EP0713984B1 - Verfahren zur Bestimmung der Schaltzeit für einen Übersetzungswechsel in einem stufenlosen Getriebe - Google Patents

Verfahren zur Bestimmung der Schaltzeit für einen Übersetzungswechsel in einem stufenlosen Getriebe Download PDF

Info

Publication number
EP0713984B1
EP0713984B1 EP95115535A EP95115535A EP0713984B1 EP 0713984 B1 EP0713984 B1 EP 0713984B1 EP 95115535 A EP95115535 A EP 95115535A EP 95115535 A EP95115535 A EP 95115535A EP 0713984 B1 EP0713984 B1 EP 0713984B1
Authority
EP
European Patent Office
Prior art keywords
gear
transmission
determining
change
uesoll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95115535A
Other languages
English (en)
French (fr)
Other versions
EP0713984A3 (de
EP0713984A2 (de
Inventor
Joseph Petersmann
Patrick Lardy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of EP0713984A2 publication Critical patent/EP0713984A2/de
Publication of EP0713984A3 publication Critical patent/EP0713984A3/de
Application granted granted Critical
Publication of EP0713984B1 publication Critical patent/EP0713984B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • F16H59/06Ratio selector apparatus the ratio being infinitely variable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/08Timing control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H2059/006Overriding automatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0096Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method using a parameter map
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6615Imitating a stepped transmissions
    • F16H2061/6616Imitating a stepped transmissions the shifting of the transmission being manually controlled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/24Inputs being a function of torque or torque demand dependent on the throttle opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration

Definitions

  • the invention relates to a method for determining the switching time for a gear change in a continuously variable transmission according to the preamble of claim 1.
  • the invention is based on the problem of determining such a switching time so that the Shifting comfort is adapted to the comfort perception of a driver.
  • the steps described in claim 1 are according to the invention intended.
  • the steps given is above all takes into account that the position of the circuit (output translation and target translation, e.g. Switching from 4th translation to 5th translation) and the direction of the switching (Switching from the 4th translation to the 5th translation in contrast to the switching from the 5th Translation to the 4th translation) have a significant influence on the shifting comfort.
  • This Influence is thus taken into account that a basic switching time for each switching and for each Switching direction determined separately.
  • the speed factor is the change caused by the change in gear ratio the input speed of the gearbox is taken into account. Because this speed change on the rotating masses of both the input side of the transmission and one of the transmission upstream drive machine is hereby the share of the change from the Rotational energy of these masses has an influence on switching comfort. With As the input speed changes, the speed factor and therefore also the Switching time on.
  • the load factor takes into account the load present at the transmission input. At low A soft, rather imperceptible shifting process is required, especially the high one Demands on switching comfort should meet. At high load, however, the Desired acceleration in the foreground, for its fulfillment also use of the rotational energy is possible; Comfort requests take a back seat here, so that even hard circuits are acceptable. For this reason, the laser factor and thus the switching time increases as the time decreases Load. Depending on the design, it is possible that the laser factor has negative values at very high loads achieved so as to counteract the speed factor in order to use the rotational energy.
  • the basic switching time also depends on Driving condition (train or push) determined. This is taken into account. that for a driver the Shift comfort not only by the size and the course, but also by the Direction of action of a shift jerk is influenced.
  • train or push the Shift comfort not only by the size and the course, but also by the Direction of action of a shift jerk is influenced.
  • the knowledge lies in this further training based on the fact that a shift jerk under thrust is perceived as unpleasant as a shift jolt under train. On the one hand, this is due to the fact that the driver is seated at Train operations are better supported than in push operations.
  • FIG. 1 shows a block diagram of a controller 1 of an electro-hydraulically operated continuously variable transmission 2 using the example of a belt transmission.
  • the continuously variable transmission 2 is driven by an internal combustion engine 4 via a controllable starting clutch 3.
  • An output shaft 5 of the continuously variable transmission 2 is connected to a wheel drive, not shown, of a motor vehicle.
  • a control unit 6 controls at least as a function of the throttle valve position alpha (t) of a throttle valve angle sensor 7 and an engine speed nmot (t) of an engine speed sensor 8 of the internal combustion engine 4 to a hydraulic valve block 9.
  • the transmission 2 and the starting clutch 3 receive the control unit 6 as further input variables Kick-down signal kd (t) of a kick-down switch 10, an idle signal II (t) one Idle switch 11, an air quantity or air mass ml (t) of an air quantity or Air mass sensor 12 of the internal combustion engine 4 and a transmission input speed ne (t) one Transmission input speed sensor 13 and a driving speed v (t) one Driving speed sensor 14.
  • control unit 6 generates a speed vref (t) a reference speed sensor 15 on a non-driven vehicle axle, a Lateral acceleration aq (t) of a lateral acceleration sensor 16 and a brake signal b (t) one Brake signal generator 17 detected and processed.
  • control is usually carried out by the vehicle driver via a selection device 18 Preselection of speed levels P (parking lock), R (reverse gear), N (neutral gear) and D (automatic setting of the gear ratio etc. of the continuously variable transmission) influenceable; there is also an adjustment range of the selection device 18 for the direct specification of the Gear ratio and the like intended.
  • the selection device 18 can be moved from the gear stage D into a second shift gate 19, in which the selection device 18 works as a rocker switch and the driver does that Influence gear ratio in the sense of an upshift or a downshift can.
  • the selection device 18 outputs a gear step signal FST and a shift request signal shr for an upshift or a downshift.
  • upshifting or “reducing the translation” means one Gear ratio change, the output speed of the Transmission increased, corresponding to an upshift in a multi-step transmission.
  • reducing the translation means one Gear ratio change, the output speed of the Transmission increased, corresponding to an upshift in a multi-step transmission.
  • '' downshift '' and “increase the translation” for a translation change in Meaning a reduction in the output speed of the gearbox with the same Input speed, corresponding to a downshift in a multi-step transmission.
  • the control device 6 controls via a signal output pk and the valve block 9 the hydraulic pressure in the starting clutch 3 and via signal outputs pe and pa and the hydraulic valve block 9 a transmission ratio ue between the Transmission input speed ne (t) and the transmission output speed (driving speed) v (t).
  • the hydraulic valve block 9 connects corresponding control lines 20, 21 and 22 of the Starting clutch 3 and the continuously variable transmission 2 with one connected to a pump 23 Pressure line 24 or a return line 25 to a reservoir 26 for hydraulic fluid.
  • the control unit 6 comprises, as shown in FIG. 2 , a translation control 27, which is connected to a driving activity determination function 28, a train-push determination function 29, a traction slip determination function 30 and an actuating function 31.
  • the driving activity determination function 28 determines the driving style of the driver or the driver traffic-related action in relation to the control of the motor vehicle evaluating size driving activity SK (t), preferably according to one in DE-OS 39 22 051 described method.
  • the pull-thrust determination function 29 is a function of the throttle valve position alpha (t) and the engine speed nmot (t) a signal for pulling or pushing the vehicle Pull / push zs (t) ab and the traction slip determination function 30 determines from the difference of Driving speed v (t) and speed vref (t) a slip of the driven wheels representing drive slip san (t).
  • the speed step signal FST the shift request signal shr, the Throttle valve position alpha (t), the kick-down signal kd (t), the idle signal ll (t), the Air mass ml (t), the transmission input speed ne (t), the driving speed v (t), the Lateral acceleration aq (t), the brake signal b (t) and the transmission output speed ne (t)
  • the translation controller 27 determines a target gear ratio uesoll and a signal Starting clutch on / off AK, which are passed on to the actuating function 31.
  • the actuating function 31 controls the transmission setting by means of the signal outputs pe and pa of the transmission 2, the target gear ratio uesoll with the shortest possible delay time, but is set without noticeable overshoot.
  • the starting clutch in accordance with the signal starting clutch on / to AK from the actuating function 31 via the Signal output pk controlled.
  • the translation control 27 automatically determines the translation that selects the translation Operating mode from the input variables train / thrust zs (t) traction slip san (t), driving stage signal FST, driving activity SK (t), throttle valve position alpha (t), engine speed nmot (t), idle signal II (t), kick-down signal kd (t), air mass signal ml (t), brake signal b (t) and Gearbox input speed ne (t) the target gear ratio uesoll.
  • the target gear ratio uesoll is from the Input variables shift request signal shr, transmission input speed ne (t), Throttle valve position alpha (t) and pull / push zs (t) determined.
  • the translation control 27 contains a table, not shown, in the preset Target translations uesoll_i are stored. Because each of these preset target translations uesoll_i corresponds to a gear of this stepped transmission when simulating a stepped transmission, As many preset target gear ratios uesoll_i are provided as gears Stepped gear should be simulated. The preset target translations uesoll_i can therefore also be called gears.
  • a 5-speed step transmission is simulated, so that for forward travel the preset target ratios uesol_1, uesoll_2, uesoll_3, uesoll_4 and uesoll_5 in the Table are stored.
  • the designation of the preset target gear ratios follows after Scheme uesoll_i, where i stands for the corresponding gear of the multi-step transmission.
  • uesoll_3 stands So for the preset target gear ratios, which corresponds to the 3rd gear of the multi-step transmission.
  • the preset target translation is at uesoll_1 highest and lowest at uesoll_5.
  • step 32 the primary input variables pull / thrust zs (t), throttle valve position alpha (t), transmission input speed ne (t) and shift request signal shr are determined.
  • step 33 the input torque Md, depending on the throttle valve position alpha (t), the shift gg from the currently set transmission ratio ue and the shift request signal shr as well as the change in the transmission input speed Delta_n from the shift gg and the transmission input speed ne ( t).
  • step 35 the switching time ts is calculated according to equation 1.
  • the new one Desired gear ratio uesoll2 and the switching time ts can now in the second step using the Transition characteristic curve determines the time course of the target gear ratio and can be set via the control function 31 and the valve block 9 on the transmission 2.
  • the method described in the above embodiment is preferably in the form of a Programs in a programmable controller provided with a microcomputer realized.
  • the program can assign two sizes (for example, the assignment of the Throttle valve position alpha (t) to an input torque Md (t)) in the form of tables or represented by a functional context.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Bestimmung der Schaltzeit für einen Übersetzungswechsel in einem stufenlosen Getriebe nach dem Oberbegriff des Patentanspruches 1.
Aus der DE 41 20 540 C 1 ist es bekannt, ein stufenloses Getriebe so anzusteuern, daß ein vom Fahrer direkt beeinflußbares Stufengetriebe nachgebildet ist. Hierzu stellt ein Steuergerät an dem stufenlosen Getriebe die Druckverhältnisse so ein, daß eine im Steuergerät ermittelte Soll-Übersetzung uesoll am Getriebe eingestellt wird. Die Soll-Übersetzung uesoll wird innerhalb des Steuergerätes abhängig von einem Schaltwunsch des Fahrers ermittelt. Eine in dieser Weise angeforderte Änderung der Soll-Übersetzung kann nicht sprungartig erfolgen, sondern wird mit Rücksicht auf die Belastung des Getriebes und insbesondere, um einen für den Fahrer angenehmen Schaltkomfort zu erzeugen, über eine vorgegebene Schaltzeit durchgeführt.
In PKW verwendete automatisch geschaltete Stufengetriebe sind in der Regel aus zu Planetensätzen angeordneten Zahnrädern aufgebaut, bei denen durch Druck beaufschlagte Kupplungen und Bremsen vorbestimmte Übersetzungen geschaltet werden können. Auch hier kann der Übersetzungswechsel, d.h. zum einen der Druckabbau bei den im alten Übersetzungsverhältnis betätigten Kupplungen und Bremsen und zum anderen der Druckaufbau bei den im zukünftigen Gang betätigten Kupplungen und Bremsen nicht schlagartig erfolgen, sondern muß aus technischen sowie komfortbedingten Gründen über eine vorgegebene Schaltzeit durchgeführt werden.
Der Erfindung liegt das Problem zugrunde, eine derartige Schaltzeit so zu bestimmen, daß der Schaltkomfort den Komfortempfinden eines Fahrers angepaßt ist.
Zur Lösung dieses Problemes sind nach der Erfindung die in Anspruch 1 beschriebenen Schritte vorgesehen. Hiermit sind in vorteilhafter Weise alle Einflußgrößen berücksichtigt, die auf einen Übersetzungswechsel wesentlichen Einfluß haben. Mit den angegebenen Schritten ist vor allem berücksichtigt, daß die Lage der Schaltung (Ausgangsübersetzung und Zielübersetzung, z.B. Schaltung von der 4. Übersetzung zur 5. Übersetzung) sowie die Richtung der Schaltung (Schaltung von der 4. Übersetzung zur 5. Übersetzung im Unterschied zur Schaltung von der 5. Übersetzung zur 4. Übersetzung) einen wesentlichen Einfluß auf den Schaltkomfort haben. Dieser Einfluß ist damit berücksichtigt, daß eine Schaltgrundzeit für jede Schaltung und für jede Schaltrichtung gesondert bestimmt.
Mit dem Drehzahlfaktor ist dann die durch den Übersetzungswechsel hervorgerufene Änderung der Eingangsdrehzahl des Getriebes berücksichtigt. Da diese Drehzahländerung auf die drehenden Massen sowohl der Eingangsseite des Getriebes als auch einer dem Getriebe vorgeschalteten Antriebsmaschine wirkt, ist hiermit der Anteil des aus der Änderung der Rotationsenergie dieser Massen herrührende Einfluß auf den Schaltkomfort berücksichtigt. Mit steigender Änderung der Eingangsdrehzahl steigt daher der Drehzahlfaktor und somit auch die Schaltzeit an.
Der Lastfaktor berücksichtigt schließlich die am Getriebeeingang anliegende Last. Bei niedrigen Lasten ist ein weicher, eher unmerklicher Schaltvorgang gewünscht, der vor allem hohen Ansprüchen an den Schaltkomfort gerecht werden soll. Bei hoher Last hingegen steht der Beschleunigungswunsch im Vordergrund, für dessen Erfüllung auch Nutzung der Rotationsenergie möglich ist; Komfortwünsche treten hier in den Hintergrund, so daß auch harte Schaltungen akzeptabel sind. Aus diesem Grund steigt der Lasffaktor und damit die Schaltzeit bei sinkender Last. Je nach Auslegung ist es möglich, daß der Lasffaktor bei sehr hohen Lasten negative Werte erreicht, um so zur Nutzung der Rotationsenergie dem Drehzahlfaktor entgegenzuwirken.
Mit der zur Durchführung des Verfahrens vorgeschlagenen Vorrichtung in Form einer programmierbaren Steuerung ist die Anwendung des Verfahrens in besonders einfacher und kostengünstiger Weise erreichbar.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
Nach einer Weiterbildung der Erfindung wird die Grundschaltzeit zusätzlich abhängig vom Fahrzustand (Zug oder Schub) bestimmt. Hiermit ist berücksichtigt. daß für einen Fahrer der Schaltkomfort nicht nur durch die Größe und den Verlauf, sondern auch durch die Wirkungsrichtung eines Schaltruckes beeinflußt ist. Dieser Weiterbildung liegt die Erkenntnis zugrunde, daß ein Schaltruck unter Schub als unangenehmer empfunden wird wie ein Schaltruck unter Zug. Dies ist zum einen darauf zurückzuführen, daß der Fahrer durch seinen Sitz bei Zugbetrieb besser abgestützt ist als bei Schubbetrieb. Zum anderen wird beim Beschleunigen, d.h. unter Schub, ein Schaltruck als für die Beschleunigung notwendig oder gar als Zeichen für einen sportlichen Fahrstil akzeptiert, während bei einer Verzögerung unter Schub Schaltrucke eher den Eindruck einer Unterbrechung der Verzögerung hervorrufen und daher als unangenehm emfpunden werden.
Die Erfindung ist nachstehend anhand eines in den Zeichnungen dargestellten Ausführungsbeispieles näher erläutert.
Es zeigen:
Fig. 1
eine Übersicht über ein stufenloses Getriebe mit einer Steuerung,
Fig. 2
ein schematisches Blockschaltbild einer Übersetzungssteuerung und
Fig. 3
einen Ablaufplan der Bestimmung einer Schaltzeit.
Fig. 1 zeigt ein Blockschaltbild einer Steuerung 1 eines elektro-hydraulisch betätigten stufenlosen Getriebes 2 am Beispiel eines Umschlingungsgetriebes. Das stufenlose Getriebe 2 wird über eine steuerbare Anfahrkupplung 3 von einer Brennkraftmaschine 4 angetrieben. Eine Abtriebswelle 5 des stufenlosen Getriebes 2 ist mit einem nicht gezeigten Radantrieb eines Kraftfahrzeugs verbunden.
Größen oder Funktionen, die sich mit der Zeit t ändern, sind nachfolgend als Funktionen f(t) der Zeit t dargestellt.
Ein Steuergerät 6 steuert wenigstens in Abhängigkeit von der Drosselklappenstellung alpha(t) eines Drosselklappenwinkelgebers 7 und einer Motordrehzahl nmot(t) eines Motordrehzahlgebers 8 der Brennkraftmaschine 4 einen Hydraulik-Ventilblock 9 an. Zur Steuerung des stufenlosen Getriebes 2 und der Anfahrkupplung 3 erhält das Steuergerät 6 als weitere Eingangsgrößen ein Kick-down-Signal kd(t) eines Kick-down-Schalters 10, ein Leerlaufsignal II(t) eines Leerlaufschalters 11, eine Luftmenge bzw. Luftmasse ml(t) eines Luftmengen- bzw. Luftmassengebers 12 der Brennkraftmaschine 4 sowie eine Getriebeeingangsdrehzahl ne(t) eines Getriebeeingangsdrehzahlgebers 13 und eine Fahrgeschwindigkeit v(t) eines Fahrgeschwindigkeitgebers 14. Zusätzlich wird vom Steuergerät 6 eine Geschwindigkeit vref(t) eines Referenzgeschwindigkeitgebers 15 an einer nicht angetriebenen Fahrzeugachse, eine Querbeschleunigung aq(t) eines Querbeschleunigungsgebers 16 und ein Bremssignal b(t) eines Bremssignalgebers 17 erfasst und verarbeitet.
Schließlich ist die Steuerung üblicherweise vom Fahrzeugführer über eine Wähleinrichtung 18 zur Vorwahl von Fahrstufen P (Parksperre), R (Rückwärtsgangstufe), N (Leergangsstufe) und D (selbstätige Einstellung des Übersetzungsverhältnisses u.ä. des stufenlosen Getriebes) beeinflußbar; ferner ist ein Einstellbereich der Wähleinrichtung 18 zur direkten Vorgabe des Übersetzungsverhältnisses u.ä. vorgesehen.
Die Wähleinrichtung 18 kann aus der Fahrstufe D in eine zweite Schaltgasse 19 bewegt werden, in der die Wähleinrichtung 18 als Wippschalter arbeitet und der Fahrzeugführer das Übersetzungsverhältnis im Sinne einer Hochschaltung oder einer Rückschaltung beeinflussen kann. Die Wähleinrichtung 18 gibt ein Fahrstufensignal FST und ein Schaltanforderungssignal shr für eine Hochschaltung oder eine Rückschaltung ab.
Hier und im folgenden steht der Begriff "Hochschalten" oder "Verringern der Übersetzung" für eine Übersetzungsänderung, die bei gleichbleibender Eingangsdrehzahl die Ausgangsdrehzahl des Getriebes erhöht, entsprechend einer Hochschaltung bei einem Stufengetriebe. Umgekehrt stehen die Begriffe ''Rückschalten'' und "Erhöhen der Übersetzung" für eine Übersetzungsänderung im Sinne einer Verringerung der Ausgangsdrehzahl des Getriebes bei gleichbleibender Eingangsdrehzahl, entsprechend einer Rückschaltung bei einem Stufengetriebe.
In Abhängigkeit von den genannten Größen steuert das Steuergerät 6 über einen Signalausgang pk und den Ventilblock 9 den Hydraulikdruck in der Anfahrkupplung 3 sowie über Signalausgänge pe und pa und den Hydraulikventilblock 9 ein Übersetzungsverhältnis ue zwischen der Getriebeeingangsdrehzahl ne(t) und der Getriebeausgangsdrehzahl (Fahrgeschwindigkeit) v(t) an. Der Hydraulikventilblock 9 verbindet hierzu entsprechende Steuerleitungen 20, 21 und 22 der Anfahrkupplung 3 und des stufenlosen Getriebes 2 mit einer an eine Pumpe 23 angeschlossenen Druckleitung 24 oder einer Rücklaufleitung 25 zu einem Vorratsbehälter 26 für Hydraulikflüssigkeit.
Das Steuergerät 6 umfaßt wie in Fig. 2 dargestellt eine Übersetzungssteuerung 27, die mit einer Fahraktivitätsermittlungfunktion 28, einer Zug-Schub-Ermittlungsfunktion 29, einer Antriebsschlupfermittlungsfunktion 30 und einer Stellfunktion 31 verbunden ist.
Die Fahraktivitätsermittlungsfunktion 28 bestimmt eine den Fahrstil des Fahrers oder dessen verkehrssituationsbedingtes Handeln im Bezug auf die Steuerung des Kraftfahrzeuges bewertenden Größe Fahraktivität SK(t), vorzugsweise nach einem in der DE-OS 39 22 051 beschriebenen Verfahren.
Die Zug-Schub-Ermittlungsfunktion 29 gibt in Abhängigkeit von der Drosselklappenstellung alpha(t) und der Motordrehzahl nmot(t) ein Signal für Zug- oder Schubbetrieb des Fahrzeuges Zug/Schub zs(t) ab und die Antriebsschlupfermittlungsfunktion 30 ermittelt aus der Differenz von Fahrgeschwindigkeit v(t) und Geschwindigkeit vref(t) einen den Schlupf der angetriebenen Räder repräsentierenden Antriebsschlupf san(t).
Aus diesen Größen, dem Fahrstufensignal FST, dem Schaltanforderungssignal shr, der Drosselklappenstellung alpha(t), dem Kick-down-Signal kd(t), dem Leerlaufsignal ll(t), der Luftmasse ml(t), der Getriebeeingangsdrehzahl ne(t), der Fahrgeschwindigkeit v(t), der Querbeschleunigung aq(t), dem Bremssignal b(t) und der Getriebeausgangsdrehzahl ne(t) ermittelt die Übersetzungssteuerung 27 ein Soll-Übersetzungsverhältnis uesoll sowie ein Signal Anfahrkupplung auf/zu AK, die an die Stellfunktion 31 weitergegeben werden.
Die Stellfunktion 31 steuert mittels der Signalausgänge pe und pa die Übersetzungseinstellung des Getriebes 2, wobei das Soll-Übersetzungsverhältnis uesoll mit geringstmöglicher Verzugszeit, jedoch ohne merkliches Überschwingen eingestellt wird. Darüber hinaus wird die Anfahrkupplung nach Maßgabe des Signales Anfahrkupplung auf/zu AK von der Stellfunktion 31 über den Signalausgang pk gesteuert.
Die Übersetzungssteuerung 27 ermittelt in einer ersten selbsttätig die Übersetzung wählenden Betriebsart aus den Eingangsgrößen Zug/Schub zs(t) Antriebsschlupf san(t), Fahrstufensignal FST, Fahraktivität SK(t), Drosselklappenstellung alpha(t), Motordrehzahl nmot(t), Leerlaufsignal II(t), Kick-Down-Signal kd(t), Luftmassensignal ml(t), Bremssignal b(t) und Getriebeeingangsdrehzahl ne(t) das Soll-Übersetzungsverhältnis uesoll.
In einer zweiten, vom Fahrer beeinflußten Betriebsart ist ein vom Fahrer direkt beeinflußbares Stufengetriebe nachgebildet. Das Soll-Übersetzungsverhältnis uesoll wird aus den Eingangsgrößen Schaltanforderungssignal shr, Getriebeeingangsdrehzahl ne(t), Drosselklappenstellung alpha(t) und Zug/Schub zs(t) bestimmt.
Die Übersetzungssteuerung 27 enthält eine nicht gezeigte Tabelle, in der voreingestellte Soll-Übersetzungen uesoll_i abgelegt sind. Da jede dieser voreingestellten Sollübersetzungen uesoll_i bei der Nachbildung eines Stufengetriebes einem Gang dieses Stufengetriebes entspricht, sin so viele voreingestellten Sollübersetzungen uesoll_i vorgesehen, wie Gänge eines Stufengetriebes nachgebildet werden sollen. Die voreingestellten Sollübersetzungen uesoll_i können daher auch als Gänge bezeichnet werden.
Im dargestellten Beispiel ist ein 5gängiges Stufengetriebe nachgebildet, so daß für Vorwärtsfahrt die voreingestellten Sollübersetzungen uesol_1, uesoll_2, uesoll_3, uesoll_4 und uesoll_5 in der Tabelle abgelegt sind. Die Bezeichnung der voreingestellten Sollübersetzungen erfolgt nach dem Schema uesoll_i, wobei i für den entsprechenden Gang des Stufengetriebes steht. uesoll_3 steht also für die voreingestellten Sollübersetzungen, die dem 3. Gang des Stufengetriebes entspricht. Während die Gänge von uesoll_1 nach uesoll_5 'höher' werden, verringert sich in dieser Richtung der Wert der voreingestellten Sollübersetzung: die voreingestellte Sollübersetzung ist bei uesoll_1 am höchsten und bei uesoll_5 am niedrigsten.
Um aus einem Schaltanforderungssignal shr einen Wechsel des Übersetzungsverhältnisses ue herbeizuführen, sind folgende Schritte notwendig:
  • Bestimmen einer Schaltzeit ts,
  • Bestimmen einer Übergangskennlinie.
Mit der Schaltzeit ts und der Übergangskennlinie wird dann der Verlauf des Soll-Übersetzungsverhältnisses uesoll vom alten Wert, bspw. uesoll_4, auf den neuen Wert, bspw. uesoll_5, bestimmt.
Die Schaltzeit ts berechnet sich nach ts = tg(gg) * (1 + DF + LF) mit einem Drehzahlfaktor DF DF = A(gg) * Delta_n Delta_n_max*100 und einem Lastfaktor LF LF = B(gg)* Md Md_max*100 aus folgenden Größen:
gg:
Schaltart, beschrieben durch Schaltung und der Schaltrichtung. Beispiel: 12_z bedeutet Schaltung vom ersten Übersetzungsverhältnis uesoll_1 in das zweite Übersetzungsverhältnis uesoll_2 unter Zug; 43_s bedeutet Schaltung vom vierten Übersetzungsverhältnis uesoll_4 in das dritte Soll-Übersetzungsverhältnis uesoll_3 unter Schub.
tg (gg):
Grundschaltzeit für die Schaltart gg
A(gg) :
Drehzahlkoeffizient für die Schaltart gg
B(gg) :
Lastkoeffizient für die Schaltart gg
Delta_n:
vorausberechnete Änderung der Getriebeeingangsdrehzahl ne(t) beim Wechsel des Übersetzungsverhältnisses abhängig von der Schaltung und der Getriebeeingangsdrehzahl ne(t).
Delta_n_max:
maximal mögliche Änderung der Getriebeeingangsdrehzahl ne(t) beim vorgesehenen Wechsel des Übersetzungsverhältnisses
Md:
Eingangsdrehmoment des Getriebes 2
Md_max:
maximales Eingangsdrehmoment des Getriebes 2.
Vor der Berechnung der Schaltzeit ts müssen zunächst die genannten Größen bestimmt werden. Die hierzu notwendigen Schritte sind in Form eines Ablaufplanes in Fig. 3 dargestellt. In Schritt 32 werden zunächst die primären Eingangsgrößen Zug/Schub zs(t), Drosselklappenstellung alpha(t), Getriebeeingangsdrehzahl ne(t) und Schaltanforderungssignal shr bestimmt. Im nächsten Schritt 33 werden hieraus als sekundäre Größen das Eingangsdrehmoment Md, abhängig von der Drosselklappenstellung alpha(t), die Schaltung gg aus der aktuell eingestellten Übersetzung ue und dem Schaltanforderungssignal shr sowie die Änderung der Getriebeeingangsdrehzahl Delta_n aus der Schaltung gg und der Getriebeeingangsdrehzahl ne(t). Mit diesen sekundären Eingangsgrößen werden in Schritt 34 aus einer Tabelle die Grundschaltzeit tg(gg), der Drehzahlkoeffizient A(gg) und der Lastkoeffizient B(gg) bestimmt. In Schritt 35 schließlich wird nach Gleichung 1 die Schaltzeit ts berechnet.
Mit den nunmehr vorhandenen Werten für das alte Soll-Übersetzungsverhältnis uesoll1, das neue Soll-Übersetzungsverhältnis uesoll2 und die Schaltzeit ts kann nun im zweiten Schritt mit Hilfe der Übergangskennlinie der zeitliche Verlauf des Soll-Übersetzungsverhältnisses uesoll bestimmt und über die Stellfunktion 31 und den Ventilblock 9 am Getriebe 2 eingestellt werden.
Das im vorstehenden Ausführungsbeispiel beschriebene Verfahren ist vorzugsweise in Form eines Programmes in einer mit einem Mikrocomputer versehenen programmierbaren Steuerung realisiert. Das Programm kann die Zuordnung zweier Größen (beispielsweise die Zuordnung der Drosselklappenstellung alpha(t) zu einem Eingangsdrehmoment Md(t)) in Form von Tabellen oder durch einen funktionalen Zusammenhang darstellen.

Claims (6)

  1. Verfahren zur Bestimmung der Schaltzeit (ts) für einen Wechsel des Übersetzungsverhältnisses (ue) in einem stufenlosen Getriebe (2), mit dem ein gestuftes Getriebe nachgebildet ist,
    gekennzeichnet durch folgende Schritte:
    Bestimmen einer Grundschaltzeit (tg) abhängig von dem Wechsel des Übersetzungsverhältnisses und der Schaltrichtung (gg);
    Bestimmen eines Drehzahlfaktors abhängig von der beim Wechsel des Übersetzungsverhältnisses entstehenden Änderung der Eingangsdrehzahl (ne(t)) des Getriebes (2);
    Bestimmen eines Lastfaktors abhängig von einem Lastsignal (Alpha(t)) des Getriebes (2);
    Bestimmen der Schaltzeit (ts) aus der Grundschaltzeit (tg), dem Lastfaktor und dem Drehzahlfaktor.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Grundschaltzeit (tg) zusätzlich abhängig vom Fahrzustand (Zug/Schub (zs(t)) ) bestimmt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Grundschaltzeit (tg) beim Fahrzustand Zug kleiner als beim Fahrzustand Schub gewählt wird.
  4. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein programmierbares Steuergerät mit einem das Verfahren darstellenden Programm versehen ist.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Programm für die Zuordnung zweier Größen zueinander Tabellen verwendet.
  6. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Programm für die Zuordnung zweier Größen zueinander funktionelle Zusammenhänge verwendet.
EP95115535A 1994-11-24 1995-10-02 Verfahren zur Bestimmung der Schaltzeit für einen Übersetzungswechsel in einem stufenlosen Getriebe Expired - Lifetime EP0713984B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4441876 1994-11-24
DE4441876A DE4441876C1 (de) 1994-11-24 1994-11-24 Verfahren zur Bestimmung der Schaltzeit für einen Übersetzungswechsel in einem stufenlosen Getriebe

Publications (3)

Publication Number Publication Date
EP0713984A2 EP0713984A2 (de) 1996-05-29
EP0713984A3 EP0713984A3 (de) 1998-01-28
EP0713984B1 true EP0713984B1 (de) 1999-01-13

Family

ID=6534067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95115535A Expired - Lifetime EP0713984B1 (de) 1994-11-24 1995-10-02 Verfahren zur Bestimmung der Schaltzeit für einen Übersetzungswechsel in einem stufenlosen Getriebe

Country Status (5)

Country Link
US (1) US5624348A (de)
EP (1) EP0713984B1 (de)
JP (1) JP3682101B2 (de)
KR (1) KR100372666B1 (de)
DE (2) DE4441876C1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120540C1 (de) * 1991-06-21 1992-11-05 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De
JP3633063B2 (ja) * 1995-11-07 2005-03-30 マツダ株式会社 自動変速機の制御装置
JP3424423B2 (ja) * 1996-02-08 2003-07-07 日産自動車株式会社 無段自動変速機の変速制御装置
JP3911749B2 (ja) * 1996-03-29 2007-05-09 マツダ株式会社 自動変速機の制御装置
GB9720172D0 (en) * 1997-09-24 1997-11-26 Rover Group A transmission control system for a vehicle
JP4018786B2 (ja) * 1998-01-09 2007-12-05 本田技研工業株式会社 車両用駆動力制御装置
DE19831514A1 (de) * 1998-07-14 2000-01-20 Bayerische Motoren Werke Ag Steuerverfahren und Steuervorrichtung für ein stufenloses Getriebe
US6936473B2 (en) * 2000-01-05 2005-08-30 Leisure, Inc. Method of preparing a biological sample for quantification
JP4460145B2 (ja) * 2000-08-30 2010-05-12 本田技研工業株式会社 電気自動車におけるインホイール変速機の制御装置
JP4376034B2 (ja) * 2003-11-04 2009-12-02 本田技研工業株式会社 車両用無段変速機の制御装置
AP2931A (en) * 2008-08-08 2014-06-30 Yamaha Motor Co Ltd Stepwise automatic transmission for straddle-type vehicle, power unit having the stepwise automatic transmission for straddle-type vehicle, and straddle-type vehicle having the power unit
JP5783081B2 (ja) * 2012-02-17 2015-09-24 トヨタ自動車株式会社 車両

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073261B2 (ja) * 1983-05-27 1995-01-18 日産自動車株式会社 無段変速機の制御装置
JPH0712810B2 (ja) * 1985-05-28 1995-02-15 トヨタ自動車株式会社 車両用無段変速機の速度比制御装置
JPS62149526A (ja) * 1985-12-25 1987-07-03 Fuji Heavy Ind Ltd 無段変速機の制御装置
JPS6353129A (ja) * 1986-08-20 1988-03-07 Fuji Heavy Ind Ltd 無段変速機の変速比制御装置
JPH0297761A (ja) * 1988-09-30 1990-04-10 Aisin Seiki Co Ltd 電子制御自動変速装置
US5009129A (en) * 1988-10-14 1991-04-23 Fuji Jukogyo Kabushiki Kaisha Transmission ratio control system for a continuously variable transmission
DE3922051A1 (de) * 1989-07-05 1991-01-24 Porsche Ag Verfahren und vorrichtung zur steuerung eines selbsttaetig schaltenden getriebes
EP0421231B1 (de) * 1989-09-30 1995-05-03 Suzuki Motor Corporation Steuerungsverfahren für ein stufenloses Getriebe
DE4120540C1 (de) * 1991-06-21 1992-11-05 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De
JPH05126239A (ja) * 1991-06-29 1993-05-21 Mazda Motor Corp 車両用無段変速機の変速制御装置

Also Published As

Publication number Publication date
KR100372666B1 (ko) 2003-05-09
JPH08219268A (ja) 1996-08-27
DE59504806D1 (de) 1999-02-25
EP0713984A3 (de) 1998-01-28
US5624348A (en) 1997-04-29
EP0713984A2 (de) 1996-05-29
JP3682101B2 (ja) 2005-08-10
DE4441876C1 (de) 1996-01-04
KR960018303A (ko) 1996-06-17

Similar Documents

Publication Publication Date Title
DE4239133C1 (de) Steuereinrichtung für ein stufenloses Getriebe
EP0676564B1 (de) Steuereinrichtung und Steuerverfahren für ein stufenloses Getriebe
EP0587614B1 (de) Verfahren zur steuerung eines stufenlosen kraftfahrzeuggetriebes
DE60207135T2 (de) Automatikgetriebe
EP0406616A1 (de) Verfahren und Vorrichtung zur Steuerung eines selbsttätig schaltenden Getriebes
EP0713985B1 (de) Steuereinrichtung und Steuerverfahren für ein stufenloses Getriebe
DE3922051A1 (de) Verfahren und vorrichtung zur steuerung eines selbsttaetig schaltenden getriebes
EP0713984B1 (de) Verfahren zur Bestimmung der Schaltzeit für einen Übersetzungswechsel in einem stufenlosen Getriebe
DE3626100A1 (de) Steuereinrichtung zum selbsttaetigen schalten von stufenwechselgetrieben
EP1030984B1 (de) Verfahren zum steuern eines automatgetriebes
DE2537006A1 (de) Wechselgetriebe fuer kraftfahrzeuge
DE19714946B4 (de) Verfahren und Vorrichtung zum Steuern der Bergabfahrt eines Fahrzeugs
DE102011056283B4 (de) Steuerungsvorrichtung für ein stufenlos einstellbares Getriebe
DE4120566C2 (de) Steuereinrichtung für ein selbsttätig schaltendes Getriebe eines Kraftfahrzeugs
EP0728612A2 (de) Regeleinrichtung für ein stufenlos einstellbares Getriebe für Kraftfahrzeuge
DE102011056296B4 (de) Verfahren zur Antriebskraftsteuerung für ein Fahrzeug und Antriebskraftsteuerung zur Durchführung des Verfahrens
DE19831514A1 (de) Steuerverfahren und Steuervorrichtung für ein stufenloses Getriebe
EP0932539B1 (de) Bremsmomentenanpassung eines primärsystems in abhängigkeit von der getriebegangstellung
EP1238215B1 (de) Kraftfahrzeuggetriebe mit zwei schaltkraftverlaufsbereichen
DE4446109A1 (de) Verfahren und Anordnung für selektive Anwendung der Abgasbremse in Verbindung mit Heraufschaltvorgängen
EP0713986B1 (de) Steuereinrichtung und Steuerverfahren für ein stufenloses Getriebe
DE10231210A1 (de) Verfahren zum Steuern einer Kraftfahrzeugantriebsvorrichtung
EP0814286B1 (de) Verfahren zur Steuerung des Gangwechsels eines Kraftfahrzeug-Automatikgetriebes
DE10246298A1 (de) Verfahren zum Ansteuern eines Antriebssystems und Antriebssystem
DE3909032C2 (de) Vorrichtung zur automatischen Betätigung einer im Drehmomentübertragungsweg zwischen Motor und Schaltgetriebe eines Kraftfahrzeuges angeordneten Anfahr-/Schaltkupplung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17P Request for examination filed

Effective date: 19980213

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980403

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59504806

Country of ref document: DE

Date of ref document: 19990225

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990212

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101021

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110310 AND 20110316

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110331 AND 20110406

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140919

Year of fee payment: 20

Ref country code: FR

Payment date: 20141022

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141030

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59504806

Country of ref document: DE