EP0856868B1 - Source d'électrons à micropointes et dispositif de visualisation avec telle source - Google Patents
Source d'électrons à micropointes et dispositif de visualisation avec telle source Download PDFInfo
- Publication number
- EP0856868B1 EP0856868B1 EP98201095A EP98201095A EP0856868B1 EP 0856868 B1 EP0856868 B1 EP 0856868B1 EP 98201095 A EP98201095 A EP 98201095A EP 98201095 A EP98201095 A EP 98201095A EP 0856868 B1 EP0856868 B1 EP 0856868B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- microtips
- electron source
- source according
- etching
- grids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/304—Field-emissive cathodes
- H01J1/3042—Field-emissive cathodes microengineered, e.g. Spindt-type
Definitions
- the present invention relates in a manner general to emitting cathodic systems using electronic emission by field effect such as by example of the matrix flat screens used for the display of images; it relates more of a way to a process for improving the characteristics of microtip cathodes and their uniformity over large areas.
- Figure 1 shows an already elaborate structure, comprising on a substrate 6 surmounted by an insulator 7, a system of cathode conductors 8 and grids 10a superposed in crossed form with an insulator intermediate 12 and a layer of nickel for example 23 deposited on the surface to serve as a mask during operations of making microtips.
- This layer 23 of nickel, the grids 10a and the insulator 12 are pierced with holes 16, in the bottom of which it's a question of coming to deposit the future microtips made of a conductive metal in electrical connection with the cathode electrode 8.
- microtips as well obtained have certain defects. These defects come first from the fact that the previous method makes it difficult to obtain micropoints with the shape is reproducible from one point to another and / or from one cathode to another, especially on large surfaces during mass production. They come from the fact that, on the other hand, obtained micropoints are far from always having the perfect conical shape that has been represented under the reference 18 in Figures 2 and 3. Usually Indeed, they have inequalities of form and majority has a radius of curvature much too high, this which gives them a domed profile as we can see in Figure 4. This dome profile decreases especially their emissivity in a considerable way, that is to say the current density emitted for a grid voltage determined micropoint.
- the realization of the cathode requires at least one photolithography step intervening after the realization of the spikes in particular for the definition of the conductor strips forming the grids. This step creates pollution risks on the tips (organic residues, traces of cleaning,).
- the emissivity of a point varies so exponential with the shape of the tip and its state of area.
- a method of making electron sources at micropoints according to the invention allows both to standardize the surface condition and refine the microtip geometry.
- This process thus makes it possible to reduce the dispersions of features from a tip to the other and from one source to another to disadvantages and make it easier to production of microtip cathodes having uniform and reproducible characteristics, than a high level of emission.
- the process proposes to carry out, as a first step, a first cleaning step that allows to standardize the state of surface and, in a second step, a step refining which consists of a complementary engraving to give the microtips a profile as close as possible of the desired ideal, that is to say with a radius of curvature as low as possible (lower a few tens of nanometers).
- this optimization consists of search, for microtips, of a profile as close as possible to a pointed cone tapered, in other words in search of an effect of spikes increased to ensure a large amplitude of the electric field.
- the step is followed refining a second cleaning step, consisting of wet chemical cleaning.
- the first cleaning step comprises a first wet chemical cleaning sub-step and a second plasma cleaning sub-step, for example by O 2 plasma.
- the ripening stage by surface etching can be carried out by one any of the known methods that are particularly controlled chemical or electrochemical attack, reactive ion etching attack and attack by ion bombardment.
- the superficial attack microtips is performed on a thickness of a few tens to a few thousand Angstroms.
- One of the advantages of the process is that it applies to the treatment very large emitting surfaces, such as meet precisely in flat screens display.
- the method thus makes it possible to correct very simply the approximate shape of the microtips obtained to date and, by removing the dispersions of emission characteristics of a peak to the other, to allow a level of emission electronics very high and significantly increased compared to those of the prior art, and therefore to allow the reduction of the supply voltage required between grids and cathode conductors for extract the electrons.
- the principle of the process consists in choosing a method of realizing micropoints which gives for them a shape approximate (easier to achieve on large surfaces and less expensive) then to clean the micropoints and finally to improve and homogenize their radius of curvature using, in particular, a reactive ion etching or other methods of chemical or electrochemical engravings.
- the first part (base) is of height such that its summit is about the same level as the lower plane of the grid.
- the ripening time must be controlled: if it is too much important, the top of the tip can quickly become find below the bottom plane of the grid, this which is very unfavorable to the electronic broadcast. If it is too weak, the radius of curvature is not optimum and the effect sought by refining is not achieved.
- the ripening time must be sufficient to obtain the optimum radius of curvature of the tip, but if it is longer, the top of the tip always stays above from the bottom plane of the grid since it rests on the material not attacked or little attacked.
- the first part is in niobium (Nb)
- the second part is in molybdenum, or chromium, or silicon, or iron, or in nickel.
- the height H is such that the top of the first part is substantially at level of the lower plane of the grids.
- the invention thus applies to sources in which microtips are not deposited directly on the cathodic conductors but by example on a resistive layer interposed between microtips and cathode conductors.
- This last operation which lasts about ten minutes is made for example with a power of 250 Watts, a plasma pressure of 100 millitorrs and a flow rate of 100 cm 3 / min.
- the cleaning step is followed by a step of refining or etching the tips, for example for molybdenum tips by reactive ion etching in a SF 6 plasma (same equipment as mentioned above).
- This step allows the removal of a layer of molybdenum oxide that may have formed at the time of O 2 plasma cleaning. It also allows etching of the microtips to modify their shape and in particular to reduce their radius of curvature.
- the conditions of action of the sulfur hexafluoride plasma are for example as follows: the operation takes about 20 seconds with a power of 400 W, a flow rate of 40 cm 3 / min under a plasma pressure of 30 millitorr. At the end of this treatment, a large proportion of microtips have the same profile which is close to the ideal cone profile of FIG. 5 and a very uniform surface state.
- Figure 6a is a curve showing the emissivity of the microtips before the treatment ripening (dotted curve) and after treatment ripening (curve in solid line).
- the current density in microamperes per millimeter square is plotted on the ordinate and the grid-microtip voltage in volts is plotted on the abscissa.
- the increase in emissivity following the treatment immediately appears to be considerable. We so actually gets some microtips, for which the radius of curvature of the end is less than a few tens of nanometers.
- Figure 6b shows the emissivity (same units that in Figure 6a) microtips after refining, but before (dashed curve) and after the second cleaning step (curve in solid line). We see that this second cleaning step still allows to improve the emissivity of an important factor.
- refining tips can be used alternatively to that described above, for example by etching (or electrochemical) controlled or by ion bombardment.
- the duration during which the stage is carried out ripening, must be checked in the event that the microtips are made of a single metal, sensitive for refining, for example molybdenum.
- the grid 10a is geometrically understood between or delimited by two planes, a lower plane (I) and an upper plane (S) (see Figure 7a, on which, as in Figures 7b, 7c, 8a-c, references 6, 8, 10a, 12 have the same meaning as in Figures 1 to 5).
- the ripening time is as we will see, much less critical.
- a method for obtaining microtips having this structure is derived from the process already described in introduction to make microtips made of a single material.
- a layer 18a for example in niobium on the nickel layer 23, by evaporation under vacuum at normal incidence, as in the figure 2.
- the set then has the overall shape substantially conic of Figure 8a.
- the height H of the base 20 must be sufficient for the vertex A of the cone obtained to be above the lower plane of the grid 10a.
- A will lie, after the filing operations just described, above the plane upper gate 10a; for this purpose, the height H will be substantially equal to the thickness of the insulator 12, that is to say in this embodiment, at the distance separating the cathode conductor 8 from the plane bottom of the grid 10a.
- a cathode with microtips be associated with a structure comprising at least one anode and a cathodoluminescent material to achieve a viewing device as described in US Pat. Nos. 4,857,161 (FR-2,593,953), US 4,940,916, US 5,225,820 (FR-2,633,763) or US 5,194,780 (FR-A-2,663,462).
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cold Cathode And The Manufacture (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
- une première étape de nettoyage,
puis à :
- une étape d'affinage par gravure superficielle
- une première partie servant de base, de forme sensiblement tronconique, et étant constituée d'un premier matériau conducteur ou semi-conducteur, choisi de telle façon qu'il ne soit pas ou très peu attaqué par l'étape d'affinage,
- une deuxième partie constituant la pointe proprement dite et étant déposée sur la première partie, cette deuxième partie étant constituée d'un second matériau conducteur ou semi-conducteur choisi de telle façon à ce qu'il soit attaqué par l'étape d'affinage.
- une première partie de forme tronconique, de hauteur H, et constituée d'un premier matériau conducteur ou semi-conducteur,
- une deuxième partie, constituant une pointe conique déposée sur la première partie et étant constituée d'un second matériau conducteur ou semi-conducteur,
- les figures 1 à 3 illustrent différentes étapes de formation de micropointes, selon un procédé connu de l'art antérieur,
- la figure 4 représente schématiquement la forme des micropointes obtenues par un procédé connu,
- la figure 5 représente schématiquement le profil en cône idéal souhaité,
- les figures 6a et 6b illustrent l'émissivité des micropointes d'une part avant et après traitement d'affinage et d'autre part avant et après la seconde étape de nettoyage,
- les figures 7a, 7b et 7c montrent schématiquement les formes obtenues pour une micropointe en un seul métal, dans le cas d'un affinage respectivement trop poussé, insuffisant et optimal,
- les figures 8a à 8c illustrent le procédé d'affinage pour une micropointe en deux parties.
- dépôt par pulvérisation cathodique sur le substrat 6, d'une couche d'oxyde de silicium 7 (voir figure 1), d'environ 100 nm,
- dépôt par pulvérisation cathodique, sur la couche 7, d'une première couche conductrice en oxyde d'indium dans laquelle seront réalisées les conducteurs cathodiques 8 (épaisseur environ 160 nm),
- gravure de la première couche conductrice pour former des premières bandes conductrices parallèles ou conducteurs cathodiques 8,
- dépôt chimique en phase vapeur (à partir des gaz de silane, phosphine, oxygène) d'une seconde couche isolante d'oxyde de silicium d'épaisseur environ 1 µm (12),
- dépôt, par évaporation sous vide, sur la couche d'oxyde de silicium, d'une troisième couche, conductrice, dans laquelle seront formées les grilles 10a (niobium, épaisseur environ 0,4 µm),
- ouverture de trous 16 (diamètre environ 1,3 µm) dans la troisième couche conductrice, par gravure ionique réactive (GIR) en utilisant un plasma de SF6, et dans la seconde couche 12 par gravure ionique réactive dans un plasma de CHF3 ou par attaque chimique dans une solution d'acide fluorhydrique et de fluorure d'ammonium.
- dépôt d'une couche de nickel 23 (figure 2) par évaporation sous vide, sous incidence rasante par rapport à la surface de la structure. L'angle α formé entre l'axe d'évaporation et la surface de la couche 10a est voisin de 15°. La couche de nickel présente une épaisseur d'environ 150 nm,
- formation des micropointes par un procédé décrit dans l'introduction de la présente demande, en liaison avec les figures 2 et 3,
- gravure de la troisième couche pour former des deuxièmes bandes conductrices parallèles aux grilles.
- un nettoyage chimique humide dans un bain de lessive (TFD4 à 10% dans de l'eau), à 60°C, assisté par ultrasons, le tout pendant une durée de 5 minutes environ,
- un nettoyage par gravure ionique réactive dans un plasma d'oxygène, par exemple à l'aide d'un équipement vendu dans le commerce sous l'appellation NEXTRAL 550.
- une première partie ou base 20 qui a une forme tronconique, de hauteur H. Elle est constituée d'un premier matériau choisi de telle façon qu'il ne soit pas ou très peu attaqué par l'étape d'affinage décrite ci-dessus. Ce matériau peut être par exemple du niobium,
- une deuxième partie 22 qui constitue la pointe proprement dite. Elle est déposée directement sur la première partie. Elle est constituée d'un deuxième matériau sensible à l'étape d'affinage, par exemple du molybdène, ou du chrome (Cr), ou du silicium (Si), ou du fer (Fe), ou du nickel (Ni).
- une première partie, sensiblement tronconique, de hauteur H, H est de préférence sensiblement égale à la distance séparant le conducteur cathodique 8 du plan inférieur I de la grille 10a, c'est-à-dire sensiblement égale à l'épaisseur e de l'isolant 12 ; par exemple H sera comprise entre 0,8e et 1,1e, (là encore, il faut tenir compte de la présence éventuelle d'une couche résistive entre les micropointes et les conducteurs cathodiques),
- une deuxième partie conique, dont la base est de diamètre d inférieur au diamètre D de la section supérieure du tronc de cône 20.
- l'isolant est en silice d'une épaisseur proche de 1 µm,
- la grille est en niobium (Nb) d'une épaisseur d'environ 0,4 µm ; les trous dans la grille ont un diamètre de l'ordre de 1,4 µm,
- le métal constituant la base 20 de la pointe est en Nb d'une épaisseur comprise entre 0,8 et 1,1 µm,
- la partie 22 est en molybdène d'une épaisseur suffisante pour constituer la pointe, par exemple 1 µm avant affinage, l'affinage de cette partie pouvant se faire de la même façon que décrit précédemment dans l'exemple de réalisation où les micropointes sont entièrement en molybdène.
Claims (8)
- Source d'électrons à micropointes comportant un système de conducteurs cathodiques (8), de grilles (10a) superposées avec un isolant intermédiaire (23) et de micropointes (18) déposées dans des trous (16) pratiqués dans les grilles et l'isolant, les grilles étant géométriquement comprises entre un plan inférieur (I) et un plan supérieur (S), les micropointes comportant respectivement au moins deux parties :une première partie (20) de forme tronconique, de hauteur H, et constituée d'un premier matériau conducteur ou semi-conducteur,une deuxième partie (22), constituant une pointe conique déposée sur la première partie et étant constituée d'un second matériau conducteur ou semi-conducteur,
- Source d'électrons à micropointes selon la revendication 1, la gravure sélective étant du type attaque chimique ou électrochimique contrôlé, gravure ionique réactive ou bombardement ionique.
- Source d'électrons à micropointes selon l'une des revendications 1 ou 2, la hauteur H de la première partie étant telle que son sommet est sensiblement au même niveau que le plan inférieur (I) des grilles (10a).
- Source d'électrons à micropointes selon l'une des revendications 1 à 3, la première partie (20) étant en niobium (Nb).
- Source d'électrons à micropointes selon l'une des revendications 1 à 4, la deuxième partie (22) étant en molybdène (Mo), en silicium (Si), en chrome (Cr), en fer (Fe) ou en nickel (Ni).
- Source d'électrons à micropointes selon l'une des revendications 1 à 5, les micropointes ayant été soumises à une étape de nettoyage.
- Source d'électrons à micropointes selon l'une des revendications 1 à 6, la deuxième partie des micropointes ayant été soumise à une étape d'affinage par gravure superficielle.
- Dispositif de visualisation par cathodoluminescence, comprenant une source d'électrons à micropointes selon l'une des revendications 1 à 7.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9404948A FR2719155B1 (fr) | 1994-04-25 | 1994-04-25 | Procédé de réalisation de sources d'électrons à micropointes et source d'électrons à micropointes obtenue par ce procédé. |
FR9404948 | 1994-04-25 | ||
FR9413972 | 1994-11-22 | ||
FR9413972A FR2719156B1 (fr) | 1994-04-25 | 1994-11-22 | Source d'électrons à micropointes, les micropointes comportant deux parties. |
EP95400910A EP0689222B1 (fr) | 1994-04-25 | 1995-04-24 | Procédé de réalisation de sources d'électrons à micropointes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95400910A Division EP0689222B1 (fr) | 1994-04-25 | 1995-04-24 | Procédé de réalisation de sources d'électrons à micropointes |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0856868A2 EP0856868A2 (fr) | 1998-08-05 |
EP0856868A3 EP0856868A3 (fr) | 1998-09-30 |
EP0856868B1 true EP0856868B1 (fr) | 2003-07-02 |
Family
ID=26231113
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98201095A Expired - Lifetime EP0856868B1 (fr) | 1994-04-25 | 1995-04-24 | Source d'électrons à micropointes et dispositif de visualisation avec telle source |
EP95400910A Expired - Lifetime EP0689222B1 (fr) | 1994-04-25 | 1995-04-24 | Procédé de réalisation de sources d'électrons à micropointes |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95400910A Expired - Lifetime EP0689222B1 (fr) | 1994-04-25 | 1995-04-24 | Procédé de réalisation de sources d'électrons à micropointes |
Country Status (5)
Country | Link |
---|---|
US (1) | US5635790A (fr) |
EP (2) | EP0856868B1 (fr) |
CA (1) | CA2146528A1 (fr) |
DE (2) | DE69531220T2 (fr) |
FR (1) | FR2719156B1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5702281A (en) * | 1995-04-20 | 1997-12-30 | Industrial Technology Research Institute | Fabrication of two-part emitter for gated field emission device |
US6356014B2 (en) * | 1997-03-27 | 2002-03-12 | Candescent Technologies Corporation | Electron emitters coated with carbon containing layer |
US6004180A (en) * | 1997-09-30 | 1999-12-21 | Candescent Technologies Corporation | Cleaning of electron-emissive elements |
JP2002083555A (ja) * | 2000-07-17 | 2002-03-22 | Hewlett Packard Co <Hp> | セルフアライメント型電子源デバイス |
US6873097B2 (en) * | 2001-06-28 | 2005-03-29 | Candescent Technologies Corporation | Cleaning of cathode-ray tube display |
CN1300818C (zh) * | 2003-08-06 | 2007-02-14 | 北京大学 | 一种场发射针尖及其制备方法与应用 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2593953B1 (fr) * | 1986-01-24 | 1988-04-29 | Commissariat Energie Atomique | Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ |
FR2623013A1 (fr) * | 1987-11-06 | 1989-05-12 | Commissariat Energie Atomique | Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source |
US5225820A (en) * | 1988-06-29 | 1993-07-06 | Commissariat A L'energie Atomique | Microtip trichromatic fluorescent screen |
KR910013438A (ko) * | 1989-12-18 | 1991-08-08 | 야마무라 가쯔미 | 필드 전자 방출 장치 및 그 생산 공정 |
FR2658839B1 (fr) * | 1990-02-23 | 1997-06-20 | Thomson Csf | Procede de croissance controlee de cristaux aciculaires et application a la realisation de microcathodes a pointes. |
FR2663462B1 (fr) * | 1990-06-13 | 1992-09-11 | Commissariat Energie Atomique | Source d'electrons a cathodes emissives a micropointes. |
US5203731A (en) * | 1990-07-18 | 1993-04-20 | International Business Machines Corporation | Process and structure of an integrated vacuum microelectronic device |
US5382867A (en) * | 1991-10-02 | 1995-01-17 | Sharp Kabushiki Kaisha | Field-emission type electronic device |
GB9210419D0 (en) * | 1992-05-15 | 1992-07-01 | Marconi Gec Ltd | Cathode structures |
-
1994
- 1994-11-22 FR FR9413972A patent/FR2719156B1/fr not_active Expired - Fee Related
-
1995
- 1995-04-06 CA CA002146528A patent/CA2146528A1/fr not_active Abandoned
- 1995-04-14 US US08/422,159 patent/US5635790A/en not_active Expired - Lifetime
- 1995-04-24 DE DE69531220T patent/DE69531220T2/de not_active Expired - Lifetime
- 1995-04-24 EP EP98201095A patent/EP0856868B1/fr not_active Expired - Lifetime
- 1995-04-24 EP EP95400910A patent/EP0689222B1/fr not_active Expired - Lifetime
- 1995-04-24 DE DE69514576T patent/DE69514576T2/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0689222A3 (fr) | 1996-02-07 |
EP0856868A2 (fr) | 1998-08-05 |
DE69531220D1 (de) | 2003-08-07 |
DE69531220T2 (de) | 2004-05-27 |
EP0689222A2 (fr) | 1995-12-27 |
DE69514576T2 (de) | 2000-08-10 |
US5635790A (en) | 1997-06-03 |
DE69514576D1 (de) | 2000-02-24 |
CA2146528A1 (fr) | 1995-10-26 |
FR2719156B1 (fr) | 1996-05-24 |
EP0856868A3 (fr) | 1998-09-30 |
EP0689222B1 (fr) | 2000-01-19 |
FR2719156A1 (fr) | 1995-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0234989B1 (fr) | Procédé de fabrication d'un dispositif de visualisation par cathodoluminescence excitée par émission de champ | |
EP0461990B1 (fr) | Source d'électrons à cathodes émissives à micropointes | |
FR2891662A1 (fr) | Emetteurs de champ a nanotiges declenches | |
FR2796489A1 (fr) | Dispositif d'affichage a emission de champ comportant un film de nanotube en carbone en tant qu'emetteurs | |
EP0696045B1 (fr) | Cathode d'écran plat de visualisation à résistance d'accès constante | |
EP0856868B1 (fr) | Source d'électrons à micropointes et dispositif de visualisation avec telle source | |
FR2710781A1 (fr) | Dispositif formant cathode d'émission de champ. | |
EP0707237B1 (fr) | Procédé de formation de trous dans une couche de résine photosensible, application à la fabrication de sources d'électrons à cathodes emissives a micropointes et d'écrans plats de visualisation | |
FR2735900A1 (fr) | Source d'electrons du type a emission de champ et procede pour la fabriquer | |
FR2748847A1 (fr) | Procede de fabrication d'une cathode froide a emission de champ | |
FR2736203A1 (fr) | Dispositif d'affichage a emission de champ lateral et procede de fabrication de ce dernier | |
FR2742578A1 (fr) | Cathode a emission de champ et son procede de fabrication | |
EP0708473B1 (fr) | Procédé de fabrication d'une source d'électrons à micropointes | |
FR2719155A1 (fr) | Procédé de réalisation de sources d'électrons à micropointes et source d'électrons à micropointes obtenue par ce procédé. | |
FR2734946A1 (fr) | Dispositif a cathode froide du type a emission de champ, a electrode emettrice conique, et procede de fabrication de ce dispositif | |
EP0697710B1 (fr) | Procédé de fabrication d'une source d'électrons à micropointes | |
FR2741189A1 (fr) | Procede de fabrication d'un dispositif d'emission a effet de champ | |
EP0616356B1 (fr) | Dispositif d'affichage à micropointes et procédé de fabrication de ce dispositif | |
FR2756969A1 (fr) | Ecran d'affichage comprenant une source d'electrons a micropointes, observable a travers le support des micropointes, et procede de fabrication de cette source | |
EP0759578A1 (fr) | Dispositif d'insolation de zones micrométriques et/ou submicrométriques dans une couche photosensible et procédé de réalisation de motifs dans une telle couche | |
EP1200973B1 (fr) | Cathode a oxydes amelioree et son procede de fabrication | |
EP0851451B1 (fr) | Procédé d'auto-alignement utilisable en micro-électronique et application à la réalisation d'une grille de focalisation pour écran plat à micropointes | |
EP1249028B1 (fr) | Cathode generatrice d'electrons et son procede de fabrication | |
WO1999023680A1 (fr) | Procede de fabrication d'une source d'electrons a micropointes | |
FR2758206A1 (fr) | Procede de fabrication d'une cathode a emission de champ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 689222 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE GB IT |
|
RHK1 | Main classification (correction) |
Ipc: H01J 1/30 |
|
17P | Request for examination filed |
Effective date: 19990308 |
|
17Q | First examination report despatched |
Effective date: 20010712 |
|
RTI1 | Title (correction) |
Free format text: FIELD EMISSION ELECTRON SOURCE AND DISPLAY DEVICE WITH SUCH A SOURCE |
|
RTI1 | Title (correction) |
Free format text: FIELD EMISSION ELECTRON SOURCE AND DISPLAY DEVICE WITH SUCH A SOURCE |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 0689222 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Designated state(s): DE GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69531220 Country of ref document: DE Date of ref document: 20030807 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20031018 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040405 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140422 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140417 Year of fee payment: 20 Ref country code: DE Payment date: 20140411 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69531220 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20150423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150423 |