EP0712146A1 - Source d'électrons à effet de champ et procédé de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence - Google Patents

Source d'électrons à effet de champ et procédé de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence Download PDF

Info

Publication number
EP0712146A1
EP0712146A1 EP95402450A EP95402450A EP0712146A1 EP 0712146 A1 EP0712146 A1 EP 0712146A1 EP 95402450 A EP95402450 A EP 95402450A EP 95402450 A EP95402450 A EP 95402450A EP 0712146 A1 EP0712146 A1 EP 0712146A1
Authority
EP
European Patent Office
Prior art keywords
diamond
source
micro
electrically insulating
clusters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95402450A
Other languages
German (de)
English (en)
Other versions
EP0712146B1 (fr
Inventor
Joel Danroc
Danh Van Tran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0712146A1 publication Critical patent/EP0712146A1/fr
Application granted granted Critical
Publication of EP0712146B1 publication Critical patent/EP0712146B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • H01J3/022Electron guns using a field emission, photo emission, or secondary emission electron source with microengineered cathode, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30457Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels

Definitions

  • the present invention relates to a field effect electron source.
  • the invention has the same fields of application as electron sources with microtips ("microtips").
  • the present invention applies to the field of flat display devices also called “flat screens”, as well as to the manufacture of pressure measurement gauges.
  • a microtip electron source comprises at least one cathode conductor on an electrically insulating substrate, an electrically insulating layer which covers this cathode conductor and at least one grid formed on this electrically insulating layer.
  • Holes are formed through the grid and the insulating layer above the cathode conductor.
  • micro-tips are formed in these holes and carried by the cathode conductor.
  • each micro-tip is located substantially in the plane of the grid, this grid being used to extract electrons from the micro-tips.
  • the holes have very small dimensions (they have a diameter of less than 2 ⁇ m).
  • These other known display devices comprise a cathodoluminescent anode placed facing an electron source comprising layers of diamond or diamond-like carbon intended to emit electrons.
  • These layers are obtained by laser ablation or by chemical vapor deposition.
  • Diamond or diamond carbon emits electrons much more easily than the materials conventionally used for the manufacture of microtips.
  • the minimum electric field from which an electron emission can be obtained can be twenty times weaker than the minimum electric field corresponding to metals such as molybdenum, for example.
  • the deposits obtained are continuous layers and not micro-tips.
  • the resulting display devices are, as seen above, of the "diode" type, which poses a problem as regards their addressing.
  • the object of the present invention is to remedy the above drawbacks.
  • micro-cluster is meant a micro-heap composed of grains of diamond carbon powder or of diamond type which are in direct contact with their closest neighbors and / or bonded together by a metal.
  • the source object of the present invention emits more electrons than a microtip source, due to the use, in the present invention, of diamond or diamond-like carbon particles which have a higher emissivity than conventional electron-emitting materials such as molybdenum.
  • this device has a greater brightness than a microtip device, for the same control voltage.
  • this device using a source according to the invention requires a control voltage lower than that which is necessary for a microtip device.
  • the micro-clusters can be made of diamond or diamond-like carbon particles or can be made of such particles dispersed in a metal.
  • the micro-clusters can be linked by a deposit of a metal intended to consolidate these micro-clusters, diamond or diamond-like carbon particles emerging from this deposit on the surface of the micro- heap.
  • the process which is the subject of the invention can be implemented with large surface substrates and thus makes it possible to obtain electron sources (and therefore display screens) of large surface area (several tens of inches diagonally).
  • the temperature at which the micro-clusters are formed is close to the ambient temperature (of the order of 20 ° C.).
  • baths which are necessary for the implementation of the process which is the subject of the invention have a long service life (several months).
  • the micro-clusters formed by electrophoresis are then linked using a metal by electrochemical deposition, in order to consolidate these micro-clusters.
  • the diamond or diamond-like carbon particles have a size of the order of 1 ⁇ m or less than 1 ⁇ m.
  • nanometric powders are used.
  • These particles can be obtained from natural or artificial diamond or by a method chosen from laser synthesis, deposition chemical vapor phase and physical vapor deposition.
  • the holes formed through the grid layer and the electrically insulating layer may have a circular or rectangular shape.
  • the size of these holes can be chosen in a range ranging from approximately 1 ⁇ m to several tens of micrometers.
  • micro-clusters are formed in accordance with the process which is the subject of the invention is comparable to the structure in which the micro-tips are formed to manufacture a source with micro-tips.
  • the size of the holes that are formed in the structure to implement the process which is the subject of the invention can be significantly greater than that which is necessary for the implementation of a process for manufacturing a source. with micro-tips.
  • Holes 10 are formed through these grids 8 and the insulating layer 6 above the cathode conductors 4.
  • Micro-clusters 12 containing diamond or diamond-like carbon particles are formed in the holes 10 and carried by the cathode conductors 4.
  • cathode conductors 4 are parallel and that the grids 8 are parallel to each other and perpendicular to the cathode conductors 4.
  • the holes 10 and therefore the micro-clusters 12 are located in the areas where these grids cross the cathode conductors.
  • micro-clusters of such a zone which emit electrons when an appropriate electric voltage is applied, by means not shown, between the cathode conductor 4 and the grid 8 which correspond to this zone.
  • a cathodoluminescence display device is schematically represented in section in FIG. 2.
  • This device comprises the electron source 14 of FIG. 1.
  • the device of FIG. 2 also comprises a cathodoluminescent anode 16 placed opposite the source 14 and separated from the latter by a space 18 in which a vacuum has been created.
  • the cathodoluminescent anode 16 comprises an electrically insulating and transparent substrate 20 which is provided with an electrically conductive and transparent layer 22 forming an anode.
  • this layer 24 emits light which a user of the display device observes through the transparent substrate 20.
  • FIG. 3 schematically illustrates this method.
  • the diameter D1 of the holes (substantially circular) formed in the grid 8 and in the electrically insulating layer 6 can be advantageously greater than the diameter of the holes contained in the electron sources with microtips described in documents (1) to (4).
  • this diameter D1 can take values of the order of 1 ⁇ m up to 20 ⁇ m.
  • FIG. 4 schematically illustrates the fact that the holes 10, instead of having a circular shape, can have a rectangular shape.
  • the width D2 of these holes 10 in FIG. 4, of rectangular shape can be taken equal to the diameter D1 mentioned above and can therefore also be significantly greater than the diameter of the holes of the microtip sources.
  • a diamond or diamond type carbon powder is used.
  • This powder can be obtained by chemical vapor deposition from a mixture of hydrogen and light hydrocarbons.
  • This chemical vapor deposition can be assisted by an electron beam or be assisted by a plasma generated by microwaves.
  • This powder can also be synthesized by means of a laser, that is to say, more precisely, by chemical vapor deposition as previously but assisted by laser.
  • physical vapor deposition from carbon targets (graphite for example) and a plasma gas such as argon alone or mixed with hydrogen , hydrocarbons without dopant or with a dopant such as for example diborane.
  • This powder can also be obtained by laser ablation.
  • artificial diamonds can be prepared by compacting carbon, at high pressure and high temperature, and then making the powder from these artificial diamonds.
  • these diamond carbon powders and these diamond type carbon powders are chosen so as to have a micron or submicron particle size, preferably nanometric.
  • these diamond or diamond carbon powders can be doped or undoped.
  • Boron can for example be used as a dopant.
  • the deposition of the powder (diamond or diamond-like carbon particles) leading to the formation of micro-clusters 12 in the holes 10, on the cathode conductors 4, can be carried out by electrophoresis (cataphoresis or anaphoresis), possibly supplemented by a electrochemical metallic deposition of consolidation, or by electrochemical co-deposition of metal and carbon diamond or of diamond type.
  • the structure provided with holes 10 is placed in an appropriate solution 26 and the bottom of each hole 10 is brought to a positive potential during this deposition phase.
  • the cathode conductors 4 are brought to this positive potential thanks to to a suitable voltage source 28, the positive terminal of which is connected to these cathode conductors 4 while the negative terminal of this source is connected to a counter-electrode 32 of platinum or of stainless steel situated in the bath at a distance from the substrate d '' about 1 to 5 cm.
  • the fine powder of diamond or diamond-like carbon particles is suspended in solution 26 (before placing the structure in this solution).
  • the voltage supplied by the source 28 can range up to around 200 V.
  • the negative terminal of the source 28 which is connected to the cathode conductors 4 while the positive terminal of the source 28 is connected to a counter-electrode 32 of platinum or stainless steel located in the bath at a distance from the substrate of about 1 to 5 cm.
  • a voltage of up to approximately 200 V is then used.
  • a metal for example chosen from Ni, Co, Ag, Au, Rh or Pt or, more generally, from the transition metals, alloys thereof and precious metals.
  • a suitable electrical voltage is then applied between the cathode conductors 4 and an electrode 33 placed in this solution, by means of a voltage source 34.
  • This electrode 33 is for example made of nickel and the solution 30 contains for example 300 g / l of nickel sulphate, 30 g / l of nickel chloride, 30 g / l of boric acid and 0.6 g / l of lauryl sodium sulfate.
  • an electric current of 4 A / dm is used.
  • FIG. 5 shows the metallic deposit 36 which is formed on each micro-cluster 12 after this electrochemical deposition operation, revealing emerging parts of the particles of the micro-cluster.
  • micro-clusters can also be formed by electrochemical co-deposition of metal and of diamond or diamond-like carbon.
  • An appropriate current source is used, for example of the order of 4 A / dm, and the negative terminal of this source is applied to the cathode conductors and the positive terminal of this source to a nickel electrode placed in the bath .
  • the nickel is deposited in the holes, carrying with it the diamond particles, hence the formation of micro-clusters of nickel and diamond in these holes.
  • a powder of particles of silicon carbide or titanium carbide, of micron or submicron size can be used for the implementation of a process according to the invention, and use the same methods as above (electrophoresis, possibly supplemented by an electrochemical metallic deposition of consolidation, or electrochemical co-deposition of metal and such particles), to form the micro-clusters.
  • the tops of the micro-clusters are located substantially in the plane of the grids and these micro-clusters are in contact with these grids.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

Cette source comprend, sur un substrat isolant (2), au moins un conducteur cathodique (4), une couche isolante (6) qui recouvre celui-ci, au moins une grille (8) formée sur la couche isolante, des trous (10) étant formés à travers cette grille et la couche isolante, et des micro-amas (12) contenant des particules de carbone diamant ou de type diamant qui sont formés dans ces trous par électrophorèse par exemple. <IMAGE>

Description

    DOMAINE TECHNIQUE
  • La présente invention concerne une source d'électrons à effet de champ.
  • L'invention a les mêmes domaines d'application que les sources d'électrons à micro-pointes ("microtips").
  • En particulier, la présente invention s'applique au domaine des dispositifs de visualisation plats encore appelés "écrans plats", ainsi qu'à la fabrication de jauges de mesure de pression.
  • ETAT DE LA TECHNIQUE ANTERIEURE
  • On connaît déjà des sources d'électrons à effet de champ.
  • Ce sont les sources d'électrons à micro-pointes mentionnées plus haut.
  • Une source d'électrons à micro-pointes comprend au moins un conducteur cathodique sur un substrat électriquement isolant, une couche électriquement isolante qui recouvre ce conducteur cathodique et au moins une grille formée sur cette couche électriquement isolante.
  • Des trous sont formés à travers la grille et la couche isolante au-dessus du conducteur cathodique.
  • Les micro-pointes sont formées dans ces trous et portées par le conducteur cathodique.
  • Le sommet de chaque micro-pointe se trouve sensiblement dans le plan de la grille, cette grille servant à extraire des électrons des micro-pointes.
  • Les trous ont de très petites dimensions (ils ont un diamètre inférieur à 2 µm).
  • Pour réaliser un dispositif de visualisation utilisant une telle source d'électrons à micro-pointes, on réalise un système de type "triode".
  • Plus précisément, on dispose, en face de la source, une anode cathodoluminescente.
  • Les électrons issus de la source viennent bombarder cette anode cathodoluminescente.
  • On connaît également d'autres dispositifs de visualisation ayant une structure de type "diode".
  • Ces autres dispositifs de visualisation connus comprennent une anode cathodoluminescente placée en regard d'une source d'électrons comprenant des couches de carbone diamant ou de type diamant destinées à émettre des électrons.
  • Ces couches sont obtenues par ablation laser ou par dépôt chimique en phase vapeur ("chemical vapour deposition").
  • Le carbone diamant ou de type diamant émet beaucoup plus facilement des électrons que les matériaux classiquement utilisés pour la fabrication des micro-pointes.
  • Avec le carbone diamant ou de type diamant, le champ électrique minimal à partir duquel on peut obtenir une émission d'électrons peut être vingt fois plus faible que le champ électrique minimal correspondant à des métaux comme par exemple le molybdène.
  • Malheureusement, le dépôt des couches de carbone diamant ou de type diamant, avec les méthodes mentionnées plus haut, a lieu à haute température (de l'ordre de 700°C).
  • De plus, il est impossible d'obtenir directement des micro-pointes par ces méthodes.
  • Les dépôts obtenus sont des couches continues et non pas des micro-pointes.
  • Les dispositifs de visualisation qui en résultent sont, comme on l'a vu plus haut, de type "diode", ce qui pose un problème en ce qui concerne leur adressage.
  • Il faut en effet réaliser des systèmes électroniques d'adressage permettant d'appliquer des tensions de l'ordre de plusieurs centaines de volts à ces dispositifs.
  • De plus, la température élevée à laquelle sont formées les couches de carbone diamant ou de type diamant interdit l'utilisation de verre standard en tant que substrat destiné à porter ces couches.
  • EXPOSE DE L'INVENTION
  • La présente invention a pour but de remédier aux inconvénients précédents.
  • Elle a pour objet une source d'électrons à effet de champ, cette source comprenant :
    • sur un substrat électriquement isolant, au moins une première électrode jouant le rôle de conducteur cathodique,
    • une couche électriquement isolante qui recouvre ce conducteur cathodique,
    • au moins une deuxième électrode jouant le rôle de grille, formée sur la couche électriquement isolante, des trous étant formés à travers cette grille et la couche électriquement isolante au-dessus du conducteur cathodique, et
    • des éléments qui sont susceptibles d'émettre des électrons et qui sont formés dans ces trous et portés par le conducteur cathodique,
    cette source étant caractérisée en ce que ces éléments sont des micro-amas contenant des particules de carbone diamant ou de type diamant ("diamond like carbon" ou DLC dans les articles en langue anglaise).
  • Par "micro-amas", on entend un micro-tas composé de grains de poudre de carbone diamant ou de type diamant qui sont en contact direct avec leurs plus proches voisins et/ou liés entre eux par un métal.
  • Pour une même tension électrique de commande, la source objet de la présente invention émet plus d'électrons qu'une source à micro-pointes, du fait de l'utilisation, dans la présente invention, des particules de carbone diamant ou de type diamant qui ont un pouvoir émissif plus élevé que des matériaux émetteurs d'électrons classiques comme par exemple le molybdène.
  • Ainsi, dans le cas de l'utilisation d'une source conforme à l'invention pour fabriquer par exemple un dispositif de visualisation, ce dispositif a une plus grande luminosité qu'un dispositif à micro-pointes, pour même tension de commande.
  • A luminosités égales, ce dispositif utilisant une source conforme à l'invention nécessite une tension de commande inférieure à celle qui est nécessaire à un dispositif à micro-pointes.
  • De plus, l'utilisation d'une source conforme à l'invention conduit à un système de type "triode" qui nécessite des tensions de commande inférieures à celles qui sont nécessaires aux dispositifs de type "diode" mentionnés plus haut, qui utilisent des couches de carbone diamant ou de type diamant.
  • Dans la présente invention, les micro-amas peuvent être faits de particules de carbone diamant ou de type diamant ou peuvent être faits de telles particules dispersées dans un métal.
  • Dans la source objet de l'invention, les micro-amas peuvent être liés par un dépôt d'un métal destiné à consolider ces micro-amas, les particules de carbone diamant ou de type diamant émergeant de ce dépôt à la surface des micro-amas.
  • La présente invention concerne également un dispositif de visualisation par cathodoluminescence comprenant :
    • une source d'électrons à effet de champ, et
    • une anode cathodoluminescente comprenant une couche d'un matériau cathodoluminescent,
    dispositif caractérisé en ce que la source est celle qui fait l'objet de l'invention.
  • On a vu plus haut les avantages d'un tel dispositif par rapport aux dispositifs connus utilisant des micro-pointes et aux dispositifs comprenant des couches de carbone diamant ou de type diamant.
  • La présente invention concerne aussi un procédé de fabrication d'une source d'électrons à effet de champ, procédé selon lequel :
    • on fabrique une structure comprenant un substrat électriquement isolant, au moins un conducteur cathodique sur ce substrat, une couche électriquement isolante qui recouvre chaque conducteur cathodique et une couche de grille électriquement conductrice qui recouvre cette couche électriquement isolante,
    • on forme des trous à travers la couche de grille et la couche électriquement isolante, au niveau de chaque conducteur cathodique, et
    • on forme, dans chaque trou, un élément susceptible d'émettre des électrons,
    ce procédé étant caractérisé en ce que les éléments sont des micro-amas qui contiennent des particules de carbone diamant ou de type diamant et sont formés par électrophorèse ou par co-dépôt électrochimique de métal et de carbone diamant ou de type diamant.
  • Le procédé objet de l'invention peut être mis en oeuvre avec des substrats de grande surface et permet ainsi l'obtention de sources d'électrons (et donc d'écrans de visualisation) de grande surface (plusieurs dizaines de pouces de diagonale).
  • De plus, dans le procédé objet de l'invention, la température à laquelle on forme les micro-amas est voisine de la température ambiante (de l'ordre de 20°C).
  • Il est ainsi possible d'utiliser, pour fabriquer une source conforme à l'invention, un substrat en verre ordinaire (sodocalcique), sans précautions particulières.
  • On notera aussi que le procédé objet de l'invention est plus simple que le procédé de fabrication des sources à micro-pointes car, contrairement à ce dernier, il n'utilise ni couche sacrificielle ("lift off layer") ni dépôt sous vide.
  • En outre, les bains qui sont nécessaires pour la mise en oeuvre du procédé objet de l'invention ont une durée de vie importante (plusieurs mois).
  • Selon un mode de mise en oeuvre particulier du procédé objet de l'invention, les micro-amas formés par électrophorèse sont ensuite liés à l'aide d'un métal par dépôt électrochimique, afin de consolider ces micro-amas.
  • De préférence, les particules de carbone diamant ou de type diamant ont une taille de l'ordre de 1 µm ou de moins de 1 µm.
  • Préférentiellement on utilise des poudres nanométriques.
  • Ces particules peuvent être obtenues à partir de diamant naturel ou artificiel ou par une méthode choisie parmi la synthèse par laser, le dépôt chimique en phase vapeur et le dépôt physique en phase vapeur.
  • Les trous formés à travers la couche de grille et la couche électriquement isolante peuvent avoir une forme circulaire ou rectangulaire.
  • La taille de ces trous peut être choisie dans un intervalle allant d'environ 1 µm jusqu'à plusieurs dizaines de micromètres.
  • La structure dans laquelle on forme les micro-amas conformément au procédé objet de l'invention est comparable à la structure dans laquelle on forme les micro-pointes pour fabriquer une source à micro-pointes.
  • En revanche, la taille des trous que l'on forme dans la structure pour mettre en oeuvre le procédé objet de l'invention peut être nettement supérieure à celle qui est nécessaire à la mise en oeuvre d'un procédé de fabrication d'une source à micro-pointes.
  • Ceci est très avantageux compte tenu des difficultés liées à l'obtention de trous calibrés de petite taille (inférieure à 2 µm) sur de grandes surfaces.
  • BREVE DESCRIPTION DES DESSINS
  • La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
    • la figure 1 est une vue en coupe schématique d'une source d'électrons conforme à la présente invention,
    • la figure 2 est une vue en coupe schématique d'un dispositif de visualisation utilisant la source de la figure 1,
    • la figure 3 illustre schématiquement un procédé de fabrication d'une source d'électrons conforme à l'invention,
    • la figure 4 illustre schématiquement la possibilité d'utiliser des trous rectangulaires pour fabriquer une source conforme à l'invention, et
    • la figure 5 illustre schématiquement un autre procédé de fabrication d'une source d'électrons conforme à l'invention.
    EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERS
  • La source conforme à l'invention, qui est schématiquement représentée en coupe sur la figure 1, comprend :
    • sur un substrat électriquement isolant 2, des électrodes 4 jouant le rôle de conducteurs cathodiques (un seul conducteur cathodique est visible sur la figure 1),
    • une couche électriquement isolante 6 qui recouvre chaque conducteur cathodique, et
    • des électrodes 8 jouant le rôle de grilles et formées sur la couche électriquement isolante 6 (une seule grille est visible sur la figure 1).
  • Des trous 10 sont formés à travers ces grilles 8 et la couche isolante 6 au-dessus des conducteurs cathodiques 4.
  • Des micro-amas 12 contenant des particules de carbone diamant ou de type diamant, sont formés dans les trous 10 et portés par les conducteurs cathodiques 4.
  • On précise que les conducteurs cathodiques 4 sont parallèles et que les grilles 8 sont parallèles les unes aux autres et perpendiculaires aux conducteurs cathodiques 4.
  • Les trous 10 et donc les micro-amas 12 se trouvent dans les zones où ces grilles croisent les conducteurs cathodiques.
  • Ce sont les micro-amas d'une telle zone qui émettent des électrons lorsqu'une tension électrique appropriée est appliquée, par des moyens non représentés, entre le conducteur cathodique 4 et la grille 8 qui correspondent à cette zone.
  • Un dispositif de visualisation par cathodoluminescence est schématiquement représenté en coupe sur la figure 2.
  • Ce dispositif comprend la source d'électrons 14 de la figure 1.
  • Le dispositif de la figure 2 comprend aussi une anode cathodoluminescente 16 placée en regard de la source 14 et séparée de celle-ci par un espace 18 dans lequel on a fait le vide.
  • L'anode cathodoluminescente 16 comprend un substrat électriquement isolant et transparent 20 qui est pourvu d'une couche électriquement conductrice et transparente 22 formant une anode.
  • Celle-ci est disposée en regard de la source d'électrons 14 et revêtue, en face de cette source, d'une couche 24 d'un matériau cathodoluminescent ou "luminophore" ("phosphor" dans les publications en langue anglaise).
  • Sous l'impact des électrons émis par les micro-amas 12 de la source, cette couche 24 émet une lumière qu'un utilisateur du dispositif de visualisation observe à travers le substrat transparent 20.
  • Il s'agit d'un dispositif que l'on peut comparer aux dispositifs de visualisation décrits dans les documents (1) à (4) mentionnés ci-après mais qui présente des avantages par rapport à ces dispositifs, comme on l'a vu plus haut :
    • (1) FR-A-2 593 953 correspondant à EP-A-0 234 989 et à US-A-4 857 161
    • (2) FR-A-2 623 013 correspondant à EP-A-0 316 214 et à US-A-4 940 916
    • (3) FR-A-2 663 462 correspondant à EP-A-0 461 990 et à US-A-5 194 780
    • (4) FR-A-2 687 839 correspondant à EP-A-0 558 393 et à la demande de brevet américain du 26 février 1993, numéro de série 08/022,935 (Leroux et al.).
  • On explique ci-après un procédé de fabrication de la source d'électrons de la figure 1 en se référant à la figure 3 qui illustre schématiquement ce procédé.
  • Pour fabriquer cette source, on commence par fabriquer une structure comprenant :
    • le substrat 2,
    • les conducteurs cathodiques 4,
    • la couche électriquement isolante 6,
    • une couche de grille 25, qui recouvre cette couche électriquement isolante 6, et
    • les trous 10 formés dans cette couche de grille 25 et la couche électriquement isolante 6.
  • La fabrication d'une telle structure est connue et, à ce sujet, on se reportera aux documents (1) à (4) mentionnés plus haut.
  • On précise cependant que le diamètre D1 des trous (sensiblement circulaires) formés dans la grille 8 et dans la couche électriquement isolante 6 peut être avantageusement supérieur au diamètre des trous que comportent les sources d'électrons à micro-pointes décrites dans les documents (1) à (4).
  • Par exemple, ce diamètre D1 peut prendre des valeurs de l'ordre de 1 µm jusqu'à 20 µm.
  • La figure 4 illustre schématiquement le fait que les trous 10, au lieu d'avoir une forme circulaire, peuvent avoir une forme rectangulaire.
  • La largeur D2 de ces trous 10 de la figure 4, de forme rectangulaire, peut être prise égale au diamètre D1 mentionné plus haut et peut donc être également nettement supérieure au diamètre des trous des sources à micro-pointes.
  • Il s'agit ensuite de former dans les trous 10 les micro-amas 12 de carbone diamant ou de type diamant (après quoi on formera les grilles, perpendiculairement aux conducteurs cathodiques, par gravure de la couche de grille 25).
  • Pour former les micro-amas 12, on utilise une poudre de carbone diamant ou de type diamant.
  • Cette poudre peut être obtenue par dépôt chimique en phase vapeur, à partir d'un mélange d'hydrogène et d'hydrocarbures légers.
  • Ce dépôt chimique en phase vapeur peut être assisté par un faisceau d'électrons ou être assisté par un plasma engendré par des micro-ondes.
  • On peut également synthétiser cette poudre au moyen d'un laser, c'est-à-dire, plus précisément, par dépôt chimique en phase vapeur comme précédemment mais assisté par laser.
  • On peut également synthétiser la poudre par dépôt physique en phase vapeur ("physical vapour deposition"), à partir de cibles de carbone (graphite par exemple) et d'un gaz plasmagène tel que l'argon seul ou mélangé avec de l'hydrogène, des hydrocarbures sans dopant ou avec un dopant comme par exemple le diborane.
  • On peut également obtenir cette poudre par ablation laser.
  • On peut également utiliser une poudre de diamant naturel.
  • En variante, on peut préparer des diamants artificiels par compactage de carbone, à haute pression et haute température, puis fabriquer la poudre à partir de ces diamants artificiels.
  • De préférence, ces poudres de carbone diamant et ces poudres de carbone de type diamant sont choisies de façon à avoir une granulométrie micronique ou submicronique, de préférence nanométrique.
  • On précise que ces poudres de carbone diamant ou de type diamant peuvent être dopées ou non dopées.
  • On peut par exemple utiliser le bore en tant que dopant.
  • Le dépôt de la poudre (particules de carbone diamant ou de type diamant) conduisant à la formation des micro-amas 12 dans les trous 10, sur les conducteurs cathodiques 4, peut être réalisé par électrophorèse (cataphorèse ou anaphorèse), éventuellement complétée par un dépôt métallique électrochimique de consolidation, ou par co-dépôt électrochimique de métal et de carbone diamant ou de type diamant.
  • Dans le cas du dépôt par anaphorèse, la structure pourvue des trous 10 est placée dans une solution appropriée 26 et le fond de chaque trou 10 est porté à un potentiel positif pendant cette phase de dépôt.
  • Plus précisément, les conducteurs cathodiques 4 sont portés à ce potentiel positif grâce à une source de tension appropriée 28 dont la borne positive est reliée à ces conducteurs cathodiques 4 tandis que la borne négative de cette source est reliée à une contre-électrode 32 en platine ou en acier inoxydable située dans le bain à une distance du substrat d'environ 1 à 5 cm.
  • La poudre fine de particules de carbone diamant ou de type diamant est mise en suspension dans la solution 26 (avant de placer la structure dans cette solution).
  • La solution 26 comporte par exemple :
    • de l'acétone,
    • un acide qui peut être de l'acide sulfurique à 8 µl par litre de solution, et
    • de la nitrocellulose qui joue le rôle de liant et de dispersant.
  • L'immersion de la structure dans cette solution et l'application du potentiel positif au fond des trous conduit à l'obtention des micro-amas 12.
  • La tension fournie par la source 28 peut aller jusqu'à environ 200 V.
  • Dans le cas de la cataphorèse, un potentiel négatif est appliqué au fond des trous.
  • Plus précisément, dans ce cas, c'est la borne négative de la source 28 qui est reliée aux conducteurs cathodiques 4 tandis que la borne positive de la source 28 est reliée à une contre-électrode 32 en platine ou en acier inoxydable située dans le bain à une distance du substrat d'environ 1 à 5 cm.
  • La solution 26 comporte alors par exemple :
    • de l'alcool isopropylique,
    • un liant minéral comme exemple Mg(NO₃)₂, 6H₂O (de concentration 10⁻⁵ mole par litre), et
    • un dispersant tel que le glycérol (dont la concentration est de l'ordre de 1% en volume).
  • On utilise alors une tension pouvant aller jusqu'à 200 V environ.
  • On obtient le même type de dépôt que dans le cas de l'anaphorèse.
  • Dans l'intention de consolider le dépôt obtenu par électrophorèse, on peut, après celui-ci, réaliser un dépôt électrochimique d'un métal par exemple choisi parmi Ni, Co, Ag, Au, Rh ou Pt ou, plus généralement, parmi les métaux de transition, les alliages de ceux-ci et les métaux précieux.
  • Ceci est schématiquement illustré par la figure 5 où l'on voit la structure pourvue des micro-amas 12 et plongée dans une solution 30 permettant un tel dépôt électrochimique.
  • Une tension électrique appropriée est alors appliquée entre les conducteurs cathodiques 4 et une électrode 33 placée dans cette solution, au moyen d'une source de tension 34.
  • Cette électrode 33 est par exemple en nickel et la solution 30 contient par exemple 300 g/l de sulfate de nickel, 30 g/l de chlorure de nickel, 30 g/l d'acide borique et 0,6 g/l de lauryl sulfate de sodium.
  • On utilise par exemple un courant électrique de 4 A/dm.
  • On voit sur la figure 5 le dépôt métallique 36 qui est formé sur chaque micro-amas 12 après cette opération de dépôt électrochimique, laissant apparaître des parties émergeantes des particules du micro-amas.
  • On peut également former les micro-amas par co-dépôt électrochimique de métal et de carbone diamant ou de type diamant.
  • Pour ce faire, on utilise par exemple un bain contenant des ions de nickel et de la poudre de diamant en suspension dans ce bain.
  • On peut utiliser jusqu'à 60% en poids de diamant en suspension dans le bain.
  • On utilise une source de courant appropriée, par exemple de l'ordre de 4 A/dm, et l'on applique la borne négative de cette source aux conducteurs cathodiques et la borne positive de cette source à une électrode de nickel placée dans le bain.
  • Le nickel se dépose dans les trous en entraînant avec lui les particules de diamant, d'où la formation de micro-amas de nickel et de diamant dans ces trous.
  • Au lieu de carbone diamant ou de type diamant, on peut utiliser, pour la mise en oeuvre d'un procédé conforme à l'invention, une poudre de particules de carbure de silicium ou de carbure de titane, de taille micronique ou submicronique, et utiliser les mêmes méthodes que précédemment (électrophorèse, éventuellement complétée par un dépôt métallique électrochimique de consolidation, ou co-dépôt électrochimique de métal et de telles particules), pour former les micro-amas.
  • Bien entendu, dans la présente invention, les sommets des micro-amas (éventuellement recouverts d'un dépôt métallique de consolidation) se trouvent sensiblement dans le plan des grilles et ces micro-amas sont sans contact avec ces grilles.

Claims (10)

  1. Source d'électrons à effet de champ, cette source comprenant :
    - sur un substrat électriquement isolant (2), au moins une première électrode (4) jouant le rôle de conducteur cathodique,
    - une couche électriquement isolante (6) qui recouvre ce conducteur cathodique,
    - au moins une deuxième électrode (8) jouant le rôle de grille, formée sur la couche électriquement isolante, des trous (10) étant formés à travers cette grille et la couche électriquement isolante au-dessus du conducteur cathodique, et
    - des éléments (12) qui sont susceptibles d'émettre des électrons et qui sont formés dans ces trous et portés par le conducteur cathodique,
    cette source étant caractérisée en ce que ces éléments sont des micro-amas (12) contenant des particules de carbone diamant ou de type diamant.
  2. Source selon la revendication 1, caractérisée en ce que les micro-amas (12) sont faits de particules de carbone diamant ou de type diamant ou sont faits de telles particules dispersées dans un métal.
  3. Source selon la revendication 2, caractérisée en ce que ces micro-amas (12) sont liés par un dépôt d'un métal, les particules de carbone diamant ou de type diamant émergeant de ce dépôt à la surface des micro-amas.
  4. Dispositif de visualisation par cathodoluminescence comprenant :
    - une source d'électrons (14) à effet de champ, et
    - une anode cathodoluminescente (16) comprenant une couche d'un matériau cathodoluminescent (24),
    dispositif caractérisé en ce que la source (14) est conforme à l'une quelconque des revendications 1 à 3.
  5. Procédé de fabrication d'une source d'électrons à effet de champ, procédé selon lequel :
    - on fabrique une structure comprenant un substrat électriquement isolant (2), au moins un conducteur cathodique (4) sur ce substrat, une couche électriquement isolante (6) qui recouvre chaque conducteur cathodique et une couche de grille électriquement conductrice (25) qui recouvre cette couche électriquement isolante,
    - on forme des trous (10) à travers la couche de grille et la couche électriquement isolante, au niveau de chaque conducteur cathodique, et
    - on forme, dans chaque trou, un élément (12) susceptible d'émettre des électrons,
    ce procédé étant caractérisé en ce que les éléments sont des micro-amas (12) qui contiennent des particules de carbone diamant ou de type diamant et sont formés par électrophorèse ou par co-dépôt électrochimique de métal et de carbone diamant ou de type diamant.
  6. Procédé selon la revendication 5, caractérisé en ce que les micro-amas (12) formés par électrophorèse sont ensuite liés à l'aide d'un métal par dépôt électrochimique.
  7. Procédé selon l'une quelconque des revendications 5 et 6, caractérisé en ce que les particules de carbone diamant ou de type diamant ont une taille de l'ordre de 1 µm ou de moins de 1 µm.
  8. Procédé selon la revendication 7, caractérisé en ce que les particules sont obtenues à partir de diamant naturel ou artificiel ou par une méthode choisie parmi la synthèse par laser, le dépôt chimique en phase vapeur et le dépôt physique en phase vapeur.
  9. Procédé selon l'une quelconque des revendications 5 à 8, caractérisé en ce que les trous (10) ont une forme circulaire ou rectangulaire.
  10. Procédé selon l'une quelconque des revendications 5 à 9, caractérisé en ce que la taille des trous (10) est choisie dans un intervalle allant d'environ 1 µm à plusieurs dizaines de micromètres.
EP95402450A 1994-11-08 1995-11-03 Source d'électrons à effet de champ et procédé de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence Expired - Lifetime EP0712146B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9413371A FR2726688B1 (fr) 1994-11-08 1994-11-08 Source d'electrons a effet de champ et procede de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
FR9413371 1994-11-08

Publications (2)

Publication Number Publication Date
EP0712146A1 true EP0712146A1 (fr) 1996-05-15
EP0712146B1 EP0712146B1 (fr) 1999-06-30

Family

ID=9468611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402450A Expired - Lifetime EP0712146B1 (fr) 1994-11-08 1995-11-03 Source d'électrons à effet de champ et procédé de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence

Country Status (5)

Country Link
US (1) US5828162A (fr)
EP (1) EP0712146B1 (fr)
JP (1) JPH08241664A (fr)
DE (1) DE69510521T2 (fr)
FR (1) FR2726688B1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018576A1 (fr) * 1995-11-15 1997-05-22 E.I. Du Pont De Nemours And Company Emetteurs de champ en poudres de diamant et cathodes d'emission de champ produites a partir de ces poudres
WO1997018577A1 (fr) * 1995-11-15 1997-05-22 E.I. Du Pont De Nemours And Company Procede de fabrication d'une cathode d'emission de champ au moyen d'un materiau emetteur de champ particulaire
EP0957503A2 (fr) * 1998-05-15 1999-11-17 Sony Corporation Procédé de fabrication d'une cathode à émission par effet de champ
EP1073085A2 (fr) * 1999-07-29 2001-01-31 Sony Corporation Procédé de fabrication d'un émetteur de champ à cathode froide et d'un dispositif d'affichage
EP1073090A2 (fr) * 1999-07-27 2001-01-31 Iljin Nanotech Co., Ltd. Dispositif d'affichage à émission de champ utilisant des nanotubes de carbone, et procédé de fabrication
GB2322472B (en) * 1997-02-24 2001-11-28 Ibm Self stabilising non-thermionic cathode

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040601A1 (fr) * 1998-02-09 1999-08-12 Matsushita Electric Industrial Co., Ltd. Dispositif emetteur d'electrons, son procede de production, et son procede d'excitation; afficheur d'images comprenant ledit emetteur d'electrons et son procede de fabrication
JP2000182508A (ja) * 1998-12-16 2000-06-30 Sony Corp 電界放出型カソード、電子放出装置、および電子放出装置の製造方法
JP3595718B2 (ja) * 1999-03-15 2004-12-02 株式会社東芝 表示素子およびその製造方法
JP2000306492A (ja) * 1999-04-21 2000-11-02 Hitachi Powdered Metals Co Ltd 電界放出型カソード、電子放出装置、および電子放出装置の製造方法
US6342755B1 (en) * 1999-08-11 2002-01-29 Sony Corporation Field emission cathodes having an emitting layer comprised of electron emitting particles and insulating particles
GB9919737D0 (en) * 1999-08-21 1999-10-20 Printable Field Emitters Limit Field emitters and devices
US6384520B1 (en) 1999-11-24 2002-05-07 Sony Corporation Cathode structure for planar emitter field emission displays
JP2001185019A (ja) 1999-12-27 2001-07-06 Hitachi Powdered Metals Co Ltd 電界放出型カソード、電子放出装置、及び電子放出装置の製造方法
JP3953276B2 (ja) * 2000-02-04 2007-08-08 株式会社アルバック グラファイトナノファイバー、電子放出源及びその作製方法、該電子放出源を有する表示素子、並びにリチウムイオン二次電池
JP3730476B2 (ja) 2000-03-31 2006-01-05 株式会社東芝 電界放出型冷陰極及びその製造方法
KR100366705B1 (ko) * 2000-05-26 2003-01-09 삼성에스디아이 주식회사 전기 화학 중합을 이용한 탄소나노튜브 에미터 제조 방법
WO2002103737A2 (fr) * 2001-06-14 2002-12-27 Hyperion Catalysis International, Inc. Dispositif a emission de champ utilisant nanotubes de carbone des bombardes par des ions
US7210978B2 (en) * 2004-04-14 2007-05-01 Teco Nanotech Co., Ltd. Electron-emission type field-emission display and method of fabricating the same
CN100405523C (zh) * 2004-04-23 2008-07-23 清华大学 场发射显示器
US7736209B2 (en) * 2004-09-10 2010-06-15 Applied Nanotech Holdings, Inc. Enhanced electron field emission from carbon nanotubes without activation
CN100370571C (zh) * 2004-11-12 2008-02-20 清华大学 场发射阴极和场发射装置
TWI309843B (en) * 2006-06-19 2009-05-11 Tatung Co Electron emission source and field emission display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293593A (en) 1941-07-25 1942-08-18 Albert Shelby Hair treating apparatus
FR2593953A1 (fr) 1986-01-24 1987-08-07 Commissariat Energie Atomique Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ
FR2623013A1 (fr) 1987-11-06 1989-05-12 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
FR2663462A1 (fr) 1990-06-13 1991-12-20 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
US5199918A (en) * 1991-11-07 1993-04-06 Microelectronics And Computer Technology Corporation Method of forming field emitter device with diamond emission tips
GB2260641A (en) * 1991-09-30 1993-04-21 Kobe Steel Ltd Cold cathode emitter element
EP0555074A1 (fr) * 1992-02-05 1993-08-11 Motorola, Inc. Source d'électrons pour dispositif émetteur d'électrons en mode d'appauvrissement
FR2687839A1 (fr) 1992-02-26 1993-08-27 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ utilisant cette source.
US5289086A (en) * 1992-05-04 1994-02-22 Motorola, Inc. Electron device employing a diamond film electron source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084942A (en) * 1975-08-27 1978-04-18 Villalobos Humberto Fernandez Ultrasharp diamond edges and points and method of making
US5225820A (en) * 1988-06-29 1993-07-06 Commissariat A L'energie Atomique Microtip trichromatic fluorescent screen
US5473218A (en) * 1994-05-31 1995-12-05 Motorola, Inc. Diamond cold cathode using patterned metal for electron emission control

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293593A (en) 1941-07-25 1942-08-18 Albert Shelby Hair treating apparatus
FR2593953A1 (fr) 1986-01-24 1987-08-07 Commissariat Energie Atomique Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ
EP0234989A1 (fr) * 1986-01-24 1987-09-02 Commissariat A L'energie Atomique Procédé de fabrication d'un dispositif de visualisation par cathodoluminescence excitée par émission de champ
FR2623013A1 (fr) 1987-11-06 1989-05-12 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
FR2663462A1 (fr) 1990-06-13 1991-12-20 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
GB2260641A (en) * 1991-09-30 1993-04-21 Kobe Steel Ltd Cold cathode emitter element
US5199918A (en) * 1991-11-07 1993-04-06 Microelectronics And Computer Technology Corporation Method of forming field emitter device with diamond emission tips
EP0555074A1 (fr) * 1992-02-05 1993-08-11 Motorola, Inc. Source d'électrons pour dispositif émetteur d'électrons en mode d'appauvrissement
FR2687839A1 (fr) 1992-02-26 1993-08-27 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ utilisant cette source.
EP0558393A1 (fr) * 1992-02-26 1993-09-01 Commissariat A L'energie Atomique Source d'électrons à cathodes émissives à micropointes et dispositif de visualisation par cathodoluminescence excitée par émission de champ utilisant cette source
US5289086A (en) * 1992-05-04 1994-02-22 Motorola, Inc. Electron device employing a diamond film electron source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N.KUMAR ET AL.: "development of nano-crystalline diamond-based field-emission displays", SID INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS, vol. 25, 14 June 1994 (1994-06-14), pages 43 - 46, XP000439084 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018576A1 (fr) * 1995-11-15 1997-05-22 E.I. Du Pont De Nemours And Company Emetteurs de champ en poudres de diamant et cathodes d'emission de champ produites a partir de ces poudres
WO1997018577A1 (fr) * 1995-11-15 1997-05-22 E.I. Du Pont De Nemours And Company Procede de fabrication d'une cathode d'emission de champ au moyen d'un materiau emetteur de champ particulaire
US5948465A (en) * 1995-11-15 1999-09-07 E. I. Du Pont De Nemours And Company Process for making a field emitter cathode using a particulate field emitter material
GB2322472B (en) * 1997-02-24 2001-11-28 Ibm Self stabilising non-thermionic cathode
EP0957503A2 (fr) * 1998-05-15 1999-11-17 Sony Corporation Procédé de fabrication d'une cathode à émission par effet de champ
EP0957503A3 (fr) * 1998-05-15 2002-10-23 Sony Corporation Procédé de fabrication d'une cathode à émission par effet de champ
EP1073090A2 (fr) * 1999-07-27 2001-01-31 Iljin Nanotech Co., Ltd. Dispositif d'affichage à émission de champ utilisant des nanotubes de carbone, et procédé de fabrication
EP1073090A3 (fr) * 1999-07-27 2003-04-16 Iljin Nanotech Co., Ltd. Dispositif d'affichage à émission de champ utilisant des nanotubes de carbone, et procédé de fabrication
EP1073085A2 (fr) * 1999-07-29 2001-01-31 Sony Corporation Procédé de fabrication d'un émetteur de champ à cathode froide et d'un dispositif d'affichage
EP1073085A3 (fr) * 1999-07-29 2003-04-09 Sony Corporation Procédé de fabrication d'un émetteur de champ à cathode froide et d'un dispositif d'affichage

Also Published As

Publication number Publication date
US5828162A (en) 1998-10-27
JPH08241664A (ja) 1996-09-17
DE69510521T2 (de) 2000-03-16
FR2726688A1 (fr) 1996-05-10
FR2726688B1 (fr) 1996-12-06
EP0712146B1 (fr) 1999-06-30
DE69510521D1 (de) 1999-08-05

Similar Documents

Publication Publication Date Title
EP0712146B1 (fr) Source d&#39;électrons à effet de champ et procédé de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
EP0712147B1 (fr) Procédé de fabrication d&#39;une source d&#39;électrons à effet de champ et source obtenue par ce procédé, application aux dispositifs de visualisation par cathodoluminescence
EP1614765B1 (fr) Croissance à basse températurede nanotubes de carbone orientés
JP3699114B2 (ja) パッキング密度の高い電子放出デバイスの構造
US6462467B1 (en) Method for depositing a resistive material in a field emission cathode
US7741764B1 (en) DLC emitter devices and associated methods
EP0119459B1 (fr) Pièce comprenant un substrat muni d&#39;un revêtement dur et résistance à la corrosion
EP1885648A2 (fr) Procede de realisation de nanostructures
US20100048391A1 (en) Catalyst particles on a tip
FR2723255A1 (fr) Dispositif d&#39;affichage a emission de champ et procede pour fabriquer de tels dispositifs
JP3604652B2 (ja) 電子放出陰極およびその製造方法
EP0708473B1 (fr) Procédé de fabrication d&#39;une source d&#39;électrons à micropointes
JP2007319761A (ja) 炭素系ナノ材料生成用触媒組成物、炭素系ナノ材料デバイス、電子放出素子用カソード基板及びその作製方法、並びに電子放出素子デバイス及びその作製方法
EP0697710B1 (fr) Procédé de fabrication d&#39;une source d&#39;électrons à micropointes
EP0856868B1 (fr) Source d&#39;électrons à micropointes et dispositif de visualisation avec telle source
FR2517921A1 (fr) Dispositif electroluminescent et son procede d&#39;obtention
US6593683B1 (en) Cold cathode and methods for producing the same
FR2747839A1 (fr) Ecran plat de visualisation a source d&#39;hydrogene
Myers et al. Characterization of amorphous carbon coated silicon field emitters
FR2759202A1 (fr) Dispositif emetteur d&#39;electrons et dispositif d&#39;affichage pourvu d&#39;un tel dispositif
JPH06131968A (ja) 電界放出型電子源およびアレイ状基板
EP1690277A2 (fr) Dispositifs a emission de champ.
EP0038742B1 (fr) Procédé de réalisation d&#39;une cathode imprégnée à grille intégrée, cathode obtenue par ce procédé, et tube électronique muni d&#39;une telle cathode
WO2002006559A1 (fr) Procede de fabrication de couches de carbone aptes a emettre des electrons, par depot chimique en phase vapeur
Boscolo et al. Tests on diamond films as current amplifiers for photocathodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19961022

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981008

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69510521

Country of ref document: DE

Date of ref document: 19990805

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990903

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041104

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051103