EP0715007A1 - Kunststoff-Fibride - Google Patents

Kunststoff-Fibride Download PDF

Info

Publication number
EP0715007A1
EP0715007A1 EP95117219A EP95117219A EP0715007A1 EP 0715007 A1 EP0715007 A1 EP 0715007A1 EP 95117219 A EP95117219 A EP 95117219A EP 95117219 A EP95117219 A EP 95117219A EP 0715007 A1 EP0715007 A1 EP 0715007A1
Authority
EP
European Patent Office
Prior art keywords
fibrids
plastic
polyester
liquid jets
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95117219A
Other languages
English (en)
French (fr)
Other versions
EP0715007B1 (de
Inventor
Peter Dr. Steinau
Dieter Jungert
Volker Mai
Birgitta Meier
Eckehard Pohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwarzw?lder Textil Werke Heinrich Kautzmann Gmb
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Publication of EP0715007A1 publication Critical patent/EP0715007A1/de
Application granted granted Critical
Publication of EP0715007B1 publication Critical patent/EP0715007B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/26Formation of staple fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Definitions

  • the invention relates to plastic fibrids according to the preamble of claim 1.
  • Plastic fibrids are non-spinnable and no longer divisible pure fibers with an irregular fiber morphology. They are composed of the crystallites and probably also amorphous fiber parts and represent the smallest fiber units. The possible uses of these fibers have increased significantly in recent years. In addition to the conventional areas of application, such as in paper production, the increasing importance of the recyclability of products enables further sales markets to be opened up.
  • Plastic fibrids made of polyethylene (HDPE, LLDPE) and polypropylene (PP) are known to date.
  • the plastic fibrids are manufactured using the flash spinning process.
  • the plastics are emulsified in a water-solvent mixture under pressure and temperature and the emulsion is sprayed into a vacuum. The solvent evaporates, the temperature drops sharply and the plastic is transformed into fibrids under crystallization.
  • plastics which are economically and technically suitable in normally available solvents, such as e.g. aliphatic hydrocarbons, are soluble. The result is products that have to be subjected to post-treatment.
  • Plastic fibrids made of polyacrylonitrile (PAN) or polyaromatics and cellulose acetate are made from prefabricated splicable fibers.
  • the way to produce the fibrids is via foils or staple fibers.
  • the film is extruded, cut, stretched and mechanically fibrillated.
  • the film is stretched many times its length under the influence of heat.
  • the molecules must be oriented at a temperature below the crystallite melting point. There is a significant increase in tear strength and a decrease in elongation at break in the stretching direction.
  • Spun fibers are specially stretched (high modulus) to increase the tendency to splice.
  • the use of the fibrids is essentially based on the raw material properties of the starting plastics. In many cases, one is procedural Hydrophilicity is a prerequisite for the possible uses. In order to open up new application options or to provide existing applications with new properties that increase product value, fibrids from other plastics, in particular polyester, would be desirable. Attempts to manufacture polyester-based fibrids using the methods described above have not been successful. Mechanical fibrillation is ruled out because of the crystallization of the film during its production in a separate step (fixation), so that it can no longer be spliced because of its crystallized state, while the spinning process cannot be carried out economically due to the lack of suitable solvents.
  • the invention has for its object to create new plastic fibrids.
  • polyester-based fibrids preferably from a polyephthalate ester
  • the fibrids are characterized by the desired fibril fineness and shortness of 0.1 to 5 mm during manufacture.
  • the fibrids according to the invention are characterized in that they consist of a polyester which is injected as a low-viscosity jet into a shear field formed by liquid jets, torn apart by the liquid jets and formed into fibrids by cooling, crystallization and orientation.
  • the polyester-based fibrids have a specific surface area of 1 to 10 m2 / g and are dispersible in water without pretreatment.
  • the melting point is between 200 - 260 ° C with good long-term heat resistance.
  • the method according to the invention for producing fibrids based on thermoplastic polyester is based on the idea of heating the polyester to a viscous mass at temperatures below its decomposition temperatures between 100 ° C. and 450 ° C., in particular 250 ° C. and 400 ° C. to tear up.
  • the polyester jet has a viscosity of less than 200 Pascal ⁇ seconds, preferably less than 100 (Pa ⁇ s).
  • the low-viscosity polyester is freely sprayed into a high-energy shear field at a pressure between 100 and 1000 bar at high speed.
  • the shear field is formed by liquid or gaseous atomizing jets that are aligned with a center and hit the polyester jet with high kinetic energy at pressures between 100 and 1000 bar.
  • the atomizing jets preferably consist of cryogenic liquefied gases, such as the inert gases nitrogen and argon. Water can also be used at pressures above 100 bar.
  • cryogenic liquefied gases such as the inert gases nitrogen and argon. Water can also be used at pressures above 100 bar.
  • the polyester torn in the shear field with liquid nitrogen jets forms fibrids on cooling, crystallization and orientation.
  • the melted polyester in an extruder is freely sprayed into the shear field at a temperature of 100 ° C to 450 ° C through a nozzle that determines the polyester jet geometry.
  • the injection pressure is at least 100 bar and is only limited with respect to its maximum pressure, for example 1000 bar, by technical and economic limits.
  • There the polyester jet immediately reaches the center of the shear field generated by a nozzle system.
  • the nozzle system consists of flat jet or full jet nozzles, which are arranged at an angle of 30 to 150 ° to the polyester jet.
  • the polyester beam is torn apart by the energy of the shear field and at the same time extremely cooled.
  • the kinetic energy of the atomization medium preferably a liquefied inert gas, in particular nitrogen
  • the large temperature difference of up to 650 K cause the polyester to be so heavily loaded that it breaks down into fibrids.
  • the fibrids accumulate at the bottom of the reaction space. They can be removed through an opening in the reaction chamber.
  • the nitrogen gas produced is conveyed through a filter and a cyclone via a fan into a chimney and thus into the open air or into a recovery circuit.
  • the nitrogen required by the nozzle system of the shear field enters the nozzle system from an insulated tank via a high-pressure pump in a liquid state and under high pressure.
  • the fibrids produced show clear variations in the density and length of the individual fibrils and lie in their free surface below the products produced via emulsion or dissolution of the surfaces. They have more hidden surfaces.
  • the controllability the fibril sizes are significantly expanded by the method according to the invention, so that a very fine pulp can be achieved.
  • Polyalkylene terephthalates belong to the group of polyephthalate esters. Two different types of polyalkylene terephthalate are polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). At room temperature, PET and PBT are hard, stiff, impact-resistant semi-crystalline plastics with good sliding and abrasion behavior even at low cold temperatures. PTP is very low-viscosity at higher processing temperatures.
  • Celanex is a semi-crystalline, thermoplastic polyester type based on PBT.
  • PBT is produced by melt polycondensation of dimethyl terephthalate with 1,4-butanediol and has the following chemical formula:
  • the physical properties of Celanex are listed below: Trade name: Celanex Type: 2000-2 Manufacturer: Hoechst AG Melt index MVI 250/2: 65 cm3 / 10 min Density: 1.30 g / cm3 Crystalline melting range: 200-225 ° C
  • RT 40 A low-viscosity PTP type from Hoechst AG (RT 40) was divided into fribids in the shear field with cryogenic liquefied nitrogen.
  • the physical properties of RT 40 are listed below: Trade name: Impet Type: RT 40 Manufacturer: Hoechst AG Density: 1.3 g / cm3 Crystalline melting range: 250-260 ° C
  • the result of the tests are fibrids with fiber lengths of ⁇ 5 mm and high temperature resistance. Furthermore, they have an extremely fine fiber structure with a glossy character and show a very low proportion of foils and enamel particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Lubricants (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)

Abstract

Durch die Erfindung werden Kunststoff-Fibride hergestellt, die aus einem Polyester bestehen, der als niedrigviskoser Strahl in ein durch Flüssigkeitsstrahlen gebildetes Scherfeld gespritzt, von den Flüssigkeitsstrahlen zerrissen und durch Abkühlung, Kristallisation und Orientierung zu Fibriden ausgebildet ist, die eine Fibrillenlänge von 0,1 bis 5 mm aufweisen.

Description

  • Die Erfindung betrifft Kunststoff-Fibride nach dem Oberbegriff des Anspruches 1.
  • Kunststoff-Fibride sind nicht spinnfähige und nicht mehr aufteilbare reine Fasern mit unregelmäßiger Fasermorphologie. Sie setzen sich aus den Kristalliten und wohl auch amorphen Faserteilen zusammen und stellen die kleinsten Fasereinheiten dar. Die Einsatzmöglichkeiten dieser Fasern sind in den letzten Jahren stark gestiegen. Neben den herkömmlichen Einsatzgebieten, wie bei der Papierherstellung, können durch die immer mehr an Bedeutung gewinnende Wiederverwertbarkeit der Produkte weitere Absatzmärkte erschlossen werden.
  • Bisher bekannt sind Kunststoff-Fibride aus Polyäthylen (HDPE, LLDPE) und Polypropylen (PP). Hergestellt werden die Kunststoff-Fibride im Flash-Spinning-Verfahren.
  • Dabei werden die Kunststoffe in einem Wasser-Lösungsmittelgemisch unter Druck und Temperatur emulgiert und die Emulsion in ein Vakuum ausgedüst. Dabei verdampft das Lösungsmittel, die Temperatur sinkt stark ab und der Kunststoff wird unter Kristallisation in Fibride verwandelt.
  • Voraussetzung hierfür sind ein bestimmter minimaler Kristallisationsgrad sowie bestimmte minimale Kristallisationsgeschwindigkeiten des Kunststoffes. Für den Spinnprozeß eignen sich nur Kunststoffe welche wirtschaftlich und technisch in normal verfügbaren Lösungsmitteln, wie z.B. aliphatischen Kohlenwasserstoffen, lösbar sind. Als Ergebnis erhält man Produkte, die einer Nachbehandlung unterzogen werden müssen.
  • Kunststoff-Fibride aus Polyacrylnitril (PAN) oder Polyaromaten und Celluloseacetat werden aus vorgefertigten spleissfähigen Fasern erzeugt. Der Weg zur Herstellung der Fibride führt über Folien oder Spinnfasern. Die Folie wird extrudiert, geschnitten, verstreckt und mechanisch fibrilliert. Unter Einwirkung von Wärme wird die Folie um ein vielfaches der Länge verstreckt. Die Orientierung der Moleküle muß bei einer Temperatur unterhalb des Kristallitschmelzpunktes vorgenommen werden. Es tritt eine wesentliche Zunahme der Reißfestigkeit und Abnahme der Reißdehnung in Reckrichtung ein. Spinnfasern werden speziell hoch verstreckt (high modul), um die Spleissneigung zu erhöhen.
  • Der Einsatz der Fibride orientiert sich im wesentlichen an den Rohstoffeigenschaften der Ausgangskunststoffe. In vielen Fällen ist verfahrensbedingt, eine bestimmte Hydrophilie Voraussetzung für die Einsatzmöglichkeiten. Um neue Anwendungsmöglichkeiten zu erschließen bzw. bestehende Anwendungen mit neuen produkwertsteigernden Eigenschaften zu versehen, wären Fibride von anderen Kunststoffen, insbesondere Polyester, wünschenswert. Versuche Fibride auf Polyesterbasis nach den vorstehend beschriebenen Verfahren herzustellen, führten nicht zu einem Ergebnis. Eine mechanische Fibrillierung scheidet wegen des Auskristallisierens der Folie bei deren Herstellung in einem getrennten Schritt (Fixierung) aus, so daß sie wegen ihres kristallisierten Zustandes nicht mehr spleissfähig werden kann, während aufgrund fehlender geeigneter Lösungsmittel der Spinnprozeß wirtschaftlich nicht durchführbar ist.
  • Der Erfindung liegt die Aufgabe zugrunde, neue Kunststoff-Fibride zu schaffen.
  • Ausgehend von dem im Oberbegriff des Anspruches 1 berücksichtigten Stand der Technik, ist diese Aufgabe gelöst mit den im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmalen.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Überraschenderweise wurde ein Verfahren gefunden, mit dem Fibride auf Polyesterbasis, vorzugsweise aus einem Polyephtalatester, erstmals hergestellt werden können. Die Fibride zeichnen sich durch die gewünschte Fibrillenfeinheiten und Kürze von 0,1 bis 5 mm bei der Herstellung aus.
  • Die erfindungsgemäßen Fibride sind dadurch gekennzeichnet, daß sie aus einem Polyester bestehen, der als niedrigviskoser Strahl in ein durch Flüssigkeitsstrahlen gebildetes Scherfeld gespritzt, von den Flüssigkeitsstrahlen zerrissen und durch Abkühlen, Kristallisation und Orientierung zu Fibriden ausgebildet ist. Die auf Polyesterbasis hergestellten Fibride weisen eine spezifische Oberfläche von 1 bis 10 m²/g auf und sind ohne Vorbehandlung im Wasser dispergierbar. Der Schmelzpunkt liegt zwischen 200 - 260 °C bei guter Dauerwärmebeständigkeit.
  • Das erfindungsgemäße Verfahren zum Erzeugen von Fibriden auf der Basis thermoplastischer Polyester geht von dem Gedanken aus, das Polyester bei Temperaturen unterhalb seiner Zersetzungstemperaturen zwischen 100 °C und 450 °C , insbesondere 250 °C und 400 °C, zu einer viskosen Masse zu erwärmen und zu zerreißen. Der Polyesterstrahl weist nach seiner Erwärmung eine Viskosität unter 200 Pascal · Sekunde, vorzugsweise unter 100 (Pa·s), auf. Der niedrigviskose Polyester wird unter einem Druck zwischen 100 und 1000 bar mit hoher Geschwindigkeit im Strahl frei in ein energiereiches Scherfeld gespritzt. Das Scherfeld bilden flüssige oder gasförmige Verdüsungsstrahlen die auf ein Zentrum ausgerichtet sind und mit hoher kinetischer Energie bei Drücken zwischen 100 und 1000 bar auf den Polyesterstrahl treffen. Vorzugsweise bestehen die Verdüsungsstrahlen aus tiefkalt verflüssigten Gasen, wie die Inertgase Stickstoff und Argon. Auch Wasser kann bei Drücken oberhalb 100 bar eingesetzt werden. Der in dem Scherfeld mit Flüssigstickstoffstrahlen zerissene Polyester bildet bei Abkühlung, Kristallisation und Orientierung Fibride.
  • Das in einem Extruder aufgeschmolzene Polyester wird durch eine Düse, welche die Polyesterstrahlgeometrie bestimmt, mit einer Temperatur von 100 °C bis 450 °C frei in das Scherfeld ausgespritzt. Der Spritzdruck beträgt mindestens 100 bar und wird bezgl. seines Maximaldruckes, von beispielsweise 1000 bar, nur durch technische und wirtschaftliche Grenzen beschränkt. Dort erreicht der Polyesterstrahl sofort das Zentrum des, durch ein Düsensystem erzeugten, Scherfeldes. Das Düsensystem besteht aus Flachstrahl- oder Vollstrahldüsen, die unter einen Winkel von 30 bis 150° zum Polyesterstrahl angeordnet sind. Hier wird der Polyesterstrahl durch die Energie des Scherfeldes zerrissen und gleichzeitig extrem abgekühlt. Die kinetische Energie des Verdüsungsmediums, vorzugsweise eines verflüssigten Inertgases, insbesondere Stickstoffes und der große Temperaturunterschied von bis zu 650 K bewirken eine derart starke Belastung des Polyesters, daß es zu Fibriden zerfällt. Die anfallenden Fibride sammeln sich am Boden des Reaktionsraumes an. Sie können durch eine Öffnung des Reaktionsraumes entnommen werden. Das entstehende Stickstoffgas wird durch einen Filter und einen Zyklon über einen Ventilator in einen Kamin und somit ins Freie oder in einen Rückgewinnungskreislauf befördert. Der vom Düsensystem des Scherfeldes benötigte Stickstoff gelangt von einem isolierten Tank über eine Hochdruckpumpe im flüssigen Zustand und unter hohem Druck ins Düsensystem.
  • Die hergestellten Fibride zeigen deutliche Variationen in Dichte und Länge der Einzelfibrille und liegen in ihrer freien Oberfläche unter den über Emulsion oder Anlösen der Oberflächen hergestellten Produkte. Sie besitzen mehr verdeckte Oberflächen. Die Steuerbarkeit der Fibrillengrößen ist über das erfindungsgemäße Verfahren deutlich ausgeweitet, so daß ein sehr feiner Pulp erreicht werden kann.
  • Beispiel A
  • Polyalkylenterephtalate (PTP) gehören zu der Gruppe der Polyephtalatester. Zwei unterschiedliche Arten der Polyalkylenterephtalate sind Polyäthylenterephtalat (PET) und Polybutylenterephtalat (PBT). PET und PBT sind bei Raumtemperatur harte, steife, auch bei tiefen Kältetemperaturen schlagzähe teilkristalline Kunststoffe mit gutem Gleit- und Abriebverhalten. PTP ist bei höheren Verarbeitungstemperaturen sehr niedrigviskos.
  • Ein extrem leichtfließender PTP-Typ der Firma Hoechst AG (Celanex) wurde im Scherfeld mit tiefkalt verflüssigtem Stickstoff in Fibride zerteilt. Celanex ist ein teilkristalliner, thermoplastischer Polyester-Typ auf der Basis von PBT. PBT wird durch Schmelzpolykondensation von Terephtalsäuredimethylester mit 1,4-Butandiol hergestellt und hat folgende chemische Formel:
    Figure imgb0001

    Die physikalischen Eigenschaften von Celanex sind nachstehend aufgeführt:
    Handelsname: Celanex
    Typ: 2000-2
    Hersteller: Hoechst AG
    Schmelzindex MVI 250/2: 65 cm³/10 min
    Dichte: 1,30 g/cm³
    Kristallitschmelzbereich: 200-225 °C
  • Celanex wurde unter den in der Tabelle angegebenen Versuchbedingungen zerteilt:
  • Parameter:
  • Probewerkstoff PBT Celanex 2000
    Temperatur
    Düse 340 °C
    Zone 1 350 °C
    Zone 2 300 °C
    Zone 3 200 °C
    Stickstoffdüse Fl.str. 1,02 mm
    Kunststoffdüse Vollstr. 0,47 mm
    Stickstoffdruck 250 bar
    Kunststoffdruck 180 bar
    Spritzdauer 4-5 sec
  • Siebstrahlanalyse:
  • Maschenweite in um PBT
    800 93,6 %
    630 90,4 %
    400 77,6 %
    250 49,6 %
  • Das Ergebnnis der Versuche sind Fibride die eine (sehr) feine Struktur mit glänzendem Charakter aufweisen
  • Beispiel B
  • Ein niedrigviskoser PTP-Typ der Firma Hoechst AG (RT 40) wurde im Scherfeld mit tiefkalt verflüssigtem Stickstoff in Fribide zerteilt. RT 40 ist ein teilkristalliner, thermoplastischer Polyester-Typ auf der Basis von PET. PET wird durch Schmelzpolykondensation von Dicarbonsäuren und Dialkoholen (= Terephtalsäure + Ethylenglykol = PET, bei RT 40 ist noch ein Anteil Isophtalsäure dabei) hergestellt und hat folgende Formel:
    Figure imgb0002

    Die physikalischen Eigenschaften von RT 40 sind nachstehend aufgeführt:
    Handelsname: Impet
    Typ: RT 40
    Hersteller: Hoechst AG
    Dichte: 1,3 g/cm³
    Kristallitschmelzbereich: 250-260 °C
  • Parameter:
  • Probewerkstoff Säurebasis, Terephtal und Isophtalsaure PET RT 40
    Temperatur
    Düse 340 °C
    Zone 1 350 °C
    Zone 2 310 °C
    Zone 3 200 °C
    Stickstoffdüse Fl.str. 1,02 mm
    Kunststoffdüse Vollstr. 0,47 mm
    Stickstoffdruck 250 bar
    Kunststoffdruck 180 bar
    Spritzdauer 4-5 sec
  • Siebstrahlanalyse:
  • Maschenweite in um PET
    800 100 %
    630 98,4 %
    400 95,2 %
    250 74,4 %
  • Das Ergebnis der Versuche sind Fibride die Faserlängen ≦ 5 mm aufweisen und eine hohe Temperaturbeständigkeit besitzen. Desweiteren haben sie eine extrem feine Faserstruktur mit glänzendem Charakter und zeigen einen sehr geringen Folien- und Schmelzpartikel-Anteil.

Claims (8)

  1. Kunststoff-Fibride,
    dadurch gekennzeichnet,
    daß sie aus einem Polyester bestehen, der als niedrigviskoser Strahl in ein durch Flüssigkeitsstrahlen gebildetes Scherfeld gespritzt, von den Flüssigkeitsstrahlen zerrissen und durch Abkühlung, Kristallisation und Orientierung zu Fibriden ausgebildet ist, die eine Fibrillenlänge von 0,1 bis 5 mm aufweisen.
  2. Kunststoff-Fibride,
    dadurch gekennzeichnet,
    daß der Polyesterstrahl eine Viskosität unter 200 [Pa·s], vorzugsweise unter 100 [Pa·s], aufweist.
  3. Kunststoff-Fibride,
    dadurch gekennzeichnet,
    daß die Fibride aus einem Polyterephtalatester bestehen.
  4. Kunststoff-Fibride,
    dadurch gekennzeichnet,
    daß die Fibride aus einem Polyalklenterephtalat bestehen.
  5. Kunststoff-Fibride,
    dadurch gekennzeichnet,
    daß die Fibride aus einem Polybutylenterephtalat bestehen.
  6. Kunststoff-Fibride,
    dadurch gekennzeichnet,
    daß die Fibride mit einer Temperatur unterhalb ihrer Zersetzungstemperatur zwischen 100 °C und 450 °C und einem Druck zwischen 100 und 1000 bar in das aus Flüssigkeitsstrahlen gebildete Scherfeld gespritzt und mit Flüssigkeitsstrahlen zerrissen werden.
  7. Kunststoff-Fibride nach Anspruch 1 oder 6,
    dadurch gekennzeichnet,
    daß die Flüssigkeitsstrahlen aus einem der tiefkalten verflüssigten Gase Stickstoff oder Argon gebildet werden.
  8. Kunststoff-Fibride nach Anspruch 1, 6 oder 7,
    dadurch gekennzeichnet,
    daß die Flüssigkeitsstrahlen mit einem Druck zwischen 10 und 600 bar auf den Polyesterstrahl gespritzt werden.
EP95117219A 1994-11-24 1995-11-02 Kunststoff-Fibride Expired - Lifetime EP0715007B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4441801 1994-11-24
DE4441801A DE4441801C1 (de) 1994-11-24 1994-11-24 Polyesterfibride

Publications (2)

Publication Number Publication Date
EP0715007A1 true EP0715007A1 (de) 1996-06-05
EP0715007B1 EP0715007B1 (de) 1999-02-03

Family

ID=6534016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95117219A Expired - Lifetime EP0715007B1 (de) 1994-11-24 1995-11-02 Kunststoff-Fibride

Country Status (8)

Country Link
US (1) US5695695A (de)
EP (1) EP0715007B1 (de)
JP (1) JPH08209440A (de)
AT (1) ATE176505T1 (de)
DE (1) DE4441801C1 (de)
ES (1) ES2131740T3 (de)
FI (1) FI955640A (de)
ZA (1) ZA959840B (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908541B1 (de) * 1996-03-06 2005-06-01 Mitsubishi Rayon Co., Ltd. Auf fibrillen basierende fasern, methode zu deren herstellung, dabei verwendete spinndüse und damit hergestellte formkörper
US6168733B1 (en) 1998-08-31 2001-01-02 Eastman Chemical Company Method for forming discrete pellets from viscous materials
DE19959532C1 (de) * 1999-12-10 2001-10-04 Seitz Schenk Filtersystems Gmb Verfahren und Vorrichtung zur Herstellung von filtrationsaktiven Fasern
US10945381B1 (en) 2014-07-02 2021-03-16 Outdoor Product Innovations, Inc. Modular tools with detachable coupling
US11306214B2 (en) 2016-05-09 2022-04-19 North Carolina State University Fractal-like polymeric particles and their use in diverse applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1934541A1 (de) * 1969-07-08 1971-01-14 Basf Ag Verfahren und Vorrichtung zur Herstellung von Stapelfasern aus thermoplastischen Kunststoffen
EP0053188A1 (de) * 1980-05-28 1982-06-09 Toray Industries, Inc. Isolierschicht

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL246230A (de) * 1958-12-09
BE795724A (fr) * 1972-02-25 1973-08-21 Basf Ag Procede et dispositif de fabrication de fibres courtes en matieres synthetiques thermoplastiques
US4210615A (en) * 1973-05-23 1980-07-01 Basf Aktiengesellschaft Manufacture of thermoplastics fibrids
DE2363671C3 (de) * 1973-12-21 1979-09-20 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Kurzfasern aus Niederdruckpolyäthylen
DE2516561C3 (de) * 1975-04-16 1979-10-11 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Fibrillen aus Polymerisaten
DE2543824C3 (de) * 1975-10-01 1980-05-14 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Fibrillen aus Poly(amid-imid)-harzen und die Fibrillen aus diesen Harzen
DE2646332B2 (de) * 1976-10-14 1979-04-12 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Fibrillen aus fluorhaltigen Polymerisaten
US4128614A (en) * 1977-05-20 1978-12-05 Celanese Corporation Halogenated aromatic polyester fibers prepared via dry-spinning having reduced spin-line static generation
US4340442A (en) * 1978-11-06 1982-07-20 Champion International Corporation Starch fibrids useful in enhancing the physical properties of paper, and process of preparing same
DE2947490A1 (de) * 1979-11-24 1981-06-04 Hoechst Ag, 6000 Frankfurt Polyoxymethylenfibride und verfahren zu ihrer herstellung
US5482773A (en) * 1991-07-01 1996-01-09 E. I. Du Pont De Nemours And Company Activated carbon-containing fibrids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1934541A1 (de) * 1969-07-08 1971-01-14 Basf Ag Verfahren und Vorrichtung zur Herstellung von Stapelfasern aus thermoplastischen Kunststoffen
EP0053188A1 (de) * 1980-05-28 1982-06-09 Toray Industries, Inc. Isolierschicht

Also Published As

Publication number Publication date
FI955640A (fi) 1996-05-25
FI955640A0 (fi) 1995-11-23
US5695695A (en) 1997-12-09
DE4441801C1 (de) 1996-06-05
ATE176505T1 (de) 1999-02-15
ES2131740T3 (es) 1999-08-01
EP0715007B1 (de) 1999-02-03
ZA959840B (en) 1996-05-29
JPH08209440A (ja) 1996-08-13

Similar Documents

Publication Publication Date Title
DE2830685C3 (de) Verfahren zur Herstellung von Formkörpern aus Lösungen von Cellulose in einem tertiären Aminoxyd
DE2118931B2 (de) Verbundmaterial, welches ein organisches Polymeres und ein anorganisches Oxydglas enthält, sowie dessen Verwendung
DE3041888A1 (de) Thermoplastische zubereitung
EP0407901B1 (de) Verfahren zur Herstellung von Polyäthylenfäden durch Schnellspinnen von ultrahochmolekularem Polyäthylen
EP0976854B1 (de) Monofile Bikomponentenfäden des Kernmanteltyps
DE1807144A1 (de) Fibrillierter Faden
EP0715007B1 (de) Kunststoff-Fibride
EP1544331B1 (de) Polyesterfasern, Verfahren zu deren Herstellung und deren Verwendung
DE10057678A1 (de) Verfahren zur Herstellung von schmelzfähigen Polyestern
WO1998004619A1 (de) Monoaxial gereckte, biologisch abbaubare und kompostierbare folie mit verbesserten eigenschaften
DE19501123C2 (de) Verfahren zur Herstellung einer Vliesbahn aus thermoplastischen Polymerfilamenten
EP0608454B1 (de) Verfahren und Vorrichtung zur Herstellung von Polyamid 6 aus Polyamid-Abfällen
DE60203738T2 (de) Copolyetheresterzusammensetzung und daraus hergestellte airbagabdeckungen
EP0442405B1 (de) Verfahren und Vorrichtung zur Herstellung von Formkörpern
DE19524356C1 (de) Kunststoff-Fibride aus Polyurethan
DE2210119C3 (de) Verfahren zur Herstellung thermoplastischer elastomerer Formmassen
EP0258732A2 (de) Faserverstärkte Kunststoffe
EP0453958A2 (de) Flächenhafter Formkörper und Verfahren zu seiner Herstellung
DE3310951A1 (de) Mineralfaserverstaerkte formmassen
DE19815120A1 (de) Verfahren zur Herstellung einer gereckten Polyalkylenterephthalat-Folie und zur Herstellung einer Polyalkylenterephthalat-Schmelze
DE2751653A1 (de) Polyphenyl-1,4-phenylenterephthalate und daraus hergestellte fasern
DE2224615C3 (de) Verfahren zur Herstellung von Folien oder Fasern
EP1137831B1 (de) Verfahren zur verbesserung der standzeit von filamenten, fasern oder folien auf der basis biologisch abbaubarer polyester
WO2022049171A1 (de) Verfahren zum recycling von polyester
DE942292C (de) Verfahren zur Herstellung von kuenstlichen Gebilden, wie Faeden, Filme oder Fasern, aus Polyaethylenterephthalat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19961205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980209

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT CH ES FR GB IT LI NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STEINAU, PETER, DR.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 176505

Country of ref document: AT

Date of ref document: 19990215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: FIAMMENGHI - DOMENIGHETTI

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE EPO REG. 20;SCHWARZWALDER TEXTIL-WERKE HE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990504

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: STEINAU, PETER, DR. TRANSFER- SCHWARZWAELDER TEXTI

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHWARZWAELDER TEXTIL-WERKE HEINRICH KAUTZMANN GMB

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2131740

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SCHWARZW?LDER TEXTIL-WERKE HEINRICH KAUTZMANN GMB

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011029

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011123

Year of fee payment: 7

Ref country code: AT

Payment date: 20011123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011126

Year of fee payment: 7

Ref country code: CH

Payment date: 20011126

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021102

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051102