptokokken, Staphylokokken und Propionibakterien zu finden. Ebenfalls auf der Haut vorkommende coryneforme Bakterien werden neuerdings für die Entstehung unangenehmen Körpergeruches durch die Zersetzung apokrinen Schweißes verantwortlich gemacht.
Pilze, auch Fungi [fungus = lat. Pilz], Mycota [mykes = grch. Pilz] oder Mycobionten genannt, zählen zu den Eucaryonten. Eucaryonten sind Lebewesen, deren Zellen (Eucyten) im Gegensatz zu denen der sogenannten Procaryonten (Procyten) über einen durch Kernhülle und Kernmembran vom restlichen Cytoplasma abgegrenzten Zellkern verfügen. Der Zellkern enthält die Erbinformation in Chromosomen gespeichert.
Zu Vertretern der Mycobionten zählen beispielsweise Hefen (Protoascomycetes), Schimmelpilze (Plectomycetes), Mehltau (Pyrenomycetes), der falsche Mehltau (Phycomycetes) und natürlich die Ständerpilze (Basidiomycetes).
Pilze, auch nicht die Basidiomyceten, sind keine pflanzlichen Organismen, haben aber wie diese eine Zellwand, zellsaftgefüllte Vakuolen und eine mikroskopisch gut sichtbare Plasmaströmung. Sie enthalten keine photosynthetischen Pigmente und sind C-heterotroph. Sie wachsen unter aeroben Bedingungen und gewinnen Energie durch Oxidation organischer Substanzen. Einige Vertreter, beispielsweise Hefen, sind allerdings fakultative Anaerobier und zur Energiegewinnung durch Gärungsprozesse befähigt.
Dermatomycosen sind Krankheiten, bei der gewisse Pilzarten, insbesondere Dermatophyten, in die Haut und Haarfollikel eindringen. Die Symptome von Dermatomycosen sind beispielsweise Bläschen, Exfoliation, Rhagaden und Erosion, meist verbunden mit Juckreiz oder allergischem Ekzem.
Dermatomycosen können im wesentlichen in folgende vier Gruppen unterteilt werden: Dermatophytien (z.B. Epidermophytie, Favus, Mikrosporie, Trichophytie), Hefemycosen (z.B. Pityriasis, Candida-Infektionen, Blastomycose, Busse-Buschke-Krankheit, Torulose, Piedra alba, Torulopsidose, Trichosporose), Schimmelmycosen (z.B. Aspergillose, Kephalosporidose, Phycomycose, Skopulariopsidose), Systemmycosen (z.B. Chromomycose, Coccidiomycose, Histoplasmose).
Zu den pathogenen oder fakultativ pathogenen Keimen gehören aus der Gruppe der Hefen Candida-Arten (z.B. Candida albicans) und solche der Familie Pityrosporum. Pityrosporum-Arten, insbesondere Pityrosporum ovale, sind für Hauterkrankungen wie Pityriasis versicolor, Seborrhoe in den Formen Seborrhoea oleosa und Seborrhoea sicca, welche sich vor allem als Seborrhoea capitis (= Kopfschuppen) äußern, seborrhoisches Ekzem und Pityrosporum-Follikulitis verantwortlich zu machen.
Alle Bereiche der menschlichen Haut können von Dermatomycosen befallen werden. Dermatophytien befallen fast ausschließlich Haut, Haare und Nägel. Hefemycosen können auch Schleimhäute und innere Organe befallen, Systemmycosen erstrecken sich regelmäßig auf ganze Organsysteme.
Aber auch bakterielle Infektionen und Superinfektionen der Haut, insbesondere bei immungeschädigten Personen, z.B. Atopikern und Psoriatikern, sowie bei Erkrankungen anderer Genese können erheblichen Leidensdruck verursachen. Unter Superinfektionen ist das übermäßig zahlreiche Auftreten an sich auf der Haut üblicherweise anzutreffender Keime zu verstehen.
Besonders häufig sind die Körperbereiche betroffen, auf welchen sich durch Kleidung, Schmuck oder Schuhwerk Feuchtigkeit und Wärme stauen können. So gehört der Fußpilz zu den bekanntesten und am weitesten verbreiteten Dermatomycosen. Besonders unangenehm sind weiterhin Pilzerkrankungen der Finger- und Fußnägelbereiche.
Nicht alle Individuen einer Mikroorganismenpopulation sind lebensfähig. Auf Nähragar Kolonien oder in Nährlösungen Suspensionen bildende Keimen sind lebende, nämlich sich vermehrende Zellen. Zur Bestimmung der Gesamtzellzahl kann man sich einer Zählkammer oder eines elektronischen "Coulter-Counters" bedienen. Zur Bestimmung der Lebendzellzahl können beispielsweise die aus lebenden Zellen hervorgehenden Kolonien ausgezählt werden. Dazu ist es nötig, von verdünnten Zellsuspensionen auszugehen. Derlei Methoden sind dem Fachmann gut vertraut.
Für die klinische Analyse und Diagnostik aber, und diese Begriffe sollen gleichermaßen die dermatologische Analyse der kranken menschlichen Haut im Sinne einer ärztlichen Untersuchung, aber auch die kosmetische Untersuchung an sich gesunder Haut mit kosmetischen, mikrobiell hervorgerufenen Veränderungen umfassen, existieren keine Verfahren, die in kürzester Zeit, unter geringstmöglicher Beanspruchung des Patienten eine zuverlässige qualitative Detektion oder quantitative Auszählung der Keimzahlen ermöglichen. Hier galt es, Abhilfe zu schaffen.
Darüberhinaus hatten die herkömmlichen Zählverfahren des Standes der Technik weitere Nachteile, insbesondere die, daß sie entweder unzuverlässig sind oder erhöhten apparativen, manuellen bzw. zeitlichen Aufwandes bedürfen.
Aufgabe der vorliegenden Erfindung war also, den Mißständen des Standes der Technik Abhilfe zu schaffen. Insbesondere sollten Verfahren zur qualitativen Detektion bzw. quantitativen Auszählung der Keimzahlen zur Verfügung gestellt werden, die auf einfache und schnelle Weise reproduzierbare Ergebnisse liefern.
Weiterhin war es eine Aufgabe der vorliegenden Erfindung, Verfahren zur Verfügung zu stellen, welche ohne allzu großen Aufwand automatisierbar gestaltet werden können.
Eine weitere Aufgabe der vorliegenden Erfindung war es, solche Verfahren zu Verfügung zu stellen, bei welchen einfache Probenahme gewährleistet ist, ohne daß eine Probe vor dem eigentlichen Verfahren noch umständlich und zeitraubend aufgearbeitet werden muß.
Noch eine weitere Aufgabe der vorliegenden Erfindung war, Verfahren zu Verfügung zu stellen, welche möglichst universell für eine möglichst große Vielzahl von Keimen geeignet sind.
Schließlich war es eine Aufgabe der vorliegenden Erfindung, Verfahren zu Verfügung zu stellen, welche speziell für die Mikroorganismenzählung in Bezug auf die Vertreter der menschlichen Hautflora geeignet sind.
Die Lösung all dieser Aufgaben bietet ein
Kosmetisches oder dermatologisches Verfahren zur Detektion und/oder selektiven Quantifizierung einzelner auf menschlicher oder tierischer Haut befindlicher Mikroorganismen bzw. ganzer Mikroorganismengruppen, dadurch gekennzeichnet, daß
  • (a) nach Entnahme einer Probe von der Mikroflora der menschlichen oder tierischen Haut, welche dadurch erfolgt, daß eine Hautfläche definierter Größe über einen definierten Zeitraum mit einer definierten Menge einer wäßrigen Lösung eines oberflächenaktiven Agens abgespült wird, wobei vorteilhaft diese wäßrige Lösung auf einen pH-Wert abgepuffert ist, der zwischen 5,0 und 8,0 liegt, und wobei die besagte Hautfläche vorteilhaft gleichzeitig unter Ausüben leichten Druckes mit einem Schabewerkzeug, insbesondere eines mit Kunststoff beschichteten Spatels, abgeschabt wird,
  • (b) diese Probe mit einem Enthemmungsmedium versetzt wird,
  • (c) die so aufbereitete Probe in ein Kulturmedium gegeben wird, welches günstige Wachstumsbedingungen für eine bestimmte Gruppe von Mikroorganismen aber ungünstige Wachstumsbedingungen für andere Mikroorganismen aufweist, wodurch eine Selektivkultur erzeugt wird und
  • (d) diese Selektivkultur über einen hinreichend langen Zeitraum bebrütet wird, wodurch lediglich die Gruppe der Mikroorganismen, für welche das Kulturmedium günstige Wachstumsbedingungen aufweist, die Gelegenheit hat, sich zu vermehren,
  • (e) wobei Stoffwechselprodukte, insbesondere CO2 entstehen, welche sich entweder im Kulturmedium selbst oder einem dafür vorgesehenen Testgefäß, welches ein Indikatormedium enthält, sammeln und
  • (f) die Konzentration der Stoffwechselprodukte durch die Änderung des Wechselstromwiderstandes des Kulturmediums bzw. des Indikatormediums im Testgefäß ermittelt und, nach entsprechender Eichung, durch rechnerische Methoden mit der Anzahl der Mikroorganismen im Selektivmedium korreliert wird.
  • Es ist zwar an sich bekannt, Wechselstromwiderstandsmessungen (Impedanzmessungen) bei der Analyse der Stoffwechselvorgänge von Mikroorganismen vorzunehmen. So berichtet beispielweise P.Jaksch ("Grundlagen der Impedanztechnik und Erfahrungen bei der Untersuchung roher und pasteurisierter
    Milch" in: dmZ Lebensmittelindustrie und Milchwirtschaft 31, 1991, S. 950 - 960; "Nachweis von Hefen in Joghurt und Frischkäse mittels indirekter Leitfähigkeitsmessung" in: dmZ Lebensmittelindustrie und Milchwirtschaft 32/33, 1991, S. 992 - 996) von Versuchen an Milch und Milchprodukten. Der dermatologisch oder kosmetisch ausgebildete Fachmann konnte jedoch nicht von den an den angegebenen Orten offenbarten Verfahren zu den hiermit als erfindungsgemäß vorgelegten dermatologischen bzw. kosmetischen Analyseverfahren geleitet werden.
    Auch werden im Handbuch Nährböden "Merck", E.Merck, Darmstadt, S. 41 -110, ferner in der Schrift J.Clin.Microbiol. 17, 2, 1983, S.276 - 280, ferner in der Schrift Biological Abstracts, Vol. BA94, Abstract no. 121778, ferner in der Schrift DIFCO Technical Information, Nr. 0163, September 1975, Detroit, S. 6-7 sowie ferner in der Schrift J.Clin.Microbiol. 7, 3, 1978, S. 265 - 272 Analysen bzw. Probeentnahmeverfahren beschrieben, die jedoch nicht den Weg zur vorliegenden Erfindung weisen konnten.
    Insbesondere hätte der Fachmann annehmen müssen, daß die repräsentative und reproduzierbare Probenentnahme und Probenaufbereitung für Proben der menschlichen oder tierischen Hautmikroflora unmöglich wäre. Der Lebensmitteltechniker, bei dessen Lebensmittelprodukten vergleichsweise große und gut reproduzierbare Probemengen anfallen, arbeitet eben unter völlig anderen Bedingungen als der Dermatologe oder Kosmetiker, der versuchen muß, repräsentative Mengen eines - ihm zudem noch unbekannten - Mikroorganismus von der Haut zu isolieren.
    Wesentlich für die vorliegende Erfindung ist die Verwendung von Wechselstrom, da die Verwendung von Gleichstrom zu elektrolytischer Zersetzung des Testmediums und damit zu einer unkontrollierbaren Veränderung der Meßparameter führen würde.
    Der Wechselstromwiderstand eines Objektes setzt sich aus folgenden Einzelerscheinungen zusammen: dem Ohmschen oder reinen Widerstand, dem induktiven Widerstand und dem kapazitiven Widerstand des Objektes. Der Reziprokwert des Ohmschen Widerstandes wird Leitfähigkeit genannt.
    Bei der Messung an flüssigen Lösungen spielen induktive Effekte im allgemeinen keine Rolle. Der Wechselstromwiderstand Z, auch Impedanz genannt, errechnet sich aus den Kenngrößen
    G0 =
    Leitfähigkeit des Mediums
    GB =
    Effekt der mikrobiellen Stoffwechselaktivität auf die Leitfähigkeit des Mediums
    Ω =
    Frequenz des Wechselstroms
    C =
    Kapazitiver Widerstand des Mediums
    zu: Z = 1/(G0 + GB)2 + 1/(ΩC)2
    Der Term 1/(G0 + GB) beschreibt den Kehrwert des Ohmschen Widerstandes des Mediums. Die Variable GB ist abhängig von der Stoffwechselaktivität des zu detektierenden Mikroorganismus, G0 ist konstant. Der den kapazitiven Widerstand betreffende Term 1/(ΩC) kann während einer Messung als konstant angesehen werden, so daß unter den zu wählenden Meßbedingungen die Änderung der Impedanz während einer Messung nur von GB abhängt.
    Dadurch, daß durch die Wahl eines bestimmten erfindungsgemäß verwendbaren Selektivmediums in je einem Arbeitsgang nur jeweils eine einzige Mikroorganismenart bzw. Mikroorganismengattung detektiert wird, deren Stoffwechselaktivität die Impedanzänderung bewirkt, ist es durch geeignete Kalibrierung möglich, einem bestimmten Meßwert für die Impedanz der Mikroorganismenprobe zu einem beliebigen Zeitpunkt direkt ein bestimmten Anzahl des zu detektierenden Mikroorganismus, und zwar eindeutig dieses Mikroorganismus, zuzuordnen.
    Die qualitative Detektion wird also durch die Wahl des Selektivmediums erreicht. Die Bestimmung der Anzahl der in einer Probe befindlichen Mikroorganismen einer bestimmten Art wiederum korreliert mit der Konzentration der Stoffwechselprodukte, was erfindungsgemäß durch die Impedanzmessung bestimmt werden kann.
    An sich bestehen keine wesentlichen Einschränkungen für die erfindungsgemäß zu verwendenden Impedanzmeßgeräte. Es ergab sich beispielsweise, daß die von der Firma Don Whitley Scientific Limited (Shipley, West Yorkshire, Vereinigtes Königreich) hergestellten und unter der Bezeichnung RABIT (= Rapid Automated Bacterial Impedance Technique) vertriebenen Geräte den Anforderungen bestens gerecht werden. In der Bundesrepublik werden solche Geräte von der Firma Mast Diagnostica verkauft. Aber auch die Geräte anderer Hersteller, beispielsweise der Firmen Malthus oder Sylab sind erfindungsgemäß bestens geeignet.
    Grundsätzlich haben sich zwei Meßverfahren für die Impedanz der Mikroorganismenprobe als günstig erwiesen.
    Dies sind zum einen die in Fig. 1 dargestellte direkte Meßmethode, bei welcher zwei Elektroden (A, A') direkt in das Selektivmedium (B) eintauchen und die Änderung der Impedanz über den Meßzeitraum verfolgt wird. Fig. 1 zeigt das Prizinzipschaltbild einer Widerstandsmessung, wobei das mit V bezeichnete Meßgerät ein Spannungsmeßgerät, das mit A bezeichnete Gerät ein Strommeßgerät darstellt. Der Gesamtwiderstand Z errechnet sich nach dem Ohmeschen Gesetz, Z = U/I (Spannung/Strom).
    Figure 00090001
    Die andere Meßmethode, die in Fig. 2 dargestellt ist, ist insbesondere bei große Mengen CO2 produzierenden Mikroorganismen bevorzugt. Dabei befindet sich in einem Gefäß (C) die Mikroorganismenprobe in Selektivmedium (B). Dieses Gefäß steht über den Luftraum in Verbindung mit einem Indikatormedium (D), welches die von der Mikroorganismenprobe bzw. der sich darin bildenden Mikroorganismenkolonie produzierten gasförmige Stoffwechselprodukte auffängt. Gefäß (C) sowie Indikatormedium (D) befinden sich in einem gasdicht abgeschlossenen Gefäß (E). In dieses Indikatormedium tauchen die Meßelektroden (A, A') ein. Für die Berechnung des Widerstandes Z gilt das zu Figur 1 Gesagte. Als besonders vorteilhaftes Indikatormedium hat sich KOH-Agar erwiesen.
    Figure 00100001
    Folgende Meßmethode hat sich als besonders praktikabel erwiesen: Bei einem bestimmten Schwellenwert für die Änderung der Impedanz der Probe, der normalerweise einer Mikroorganismenkonzentration von 105/ml entspricht und etwa -10 µS (Mikrosiemens) bei der indirekten Methode und etwa 5 µS bei der direkten Methode entspricht, wird von der Meßstation ein Signal abgegeben. Das negative Vorzeichen rührt daher, daß sich die Leitfähigkeit des Indikatormediums (KOH-Agar) durch Absorption des produzierten CO2 verringert.
    Werden Mikroorganismenkulturen verschiedener Individuenkonzentrationen, die alle unterhalb der Grenzkonzentration liegen, vorgegeben und (gegebenenfalls selektiven) Wachstumsbedingungen unterworfen, so ist die Zeit, nach der die Grenzkonzentration in den einzelnen Proben erreicht und das Signal abgegeben wird, proportional dem Logarithmus der anfänglichen Individuenkonzentration.
    Eicht man also den Versuchsaufbau mit Kulturen bekannter Mikroorganismen mit bekannten Individuenkonzentrationen, so kann eine Probe unbekannter Mikroorganismen unbekannter Individuenkonzentration durch die Wahl des Selektivmediums auf die Art des Mikroorganismus geprüft, und durch die Detektion im Impedanzmeßgerät anhand der vorab beschriebenen Meßmethode auf seine Konzentration analysiert werden.
    Die käuflichen Impedanzmeßgeräte arbeiten üblicherweise nach dieser Methode.
    Es hat sich als vorteilhaft herausgestellt, insbesondere, wenn das Objekt, von welchem die Mikroorganismenprobe entnommen werden soll, die menschliche Haut ist, Methoden der Probeentnahme zu wählen, wie sie in "Untersuchungen zu Unterschieden der Keimzahlen der Residentflora benachbarter Hautareale in Abhängigkeit von der benutzten Hautfloragewinnungsmethode", Ärztliche Kosmetologie 13, S. 142 - 154 (1983) (im Verlag G. Braun, Karlsruhe erschienen), von A.A. Hartmann beschrieben wird.
    In dem vorgenannten Artikel werden im wesentlichen folgende Hautfloragewinnungsmethoden beschrieben bzw. zitiert:
    1.) Die Detergenswaschmethode ("DWM")
    2.) Die Cyanoacrylatmethode ("CyAM")
    3.) Die "water-pick"-Methode ("S & N")
    4.) Die Wasserspraymethode ("Thran")
    Es ist insbesondere von Vorteil, den Weg der Detergenswaschmethode einzuschlagen, insbesondere in der nachfolgend beschriebenen Modifikation:
    Eine Hautfläche definierter Größe wird über einen definierten Zeitraum mit einer definierten Menge einer wäßrigen Lösung eines oberflächenaktiven Agens abgespült, wobei vorteilhaft diese wäßrige Lösung auf einen pH-Wert abgepuffert ist, der zwischen 5,0 und 8,0 liegt, und wobei die besagte Hautfläche vorteilhaft gleichzeitig unter Ausüben leichten Druckes mit einem Schabewerkzeug, insbesondere eines mit Kunststoff (beispielsweise Teflon) beschichteten Spatels, abgeschabt wird.
    Obwohl erfindungsgemäß grundsätzlich alle kosmetisch bzw. dermatologisch geeigneten oberflächenaktive Agentien verwendet werden können, kann es doch gegebenenfalls von Vorteil sein, solche Agentien zu verwenden, welche bereits das Wachstum bestimmter Mikroorganismen eher hemmen und das Wachstum anderer Mikroorganismen nicht oder nur wenig beeinflussen. Das gleiche gilt für die Wahl des pH-Wertes bzw. das Pufferagens selbst: Grundsätzlich können erfindungsgemäße alle kosmetisch bzw. dermatologisch geeigneten Puffer verwendet werden, obwohl es gegebenenfalls von Vorteil sein kann, auch mit der Wahl des Puffers einen gewissen Selektionsdruck auf die Mikroorganismenprobe auszuüben.
    Die so gewonnene Probe wird dann mit einem Enthemmungsmedium versetzt. Sie kann sodann mit einem Selektivmedium als Nährboden vereinigt werden, wobei es durchaus möglich ist, zwischen diesen beiden letzteren Ereignissen einen Zeitraum von bis zu sechs Stunden verstreichen zu lassen.
    Unter Enthemmungsmedien ist ein Medium zu verstehen, welches eine Reparatur der durch die Abspülung geschädigten Bakterien bewirkt.
    Erfindungsgemäß bevorzugte Enthemmungsmedien zeichnen sich durch folgende Zusammensetzungen aus:
    Hirn-Herzextrakt und Pepton 0 bis 50 g/l
    D-(*)-Glucose 0 bis 5 g/l
    NaCl 0 bis 20 g/l
    Na2HPO4 * H2O 0 bis 10 g/l
    Tween 80 0 bis 50 g/l
    Lecithin 0 bis 5 g/l
    Histidin 0 bis 5 g/l
    Das Substanzgemisch wird vorteilhaft in 1,0 Liter destillierten Wassers gelöst, autoklaviert und der pH-Wert auf 5,5 bis 8,5 eingestellt.
    Das Detektionsverfahren beruht auf dem Umstand, daß das detektierte Stoffwechselprodukt, vorzugsweise CO2, den Widerstand des Testmediums oder Indikatormediums verändert.
    Als besonders vorteilhaft verwendbare Verkörperung der vorliegenden Erfindung werden auch Kulturmedien angesehen, welche günstige Wachstumsbedingungen für bestimmte Gruppen von Mikroorganismen, aber ungünstige Wachstumsbedingungen für andere Gruppen von Mikroorganismen aufweisen. Solche Medien werden im Zusammenhang der vorliegenden Erfindung als Selektivmedien bezeichnet.
    Erfindungsgemäß bevorzugt verwendbare Selektivmedien werden nachfolgend genauer beschrieben werden. Gleichwohl sind im Rahmen der erfindungsgemäßen Verfahren auch andere, an sich dem Stande der Technik zugehörige Selektivmedien verwendbar.
    Es ist im Einzelfalle möglich, daß ein bestimmtes Selektivmedium als Selektivmedium für mehrere an sich unterschiedliche Keime dienen kann. Dies ist aber kein Widerspruch, da es weitere Mechanismen gibt, die Eindeutigkeit des Selektivmediums wieder herzustellen, z.B. wird man in der Mundhöhle vorwiegend Streptokokken finden und kann dennoch ein auf Streptokokken und Enterokokken ansprechendes Selektivmedium verwenden.
    Obwohl die erfindungsgemäß verwendbaren Selektivmedien zwar äußerst vorteilhaft als Mittel für die erfindungsgemäßen dermatologischen oder kosmetischen Detektionsverfahren verwendet werden können, ist ihr Anwendungsspektrum jedoch nicht auf solche Verfahren beschränkt.
    So können diese Selektivmedien beispielsweise in anderen Detektionsverfahren oder aber auch in Aufzuchtverfahren für Mikroorganismen Anwendung finden.
    Die erfindungsgemäß verwendbaren Selektivmedien sind gekennzeichnet durch ein Grundmedium, welches als Nahrungsquelle für Mikroorganismen dient, und darüberhinaus um eine oder mehrere Substanzen, welche das Wachstum bestimmter Mikroorganismen hemmt, andere Mikroorganismen, nämlich die zu detektierenden, unbehelligt läßt.
    Staphylokokken:
    Erfindungsgemäß verwendbare Selektivmedien für Staphylokokken bestehen aus 40 - 50 Gewichtsteilen eines üblichen Grundmedium, dem ein Einzelstoff oder ein Stoffgemisch (im Rahmen der vorliegenden Patentanmeldung Selektor bzw. Selektoren genannt), gewählt aus den folgenden Bestandteilen zugegeben werden:
    Gew.-Teile
    Natriumpyruvat 0,2 bis 20,0
    Glycin 0,05 bis 5,0
    KSCN 0,05 bis 5,0
    NaH2PO4 0,05 bis 2,0
    Na2HPO4 0,02 bis 2,0
    LiCl 0,1 bis 10,0
    Aztreonam 0 bis 0,01
    Linolensäure 0 bis 50,0
    Vorteilhaft beträgt die untere Grenze an Selektoren 2 Gewichtsteile auf 50 Gewichtsteile Grundmedium.
    Erstaunlicherweise ist es mit Hilfe eines Gehalts an Linolensäure möglich, zwischen Staphylokokken zu differenzieren, insbesondere zwischen Staphylococcus aureus und Staphylococcus epidermidis. Bei Gegenwart von Linolensäure ist Staph. epidermidis zum Wachstum befähigt, im Gegensatz zu Staph. aureus, dessen Wachstum gehemmt wird.
    Ein für die Herstellung eines Selektivmediums für Staphylokokken günstiges Grundmedium hat beispielsweise folgende Zusammensetzung:
    Gew.-Teile
    Caseinpepton 10,0
    Fleischextrakt 5,0
    Hefeextrakt 3,0
    Glycerin 10,0
    Agar 13,0
    Allerdings ist der Fachmann mit der Zusammenstellung eines das Wachstum von Mikroorganismen förderlichen Grundmediums bestens vertraut, so daß an dieser Stelle nicht weiter darauf eingegangen werden muß. Das gleiche gilt für die anderen im Rahmen dieser Beschreibung offenbarten Grundmedien.
    Propionibacterium spec.:
    Erfindungsgemäß verwendbare Selektivmedien für Propionibacterium spec. bestehen aus 35 - 50 Gewichtsteilen eines üblichen Grundmediums, dem ein oder mehrere Selektoren, gewählt aus den folgenden Bestandteilen zugegeben werden:
    Gew.-Teile
    Natriumthioglycolat 0,05 bis 5,0
    NaCl 0,1 bis 10,0
    L-Cystein-HCl 0,05 bis 5,0
    Resazurin 0,001 bis 0,10
    NaHCO3 0,05 bis 5,0
    Phosphomycin 0,01 bis 1,0
    Vorteilhaft beträgt die untere Grenze an Selektoren 0,5 Gewichtsteile auf 50 Gewichtsteile Grundmedium.
    Ein für die Herstellung eines Selektivmediums für Propionibacterium spec. günstiges Grundmedium hat beispielsweise folgende Zusammensetzung:
    Gew.-Teile
    Pepton 15,0
    Hefeextrakt 10,0
    Agar 15,0
    Anaerobier:
    Erfindungsgemäß verbwendbare Selektivmedien für Anaerobier bestehen aus 35 - 50 Gewichtsteilen eines üblichen Grundmediums, dem ein oder mehrere Selektoren, gewählt aus den folgenden Bestandteilen zugegeben werden:
    Gew.-Teile
    Natriumthioglycolat 0,05 bis 5,0
    NaCl 0,1 bis 10,0
    L-Cystein-HCl 0,05 bis 5,0
    Resazurin 0,001 bis 0,10
    NaHCO3 0,05 bis 5,0
    Vorteilhaft beträgt die untere Grenze an Selektoren 0,5 Gewichtsteile auf 50 Gewichtsteile Grundmedium.
    Ein für die Herstellung eines Selektivmediums für Anaerobier günstiges Grundmedium hat beispielsweise folgende Zusammensetzung:
    Gew.-Teile
    Pepton 15,0
    Hefeextrakt 10,0
    Agar 15,0
    Pityrosporum spec.:
    Erfindungsgemäß verwendbare Selektivmedien für Pityrosporum spec. bestehen aus 40 - 90 Gewichtsteilen eines üblichen Grundmediums, dem ein oder mehrere Selektoren, gewählt aus den folgenden Bestandteilen zugegeben werden:
    Gew.-Teile
    Glycerinmonostearat 0,05 bis 5,0
    Tween 80 0,05 bis 5,0
    Chloramphenicol 0,01 bis 1,0
    Gentamycin 0,005 bis 0,5
    Vorteilhaft beträgt die untere Grenze an Selektoren 0,1 Gewichtsteile auf 50 Gewichtsteile Grundmedium.
    Ein für die Herstellung eines Selektivmediums für Pityrosporum spec. günstiges Grundmedium hat beispielsweise folgende Zusammensetzung:
    Gew.-Teile
    Neopeptone 15,0
    Hefeextrakt 0,1
    Agar 18,0
    Olivenöl 20,0
    Hefen, beispielsweise der Gattung Candida:
    Erfindungsgemäß verwendbare Selektivmedien für Hefen, beispielsweise der Gattung Candida, bestehen aus 30 - 50 Gewichtsteilen eines üblichen Grundmediums, dem ein oder mehrere Selektoren, gewählt aus den folgenden Bestandteilen zugegeben werden:
    Gew.-Teile
    Wismutsulfit 0,1 bis 10,0
    Neomycin 0,005 bis 0,5
    Vorteilhaft beträgt die untere Grenze an Selektoren 0,05 Gewichtsteile auf 50 Gewichtsteile Grundmedium.
    Ein für die Herstellung eines Selektivmediums für Hefen günstiges Grundmedium hat beispielsweise folgende Zusammensetzung:
    Gew.-Teile
    Hefeextrakt 1,0
    Agar 15,0
    Glycocoll 10,0
    Glucose 10,0
    Schimmelpilze und Dermatophyten:
    Erfindungsgemäß verwendbare Selektivmedien für Schimmelpilze und Dermatophyten bestehen aus 20 - 75 Gewichtsteilen eines üblichen Grundmediums, dem 10 bis 100 Gewichtsteile NaCl zugegeben werden.
    Enterokokken und Streptokokken:
    Erfindungsgemäß verwendbare Selektivmedien für Enterokokken, aber auch Streptokokken (beispielsweise Streptococcus mutans) bestehen aus 30 - 60 Gewichtsteilen eines üblichen Grundmediums, dem ein oder mehrere Selektoren, gewählt aus den folgenden Bestandteilen zugegeben werden:
    Gew.-Teile
    Natriumcitrat 0,5 bis 50,0
    Natriumazid 0,1 bis 10,0
    Thalliumacetat 0,2 bis 20,0
    2,3,5-Triphenyltetrazol (bzw. dessen Säureaddukte) 0,001 bis 0,10
    Vorteilhaft beträgt die untere Grenze an Selektoren 5 Gewichtsteile auf 50 Gewichtsteile Grundmedium.
    Ein für die Herstellung eines Selektivmediums für Enterokokken, aber auch Streptokokken (beispielsweise Streptococcus mutans) günstiges Grundmedium hat beispielsweise folgende Zusammensetzung:
    Gew.-Teile
    Caseinpepton 10,0
    Agar 15,0
    Fleischextrakt 10,0
    Glucose 10,0
    Coryneforme Keime und Corynebacterium:
    Erfindungsgemäß verwendbare Selektivmedien für coryneforme Keime sowie Corynebacterium bestehen aus 30 - 50 Gewichtsteilen eines üblichen Grundmediums, dem ein oder mehrere Selektoren, gewählt aus den folgenden Bestandteilen zugegeben werden:
    Gew.-Teile
    Furazolidon (Aldrich) 0,5 bis 50,0
    Aceton 0,5 bis 50,0
    Tween 80 0,1 bis 10,0
    Rinderserum 2,0 bis 200
    Phosphomycin (Sigma Chemie) 5,0 bis 500
    Wasser autoklaviert ad 1000
    Ein für die Herstellung eines Selektivmediums für coliforme Keime sowie E.coli günstiges Grundmedium hat beispielsweise folgende Zusammensetzung:
    Gew.-Teile
    Caso-Agar 44,00 g
    Hefeextrakt 1,10 g
    Wasser VES ad 1000,00 ml
    Coliforme Keime und E.coli :
    Erfindungsgemäß verwendbare Selektivmedien für coliforme Keime sowie E.coli bestehen aus 30 - 50 Gewichtsteilen eines üblichen Grundmediums, dem ein oder mehrere Selektoren, gewählt aus den folgenden Bestandteilen zugegeben werden:
    Gew.-Teile
    NaCl 0,1 bis 10,0
    Lactose 0,2 bis 20,0
    basisches Fuchsin 0,02 bis 2,0
    Na2SO3 0,05 bis 5,0
    Vorteilhaft beträgt die untere Grenze an Selektoren 2 Gewichtsteile auf 40 Gewichtsteile Grundmedium.
    Ein für die Herstellung eines Selektivmediums für coliforme Keime sowie E.coli günstiges Grundmedium hat beispielsweise folgende Zusammensetzung:
    Gew.-Teile
    Pepton aus Fleisch 10,0
    Agar 20,0
    Fleischextrakt 10,0
    Enterobacteriaceen:
    Erfindungsgemäß verwendbare Selektivmedien für Enterobacteriaceen, welche das Wachstum grampositiver Bakterien und coliformer Keime vollständig unterdrücken, bestehen aus 30 - 55 Gewichtsteilen eines üblichen Grundmediums, dem ein oder mehrere Selektoren, gewählt aus den folgenden Bestandteilen zugegeben werden:
    Gew.-Teile
    Natriumcitrat 0,1 bis 10,0
    Na2S2O3 0,1 bis 10,0
    Natriumdesoxycholat 0,1 bis 10,0
    Ammoniumeisen-(III)-citrat 0,05 bis 5,0
    Neutralrot 0,001 bis 0,1
    Vorteilhaft beträgt die untere Grenze an Selektoren 5 Gewichtsteile auf 40 Gewichtsteile Grundmedium.
    Ein für die Herstellung eines Selektivmediums für Enterobacterien günstiges Grundmedium hat beispielsweise folgende Zusammensetzung:
    Gew.-Teile
    Pepton 5,0
    Agar 13,0
    Fleischextrakt 5,0
    Lactose 10,0
    Saccharose 10,0
    Erfindungsgemäß besonders vorteilhaft ist, das Verfahren als kosmetisches bzw. dermatologisches Detektionsverfahren anzuwenden. Zu untersuchender Sachverhalt sind dabei Änderungen der Mikroflora der Haut. Die Grenzen zwischen kosmetischer und dermatologischer Untersuchung sind natürlich fließend.
    In erster Linie liegt der Schwerpunkt erfindungsgemäßer kosmetischer Detektion in der Bestimmung der Änderung der absoluten bzw. relativen Keimzahlen, weniger der Detektion bestimmter Keime. Allerdings ist auch die Detektion der Gegenwart bestimmter apathogener Keime bei bestimmten kosmetischen Hautveränderungen eine vorteilhafte Ausführungsform der erfindungsgemäßen Verfahren, beispielsweise bei Körpergeruch (Kopf-, Fuß-, Achselgeruch), unreiner Haut, in der Mundhygiene und allen anderen kosmetischen Hautveränderungen, bei welchen Mikroorganismen eine Rolle spielen.
    Erfindungsgemäße dermatologische Detektion besteht im wesentlichen in der Bestimmung pathologischer Veränderungen der Mikroflora der Haut. Auch hier kann erfindungsgemäß einesteils vorteilhaft die Gegenwart, aber auch die Anzahl der betreffenden Keime bestimmt werden. Vorteilhaft sind beispielsweise erfindungsgemäße Vefahren zur Detektion folgender dermatologischer Erscheinungsformen:
    • atopisches Ekzem
    • Psoriasis
    • Akne
    • seborrhoische Dermatitis
    • bakteriell verursachte Cellulitis
    • Dermatomycosen
    • Superinfektionen der Haut mit pathogenen und/oder apathogenen grampositiven und/oder gramnegativen Mikroorganismen
    Die nachfolgenden Beispiele zeigen vorteilhafte Ausführungsformen der erfindungsgemäß zu verwendenden Selektivmedien.
    Beispiel 1
    Ein besonders vorteilhaftes Selektivmedium für Staphylokokken zeichnet sich durch folgende Zusammensetzung aus:
    Casein-Pepton 10,00 g
    Fleischextrakt 5,00 g
    Hefeextrakt 3,00 g
    Glycerin 10,00 g
    Na-pyruvat 10,00 g
    Glycin 0,50 g
    KSCN 2,25 g
    NaH2PO4 * H2O 0,60 g
    Na2HPO4 * 2 H2O 0,90 g
    LiCl 2,00 g
    Agar 13,00 g
    Die Komponenten werden in 1 l Wasser gelöst, autoklaviert und der pH-Wert auf 7,2 eingestellt. Nach Abkühlen auf ca. 50° C werden 10 ml einer 0,45 %-igen Natriumazidlösung zugegeben und die Mischung in Schrägagar-Röhrchen ausgegossen.
    Das Medium selektiert auf Staphylokokken. Coryneforme Bakterien zeigen kein Wachstum, und Micrococcus spec. wächst erst nach etwa 40 Stunden, d.i. weit außerhalb der Detektionszeit für Staphylokokken, merklich an.
    Beispiel 1a
    Ein weiteres besonders vorteilhaftes Selektivmedium für Staphylokokken zeichnet sich durch folgende Zusammensetzung aus:
    Casein-Pepton 8,50 g
    Leberpepton 2,00 g
    Hefeextrakt 2,00 g
    Lactalbumin 5,50 g
    Na-pyruvat 10,00 g
    Glycin 0,50 g
    NaH2PO4 * H2O 0,60 g
    Na2HPO4 * 2 H2O 0,90 g
    LiCl 5,00 g
    Aztreonam 0,005 g
    Agar 13,00 g
    Die Komponenten werden in 1 l Wasser gelöst, autoklaviert und der pH-Wert auf 7,2 eingestellt. Nach Abkühlen auf ca. 50° C wird die Mischung in Schrägagar-Röhrchen ausgegossen.
    Das Medium selektiert auf Staphylokokken.
    Beispiel 1b
    Ein vorteilhaftes Selektivmedium für Staphylococcus epidermidis gegenüber Staphylococcus aureus zeichnet sich durch folgende Zusammensetzung aus:
    Casein-Pepton 8,50 g
    Leberpepton 2,00 g
    Hefeextrakt 2,00 g
    Lactalbumin 5,50 g
    Na-pyruvat 10,00 g
    Glycin 0,50 g
    NaH2PO4 * H2O 0,60 g
    Na2HPO4 * 2 H2O 0,90 g
    LiCl 5,00 g
    Aztreonam 0,005 g
    Linolensäure 0,60 g
    Agar 13,00 g
    Die Komponenten werden in 1 l Wasser gelöst, autoklaviert und der pH-Wert auf 7,2 eingestellt. Nach Abkühlen auf ca. 50° C wird die Mischung in Schrägagar-Röhrchen ausgegossen.
    In diesem Medium ist Staphylococcus aureus auch nach 40 Stunden Detektionszeit nicht nachzuweisen.
    Beispiel 2
    Ein besonders vorteilhaftes Selektivmedium für Propionibacterium spec. zeichnet sich durch folgende Zusammensetzung aus:
    Pepton 15,0 g
    Hefeextrakt 10,0 g
    Natriumthioglycolat 0,5 g
    NaCl 2,5 g
    L-Cystein-HCl 0,5 g
    Resazurin 0,001 g
    NaHCO3 0,4 g
    Das Substanzgemisch wird in 1,0 l destillierten Wassers gelöst und autoklaviert. Nach Abkühlen auf 50° C werden 160 mg Phosphomycin pro Liter Medium zugesetzt und der pH-Wert auf 7,2 eingestellt.
    Beispiel 3
    Ein besonders vorteilhaftes Selektivmedium für Anaerobier zeichnet sich durch folgende Zusammensetzung aus:
    Pepton Pepton 15,0 g 15,0 g
    Hefeextrakt 10,0 g
    Natriumthioglycolat 0,5 g
    NaCl 2,5 g
    L-Cystein-HCl 0,5 g
    Resazurin 0,001 g
    NaHCO3 0,4 g
    Das Substanzgemisch wird in 1,0 l destillierten Wassers gelöst und autoklaviert. Der pH-Wert wird auf 7,2 eingestellt. Das eigentliche Detektionsverfahren erfolgt unter anaeroben Bedingungen.
    Beispiel 4
    Ein besonders vorteilhaftes Selektivmedium für Pityrosporum spec. zeichnet sich durch folgende Zusammensetzung aus:
    Neopeptone 15,0 g
    Hefeextrakt 0,1 g
    Agar 18,0 g
    Olivenöl 20,0 g
    Glycerinmonostearat 2,5 g
    Tween® 80 2,0 g
    Das Substanzgemisch wird mit destilliertem Wasser auf 1,0 Liter aufgefüllt, der pH-Wert wird auf 6,0 eingestellt. Sodann wird das Medium autoklaviert. Das noch flüssige Medium wird auf ca. 50° C abkühlen gelassen, 100 mg Chloramphenicol und 50 mg Gentamycin pro Liter werden zugesetzt. Das Medium wird sodann in Schrägagar-Röhrchen ausgegossen.
    Beispiel 5
    Ein besonders vorteilhaftes Selektivmedium für Hefen, insbesondere solche der Gattung Candida, zeichnet sich durch folgende Zusammensetzung aus:
    Hefeextrakt 1,0 g
    Agar 15,0 g
    Glycocoll 10,0 g
    Glucose 10,0 g
    Wismutsulfit 7,0 g
    Das Substanzgemisch wird in 1,0 Liter destillierten Wassers gelöst und zum Kochen erhitzt. Nach Abkühlen auf ca. 50° C werden 2,0 mg/l Neomycinsulfat zugegeben und das Medium sodann in Schrägagar-Röhrchen ausgegossen.
    Beispiel 6
    Ein besonders vorteilhaftes Selektivmedium für Enterokokken, aber auch Streptokokken (beispielsweise Streptococcus mutans) zeichnet sich durch folgende Zusammensetzung aus:
    Caseinpepton 10,0 g
    Agar 15,0 g
    Fleischextrakt 10,0 g
    Glucose 10,0 g
    Das vorstehende Substanzgemisch für das Grundmedium wird in 1,0 l destilliertem Wasser gelöst und autoklaviert. Nach dem Abkühlen werden zugegeben: 20,0 g Natriumcitrat, 0,02 g Natriumazid, 30 ml einer sterilen wäßrigen 5 %-igen Thallium(III)acetat-Lösung und 10,0 ml einer sterilen wäßrigen 1 %-igen 2,3,5-Triphenyltetrazoliumchlorid-Lösung. Der pH-Wert des so erhaltenen Selektivmediums wird auf 6,2 eingestellt und das Medium in Schrägagarröhrchen ausgegossen.
    Das Medium ist besonders gut zum Nachweis von Fäkalkeimen geeignet. Streptokokken, die zur Entstehung von Karies führen, können gleichermaßen nachgewiesen werden, ebenso wie gegen solche Keime (insbesondere Streptococcus mutans) gerichtete antimikrobielle Wirkprinzipien, die in Zahnbehandlungsmitteln enthalten sein können.
    Beispiel 7
    Ein besonders vorteilhaftes Selektivmedium für coryneforme Keime sowie Corynebacterien zeichnet sich durch folgende Zusammensetzung aus:
    Mischung A
    Caso-Agar 44,00 g
    Hefeextrakt 1,10 g
    Wasser ad 1000,00 ml
    Die Mischung wird autoklaviert und auf 50° C abkühlen gelassen.
    Mischung B
    Furazolidon (Aldrich) 22,00 mg
    Aceton 22,00 ml
    Tween®80 5,50 ml
    Rinderserum 100,00 ml
    Phosphomycin (Sigma Chemie) 168,00 ml
    Wasser autoklaviert 16,80 ml
    Das Furazolidon wird in den 22 ml Aceton, das Phosphomycin wird in den 16,8 ml autoklavierten Wassers gelöst. Die Bestandteile der Mischung B werden dann zusammengegeben und die so entstandene Mischung mit der Mischung A vereinigt.
    Beispiel 8
    Ein besonders vorteilhaftes Selektivmedium für coliforme Keime sowie E.coli zeichnet sich durch folgende Zusammensetzung aus:
    Pepton aus Fleisch 10,0 g
    Agar 20,0 g
    Fleischextrakt 10,0 g
    NaCl 5,0 g
    Lactose 10,0 g
    basisches Fuchsin 0,5 g
    Na2SO3 2,5 g
    Das vorstehende Substanzgemisch für das Grundmedium wird in 1,0 l destilliertem Wasser gelöst und autoklaviert. Sofern das Medium nach dem Autoklavieren rötlich gefärbt ist, wird noch wenig weiteres Natriumsulfit zugesetzt, bis daß der rötliche Farbton verschwunden ist. Anschließend wird das Medium in Schräg-Agar-Röhrchen ausgegossen.
    Nach Verfestigen des Selektivmediums ist dieses umgehend zu verwenden. Nach bereits wenigen Tagen färbt es sich rötlich an, wodurch angezeigt wird, daß es unbrauchbar geworden ist.
    Beispiel 9
    Ein besonders vorteilhaftes Selektivmedium für Enterobacteriaceen zeichnet sich durch folgende Zusammensetzung aus:
    Pepton 5,0 g
    Agar 13,0 g
    Fleischextrakt 5,0 g
    Lactose 10,0 g
    Saccharose 10,0 g
    Natriumcitrat 6,0 g
    Na2S2O3 4,0 g
    Natriumdesoxycholat 3,0 g
    Ammoniumeisen- (III) -citrat 1,0 g
    Neutralrot 0,02 g
    Das vorstehende Substanzengemisch wird in 1,0 l destillierten Wassers gelöst und bis zum Kochen erhitzt. Nach Auflösen des Agars wird die Mischung in Schrägagar-Röhrchen ausgegossen und erstarren gelassen.
    Das Medium kann auch in der klinischen Diagnostik verwendet werden, z.B. zum Nachweis von Salmonellen, Shigellen, Vibrionen und pathogenen Yersinien.
    Beispiel 10
    Ein besonders vorteilhaftes Selektivmedium für Schimmelpilze zeichnet sich durch folgende Zusammensetzung aus:
    Malzextrakt 20,0 g
    NaCl 75,0 g
    Agar 15,0 g
    Das Substanzgemisch wird in 1,0 Liter destillierten Wassers gelöst, autoklaviert und in Schrägagar-Röhrchen ausgegossen.
    Das Medium ist auch zur Kultur von Dermatophyten sowie zum Nachweis antimykotischer Eigenschaften von Testsubstanzen gegenüber solchen Keimen geeignet.
    Beispiel 11
    Enthemmungsmedium
    Hirn-Herzextrakt und Pepton 27,5 g
    D-(*)-Glucose 2,0 g
    NaCl 5,0 g
    Na2HPO4 * H2O 2,5 g
    Tween 80 30,0 g
    Lecithin 3,0 g
    Histidin 1,0 g
    Das Substanzgemisch wird in 1,0 Liter destillierten Wassers gelöst, autoklaviert und der pH-Wert auf 7,4 eingestellt.
    Versuch I: (1) Kalibrierung des Impedanzsystems für Staphylokokken mit einem Referenzstamm sowie mit Wildisolaten
    Als Referenzstamm wurde Staphylococcus epidermidis DSM 20044 verwendet. Es wurde eine aus vierunddreißig verschiedenen Keimzahlen bestehende Eichreihe durch Verdünnung hergestellt und das Impedanzsystem mit Hilfe dieser Eichreihe kalibriert.
    Die geringste Keimkonzentration (CFU) betrug 3,3 * 101/ml, entsprechend einer Zeit von 22 Stunden und 24 Minuten bis zum Erreichen des Schwellenwertes von -10 µS, die höchste Konzentration betrug 1,3 * 107/ml, entsprechend einer Zeit von 3 Stunden 12 Minuten bis zum Erreichen des Schwellenwertes von -10 µS.
    Es ergab sich eine Eichgerade mit der Beziehung log (CFU/ml) = mT + c wobei sich
  • m = -0,255 log (CFU/ml)/hr
  • c = 7,070 log (CFU/ml)
  • ergaben. Der Korrelationskoeffizient der linearen Regression betrug -0,942.
    Als Wildisolate wurde ein Gemisch von Staphylokokken, die aus der Achselhöhlenregion isoliert worden waren, verwendet. Es wurde eine aus einundfünfzig verschiedenen Keimzahlen bestehende Verdünnungsreihe hergestellt und zur Kalibrierung des Impedanzsystems verwendet.
    Es ergab sich eine Eichgerade mit der Beziehung log (CFU/ml) = mT + c wobei sich
  • m = -0,204 log (CFU/ml)/hr
  • c = 7,860 log (CFU/ml)
  • ergaben. Der Korrelationskoeffizient der linearen Regression betrug -0,917.
    (2) Verfahren zur Gewinnung Mikroorganismen von der Haut und zur Detektion und Quantifizierung von Haut-Staphylokokken mittels indirekter Impedanzmessung
    Die gesamte Mikroflora eines Bereiches der menschlichen Haut (z.B. der Achsel) wird durch Abspülen einer Fläche von 3,8 cm2 über den Zeitraum von einer Minute mit 1 ml 0,075-molaren Phosphatpuffers (pH = 7,9), enthaltend als oberflächenaktives Agens 0,1 % Triton X-100, unter leichtem Schaben mit einem teflonbeschichteten Metallspatel isoliert.
    Die so erhaltene Probe wird mit 500 µl Enthemmungsmedium gemäß Beispiel 11 versetzt.
    Je 100 µl der so aufbereiteten Probe werden mit 2,4 ml Selektivmedium gemäß Beispiel 1 versetzt und in der Meßanordnung unter Anwendung der indirekten Detektionsmethode die Keimzahl bestimmt.
    Es konnten auf diese Weise bei zehn verschiedenen Probanden ohne Schwierigkeit zwischen 102 und 107 Staphylokokken je cm2 Haut nachgewiesen werden.
    Als Detektionsgerät wurde ein RABIT der Firma Don Whitley Scientific Ltd. verwendet.
    Versuch II: (1) Kalibrierung des Impedanzsystems für coryneforme Bakterien mit einem Referenzstamm
    Als Wildstamm wurde Corynebacterium spec. verwendet. Es wurde eine aus einundfünfzig verschiedenen Keimzahlen bestehende Eichreihe durch Verdünnung hergestellt und das Impedanzsystem mit Hilfe dieser Eichreihe kalibriert.
    Die geringste Keimkonzentration (CFU) betrug 2,1 * 102/m1, entsprechend einer Zeit von 51 Stunden und 48 Minuten bis zum Erreichen des Schwellenwertes von -10 µS, die höchste Konzentration betrug 9,8 * 106/ml, entsprechend einer Zeit von 10 Stunden 24 Minuten bis zum Erreichen des Schwellenwertes von -10 µS.
    Es ergab sich eine Eichgerade mit der Beziehung log (CFU/ml) = mT + c wobei sich
  • m = -0,085 log (CFU/ml)/hr
  • c = 7,380 log (CFU/ml)
  • ergaben. Der Korrelationskoeffizient der linearen Regression betrug -0,883.
    (2) Verfahren zur Gewinnung Mikroorganismen von der Haut und zur Detektion und Quantifizierung von coryneformen Bakterien mittels indirekter Impedanzmessung
    Die gesamte Mikroflora eines Bereiches der menschlichen Haut (z.B. der Achsel) wird durch Abspülen einer Fläche von 3,8 cm2 über den Zeitraum von einer Minute mit 1 ml 0,075-molaren Phosphatpuffers (pH = 7,9), enthaltend als oberflächenaktives Agens 0,1 % Triton X-100, unter leichtem Schaben mit einem teflonbeschichteten Metallspatel isoliert.
    Die so erhaltene Probe wird mit 500 µl Enthemmungsmedium gemäß Beispiel 11 versetzt.
    Je 100 µl der so aufbereiteten Probe werden mit 2,4 ml Selektivmedium gemäß Beispiel 7 versetzt und in der Meßanordnung unter Anwendung der indirekten Detektionsmethode die Keimzahl bestimmt.
    Es konnten auf diese Weise bei zehn verschiedenen Probanden ohne Schwierigkeit zwischen 102 und 107 coryneforme Bakterien bzw. Corynebakterien je cm2 Haut nachgewiesen werden.
    Als Detektionsgerät wurde ein RABIT der Firma Don Whitley Scientific Ltd. verwendet.

    Claims (11)

    1. Kosmetisches oder dermatologisches Verfahren zur Detektion und/oder selektiven Quantifizierung einzelner auf menschlicher oder tierischer Haut befindlicher Mikroorganismen bzw. ganzer Mikroorganismengruppen, dadurch gekennzeichnet, daß
      (a) nach Entnahme einer Probe von der Mikroflora der menschlichen oder tierischen Haut, welche dadurch erfolgt, daß eine Hautfläche definierter Größe über einen definierten Zeitraum mit einer definierten Menge einer wäßrigen Lösung eines oberflächenaktiven Agens abgespült wird, wobei vorteilhaft diese wäßrige Lösung auf einen pH-Wert abgepuffert ist, der zwischen 5,0 und 8,0 liegt, und wobei die besagte Hautfläche vorteilhaft gleichzeitig unter Ausüben leichten Druckes mit einem Schabewerkzeug, insbesondere eines mit Kunststoff beschichteten Spatels, abgeschabt wird,
      (b) diese Probe mit einem Enthemmungsmedium versetzt wird,
      (c) die so aufbereitete Probe in ein Kulturmedium gegeben wird, welches günstige Wachstumsbedingungen für eine bestimmte Gruppe von Mikroorganismen aber ungünstige Wachstumsbedingungen für andere Mikroorganismen aufweist, wodurch eine Selektivkultur erzeugt wird und
      (d) diese Selektivkultur über einen hinreichend langen Zeitraum bebrütet wird, wodurch lediglich die Gruppe der Mikroorganismen, für welche das Kulturmedium günstige Wachstumsbedingungen aufweist, die Gelegenheit hat, sich zu vermehren,
      (e) wobei Stoffwechselprodukte, insbesondere CO2 entstehen, welche sich entweder im Kulturmedium selbst oder einem dafür vorgesehenen Testgefäß, welches ein Indikatormedium enthält, sammeln und
      (f) die Konzentration der Stoffwechselprodukte durch die Änderung des Wechselstromwiderstandes des Kulturmediums bzw. des Indikatormediums im Testgefäß ermittelt und, nach entsprechender Eichung, durch rechnerische Methoden mit der Anzahl der Mikroorganismen im Selektivmedium korreliert wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Selektivmedien für Staphylokokken verwendet werden, welche 40 - 50 Gewichtsteile eines üblichen Grundmediums sowie weiterhin bis zu 94 Gewichtsteile eines Selektors oder mehrerer Selektoren umfassen, wobei der oder die Selektoren gewählt werden aus der Gruppe Natriumpyruvat, Glycin, KSCN, NaH2PO4, Na2HPO4, LiCl.
    3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Selektivmedien für Propionibacterium verwendet werden, welche 35 - 50 Gewichtsteile eines üblichen Grundmediums sowie weiterhin bis zu 26 Gewichtsteile eines Selektors oder mehrerer Selektoren umfassen, wobei der oder die Selektoren gewählt werden aus der Gruppe Natriumthioglycolat, NaCl, L-Cystein-HCI, Resazurin, NaHCO3, Phosphomycin.
    4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Selektivmedien für Anaerobier verwendet werden, welche 35 - 50 Gewichtsteile eines üblichen Grundmediums sowie weiterhin bis zu 25 Gewichtsteile eines Selektors oder mehrerer Selektoren umfassen, wobei der oder die Selektoren gewählt werden aus der Gruppe Natriumthioglycolat, NaCl, L-Cystein-HCI, Resazurin, NaHCO3.
    5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Selektivmedien für Pityrosporum spec. verwendet werden, welche 40 - 90 Gewichtsteile eines üblichen Grundmediums sowie weiterhin bis zu 11 Gewichtsteile eines Selektors oder mehrerer Selektoren umfassen, wobei der oder die Selektoren gewählt werden aus der Gruppe Glycerinmonostearat, Tween 80, Chloramphenicol, Gentamycin.
    6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Selektivmedien für Hefen, insbesondere der Gattung Candida, verwendet werden, welche 30 - 50 Gewichtsteile eines üblichen Grundmediums sowie weiterhin bis zu 10 Gewichtsteile eines Selektors oder mehrerer Selektoren umfassen, wobei der oder die Selektoren gewählt werden aus der Gruppe Wismutsulfit, Neomycin.
    7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Selektivmedien für Schimmelpilze oder Dermatophyten verwendet werden, welche 20 - 75 Gewichtsteile eines üblichen Grundmediums und 10 bis 100 Gewichtsteile NaCl als Selektor umfassen.
    8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Selektivmedien für Enterokokken verwendet werden, welche 30 - 60 Gewichtsteile eines üblichen Grundmediums sowie weiterhin bis zu 80 Gewichtsteile eines Selektors oder mehrerer Selektoren umfassen, wobei der oder die Selektoren gewählt werden aus der Gruppe Natriumcitrat, Natriumazid, Thalliumacetat, 2,3,5-Triphenyltetrazol.
    9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Selektivmedien für coliforme Keime sowie Escherichia coli verwendet werden, welche 30 - 60 Gewichtsteile eines üblichen Grundmediums sowie weiterhin bis zu 37 Gewichtsteile eines Selektors oder mehrerer Selektoren umfassen, wobei der oder die Selektoren gewählt werden aus der Gruppe NaCl, Lactose, basisches Fuchsin, Na2SO3.
    10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Selektivmedien für Enterobacterieaceen verwendet werden, welche 30 - 60 Gewichtsteile eines üblichen Grundmediums sowie weiterhin bis zu 35 Gewichtsteile eines Selektors oder mehrerer Selektoren umfassen, wobei der oder die Selektoren gewählt werden aus der Gruppe Natriumcitrat, Na2S2O3, Natriumdesoxycholat, Ammoniumeisen-(III)-citrat, Neutralrot.
    11. Kosmetisches oder dermatologisches Verfahren nach Anspruch 1 oder 2 zur Detektion folgender dermatologischer Erscheinungsformen: atopisches Ekzem, Psoriasis, Akne, seborrhoische Dermatitis, bakteriell verursachte Cellulitis, Dermatomycosen, Superinfektionen der Haut mit pathogenen und/oder apathogenen grampositiven und/oder gramnegativen Mikroorganismen
    EP94924197A 1993-08-26 1994-08-17 Verfahren zur detektion und zählung von mikroorganismen Expired - Lifetime EP0715655B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4328689A DE4328689A1 (de) 1993-08-26 1993-08-26 Verfahren zur Detektion und Zählung von Mikroorganismen
    DE4328689 1993-08-26
    PCT/DE1994/000953 WO1995006133A1 (de) 1993-08-26 1994-08-17 Verfahren zur detektion und zählung von mikroorganismen

    Publications (2)

    Publication Number Publication Date
    EP0715655A1 EP0715655A1 (de) 1996-06-12
    EP0715655B1 true EP0715655B1 (de) 1999-10-27

    Family

    ID=6496064

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94924197A Expired - Lifetime EP0715655B1 (de) 1993-08-26 1994-08-17 Verfahren zur detektion und zählung von mikroorganismen

    Country Status (6)

    Country Link
    US (1) US5789191A (de)
    EP (1) EP0715655B1 (de)
    JP (1) JPH09501835A (de)
    AT (1) ATE186073T1 (de)
    DE (2) DE4328689A1 (de)
    WO (1) WO1995006133A1 (de)

    Families Citing this family (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ATE32570T1 (de) * 1981-12-10 1988-03-15 Revlon Verfahren zur herstellung metallischer blattformender pigmente.
    EP1060668A4 (de) 1998-03-06 2004-12-15 Toyota Motor Co Ltd Verfahren zur bekämpfung eines ziel-mikroorganismus
    BR9913193A (pt) * 1998-08-28 2001-05-15 Colgate Palmolive Co Processo para demonstrar visualmente a efetividade de uma composição de antifixação de bactérias
    US5951965A (en) * 1998-08-28 1999-09-14 Colgate Palmolive Company Method for visually demonstrating the effectiveness of an anti-bacteria attachment composition
    US7435579B2 (en) * 2000-04-17 2008-10-14 Purdue Research Foundation Biosensor and related method
    US7306924B2 (en) * 2000-04-17 2007-12-11 Purdue Research Foundation Biosensor and related method
    WO2001079529A1 (en) * 2000-04-17 2001-10-25 Purdue Research Foundation Biosensor and related method
    US6319945B1 (en) * 2000-06-29 2001-11-20 L. Dean Parks Method of treatment of seborrheic dermatitis
    ATE449866T1 (de) * 2000-08-01 2009-12-15 Pola Pharma Inc Verfahren zum evaluieren antifungaler agensien
    US7374905B2 (en) * 2000-11-08 2008-05-20 Oxyrase, Inc. Medium composition, method and device for selectively enhancing the isolation of anaerobic microorganisms contained in a mixed sample with facultative microorganisms
    US20030138874A1 (en) 2001-11-09 2003-07-24 Taintor Read Robert Method and kit for rapid concurrent identification and antimicrobial susceptibility testing of microorganisms from broth culture
    US20050042711A1 (en) * 2003-08-11 2005-02-24 George Mason University Field test for fungi
    MX2008003078A (es) * 2005-09-02 2008-03-19 Procter & Gamble Metodo y dispositivo para indicar el contenido de humedad de la piel.
    JP2009506418A (ja) * 2005-09-02 2009-02-12 ザ プロクター アンド ギャンブル カンパニー 皮膚湿分含量を小売店において測定する方法
    JP2009508543A (ja) * 2005-09-02 2009-03-05 ザ プロクター アンド ギャンブル カンパニー 頭皮の健康の予測子として湿分を測定する方法
    US20070191694A1 (en) * 2005-09-02 2007-08-16 Sherman Faiz F Methods for measuring moisture content of skin
    US8241865B2 (en) * 2008-04-15 2012-08-14 Kwikculture Llc Direct antimicrobial susceptibility assay with concurrent qualitation/quantitation
    US7960136B2 (en) * 2008-04-15 2011-06-14 Kwikculture Llc Direct antimicrobial susceptibility assay
    US9376703B2 (en) * 2012-06-14 2016-06-28 3M Innovative Properties Company Methods for detecting a xerophilic or osmophilic yeast or mold microorganism
    WO2019148116A1 (en) 2018-01-29 2019-08-01 Atolla Skin Health, Inc. Systems and methods for formulating personalized skincare products
    JP7190266B2 (ja) * 2018-06-19 2022-12-15 ポーラ化成工業株式会社 特定の肌状態と相関のある特定の環境由来菌の菌量に基づく、肌状態の診断方法、皮膚常在細菌叢の多様性の推測方法、特定の環境由来菌の菌量の推測方法、特定の肌状態と相関のある菌の属性を解析する方法、肌状態改善作用を有する物質又は美容方法のスクリーニング方法

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3743581A (en) * 1970-10-21 1973-07-03 Bactomatic Inc Microbiological detection apparatus
    GB1433887A (en) * 1973-04-19 1976-03-17 Bactomatic Inc Microbiological detection apparatus
    DE2322641A1 (de) * 1973-05-02 1974-11-21 Bactomatic Inc Verfahren und einrichtung fuer mikrobiologische untersuchungen
    US3984766A (en) * 1974-10-15 1976-10-05 Bactomatic Inc. Digital apparatus for rapidly detecting the growth of and identifying micro-biological organisms
    GB1585067A (en) * 1976-10-19 1981-02-25 Nat Res Dev Detection of bacterial activity
    JPS5529940A (en) * 1978-08-23 1980-03-03 Kyowa Hakko Kogyo Co Ltd Method and apparatus for determining activity of microorganism
    EP0036274B1 (de) * 1980-03-08 1986-11-05 Japan Tectron Instruments Corporation Verfahren zur Überwachung von Mikroorganismen und Nährboden
    IT1167468B (it) * 1981-07-13 1987-05-13 Instrumentation Lab Spa Cella elettrochimica dotata di elettrodi selettivi ed almeno un reattore chimico, atta alla misura indiretta di parametri chimico-clinici, e metodo di misura impiegante tale cella
    GB8622748D0 (en) * 1986-09-22 1986-10-29 Ici Plc Determination of biomass
    SU1686354A1 (ru) * 1988-08-08 1991-10-23 Завод транспортного машиностроения им.В.И.Ленина Способ определени инфицированности кожи микроорганизмами
    DK0397362T3 (da) * 1989-05-08 1995-08-14 Metal Box Plc Elektrokemisk påvisning af vækst af mikroorganismer
    ATE147165T1 (de) * 1990-08-30 1997-01-15 Univ Wales Analytisches verfahren
    DE4139122C1 (de) * 1991-11-28 1993-04-08 Fenzlein, Paul-Gerhard, 8500 Nuernberg, De
    GB9200246D0 (en) * 1992-01-07 1992-02-26 Aber Instr Ltd Method and apparatus for determining biomass
    US5464755A (en) * 1994-04-29 1995-11-07 Biolog, Inc. Microbiological medium and method of assay

    Non-Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Title
    dmz Lebensmittelindustrie und Milchwirtschaft 31, 1990, 950 - 961 *
    dmz Lebensmittelindustrie und Milchwirtschaft 32/33, 1991, 992 - 997 *
    J. Clin. Microbiol. 17, 2, 1983, 276 - 280 *

    Also Published As

    Publication number Publication date
    DE4328689A1 (de) 1995-03-02
    EP0715655A1 (de) 1996-06-12
    JPH09501835A (ja) 1997-02-25
    ATE186073T1 (de) 1999-11-15
    DE59408865D1 (de) 1999-12-02
    WO1995006133A1 (de) 1995-03-02
    US5789191A (en) 1998-08-04

    Similar Documents

    Publication Publication Date Title
    EP0715655B1 (de) Verfahren zur detektion und zählung von mikroorganismen
    McGinley et al. Quantitative microbiology of the scalp in non-dandruff, dandruff, and seborrheic dermatitis
    DE3048705C2 (de)
    DE69323019T2 (de) Verbesserter Nachweis von Mikroorganismen
    Tinanoff et al. Effect of stannous fluoride mouthrinse on dental plaque formation
    DE69212867T2 (de) Synergistisches, additives oder antagonistisches Produkt-Auswahl-Test für Biozide
    DE69028310T2 (de) Verfahren und vorrichtung zur speziesfestsetzung und identifikation von mai (mycobacterium-avium-intracellulare)
    Van Oosten et al. Microbial and clinical measurements of periodontal pockets during sequential periods of non‐treatment, mechanical debridement and metronidazole therapy
    DE2728456C2 (de) Verfahren zur Feststellung pathogener Mikroorganismen in den menschlichen Atemwegen
    DE69114457T2 (de) Sehr rasche feststellung von pilz-infektionen.
    WO2009156232A1 (de) Verfahren zur charakterisierung der biologischen aktivität von helminth-eiern, nämlich von trichuris eiern
    DE3007579A1 (de) Selektives medium zur isolierung von choleravibrionen
    DE2829316A1 (de) Verfahren zum nachweis und zur untersuchung von zellulaerer aktivitaet und mittel zur durchfuehrung des verfahrens
    DE2833846A1 (de) Kulturmedium fuer fungi
    DE69113370T2 (de) Frühdiagnose von Mastitis in Milch.
    EP0885969B1 (de) Nährboden zum Nachweis Streptococcus mutans
    EP0435226A1 (de) Phagozytose-Test
    DE69016367T2 (de) Selectivmedium für Pilze.
    DE2552354A1 (de) Verfahren zur kaeltebehandlung von rohem fisch und fleisch
    DE19758598B4 (de) Verfahren zur Prüfung von Materialien hinsichtlich ihrer potentiellen antimikrobiellen Wirksamkeit und der Proliferation von Zellen auf ihrer Oberfläche
    Schmidt Diagnostic results in animal dermatophytoses
    Cox et al. The activity of polymethylene-bis-4-aminoquinaldinium salts against Pityrosporum ovale and Candida albicans
    DE3427679C2 (de)
    EP3362551B1 (de) Nährmedium für osmotolerante mikroorganismen
    CN115120551B (zh) 小球藻提取物及乳酸杆菌发酵产物在护理产品中的应用

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19951018

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL

    17Q First examination report despatched

    Effective date: 19970415

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991027

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 19991027

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991027

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991027

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19991027

    REF Corresponds to:

    Ref document number: 186073

    Country of ref document: AT

    Date of ref document: 19991115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59408865

    Country of ref document: DE

    Date of ref document: 19991202

    EN Fr: translation not filed
    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 19991027

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000817

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000831

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000831

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000831

    26N No opposition filed
    BERE Be: lapsed

    Owner name: BEIERSDORF A.G.

    Effective date: 20000831

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010501