EP0697710B1 - Procédé de fabrication d'une source d'électrons à micropointes - Google Patents

Procédé de fabrication d'une source d'électrons à micropointes Download PDF

Info

Publication number
EP0697710B1
EP0697710B1 EP95401863A EP95401863A EP0697710B1 EP 0697710 B1 EP0697710 B1 EP 0697710B1 EP 95401863 A EP95401863 A EP 95401863A EP 95401863 A EP95401863 A EP 95401863A EP 0697710 B1 EP0697710 B1 EP 0697710B1
Authority
EP
European Patent Office
Prior art keywords
layer
metallic material
process according
microtips
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95401863A
Other languages
German (de)
English (en)
Other versions
EP0697710A1 (fr
Inventor
Gilles Delapierre
Robert Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0697710A1 publication Critical patent/EP0697710A1/fr
Application granted granted Critical
Publication of EP0697710B1 publication Critical patent/EP0697710B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Definitions

  • the present invention relates to a method for manufacturing a microtip electron source ("microtips").
  • Such a principle is used to realize cold sources of electrons, capable of replacing the electron-emitting heating filaments, because that such cold springs have a more response fast, lower power consumption and are susceptible to greater miniaturization than these heating filaments.
  • microtip sources One of the most important applications of these cold sources of electrons, also called “microtip sources” is the manufacture of tubes television dishes.
  • Figure 1 is a sectional view schematic and partial of such a flat screen and the Figure 2 is a schematic perspective view and partial view of this flat screen.
  • the flat screen in Figures 1 and 2 includes a source of microtip electrons 2 and a substrate glass 4 which is separated from the source 2 by a space thin in which a vacuum has been created.
  • the substrate 4 carries, facing the source 2, a transparent, electrically conductive layer 6, for example in indium tin oxide, this layer 6 itself carrying elements cathodoluminescent 8, also called “luminophores”.
  • the microtip source 2 includes, on an electrically insulating substrate 10, for example in glass, a set of cathode conductors parallels 12 which constitute the columns of the screen.
  • cathode conductors are covered by a layer 14 of an electrically insulating material such as silica.
  • a set of other drivers parallel electric 15 is placed above the insulating layer 14 and these other conductors 15, or grids, are perpendicular to the conductors cathodic 12 to form the lines of the screen.
  • holes 18, 19 are formed through the insulating layer 14 and these grids 15 and microtips 20 made of a material electron emitter are formed in these holes and are based on the cathode conductors 12.
  • the phosphors 8 are formed on the transparent conductive layer 6, opposite these intersections, as seen in Figure 2.
  • Electrons are extracted by application appropriate electrical voltages between the grids and the microtips then these electrons are accelerated thanks to appropriate electrical voltages applied between the grids and the conductive layer 6 constituting the anode of the screen.
  • Each phosphor 8 excited by electrons 22 emits light 24.
  • microtips located at the intersection of a row and a fed column in tension emit electrons to form a picture element or pixel.
  • Each pixel is actually "excited" by several hundred microtips whose dimensions are of the order of 1 ⁇ m, generally 1.5 ⁇ m, and which are spaced from each other by a distance of the order of a few micrometers, typically 5 ⁇ m.
  • a flat screen typically uses around 10,000 microtips per square millimeter over areas of several square decimetres.
  • the flat screens currently manufactured have surfaces of the order of 5 dm 2 and it is envisaged to manufacture flat screens whose surfaces would go up to approximately 1 m 2 .
  • FIG. 3 illustrates schematically this process, a structure comprising the insulating substrate 10 on which the cathode conductors 12, and the insulating layer 14 which is formed on these cathode conductors and which carries a grid layer 16 electrically conductive.
  • the grids themselves are obtained from this grid layer 16, after having formed the microtips as we will see.
  • a nickel layer 16a is deposited on the grid layer 16 by vacuum evaporation and grazing incidence.
  • the microtips 20 are obtained by evaporation of an electron emitting material 26.
  • a layer 28 of this material then forms on the surface of the gate layer 16a.
  • the holes 19 formed in these layers 16 and 16a gradually decrease as as the thickness of layer 28 increases.
  • the diameter of the material deposits 26 in the holes 18 of the insulating layer 14 varies as the diameter of the holes layer 16a and grid layer 16, which leads to the point shape of the deposits in the holes 18, that is to say at the microtips 20.
  • layer 28 is removed by selective dissolution of the nickel layer 16a, this which brings up these microtips.
  • disks 32 are formed from the layer of silica which results from this oxidation.
  • Reactive ion etching of the substrate silicon 30 then allows the formation of pedestals 34 made of silicon, the discs 32 serving as masks.
  • a layer 40 of silica is then formed. on each disk 32.
  • the pedestals 34 are then oxidized thermally, which leads to the formation of microtips 42 from these pedestals.
  • a layer 46 of this material also forms on layer 40 silica associated with each disc 32.
  • the angle of incidence ⁇ of a beam of evaporation F varies according to the position of the holes 19 of the grid layer 16, which leads to the phenomenon illustrated in FIG. 5, that is to say at microtips with less Y axes perpendicular to the surface of the substrate 10 that the angle of incidence ⁇ is large.
  • the object of the present invention is to remedy these drawbacks.
  • the layer of grid as a cathode for the electrolytic attack of the metallic material.
  • the electrolyte being located around the metallic material so as to avoid an overconcentration of ions which could slow dissolution and cause a significant redeposition of this material on the grid around microdots in formation.
  • the protective layer can be formed by depositing, under grazing incidence, a layer of electrically insulating material on the layer of wire rack.
  • this protective layer is preferably formed by anodic oxidation of the grid layer.
  • the grid layer can be made of a material chosen from the group comprising niobium, tantalum and aluminum.
  • Metallic material can be chosen in the group comprising iron, nickel, chromium, Fe-Ni, gold, silver and copper.
  • the protective layer can be removed by chemical attack.
  • This protective layer can also be removed by reactive ion etching.
  • Figure 6A a structure 49 like the one shown on Figure 3 and which includes the substrate electrically insulator 10 on which the conductors are formed cathodic 12, electrically insulating layer 14 formed on these cathode conductors and the layer of grid 16 formed on this layer electrically insulating 14 (it being understood that, in other modes of specific implementation, the structure may not understand only one cathode conductor).
  • the substrate 10 is in glass
  • cathode conductors are made of a bilayer of chromium and copper
  • layer 14 is in silica
  • the gate layer 16 is made of niobium, tantalum or aluminum.
  • a anodic oxidation of the gate layer 16 which leads to the formation of a layer 50 of oxide of niobium or tantalum oxide or aluminum oxide in the example considered, which covers the part remaining of the grid layer 16, as seen in Figure 6B.
  • An electrolytic deposition is then carried out metallic material at the bottom of holes 18 to that this metallic material overflows from these holes as seen in Figure 6C, part of this material then being above layer 50.
  • the electrolytic bath can be used, the composition of which is as follows: NiCl 2 , 6H 2 O 50 gl -1 NiSO 4 , 6H 2 O 21 gl -1 FeSO 4 2 gl -1 H 3 BO 3 25 gl -1 Na saccharinate 0.8 gl -1
  • the conductors cathodes 12 serve as cathode and block 56 serves anode.
  • the electrically conductive elements 60 which result from the deposition of metallic material at the bottom holes 18 are in contact with the conductors cathodic but are electrically isolated from the grid layer 16 thanks to the protective layer 50 which covers the latter.
  • This protective layer is then removed 50 by chemical attack or by ion etching reactive ( Figure 6D).
  • the structure where the protective layer 50 has been removed, is placed in an appropriate electrolytic bath 64 (containing for example 10% HCl at 37% and 90% H 2 O for the dissolution of nickel iron) and , by means of a suitable electrical voltage source 66, an electrical voltage is established (for example 1 to 2 V for the dissolution of iron-nickel) between the cathode conductors 12 which, in this case, serve as an anode, and the grid layer 16 which serves as a cathode.
  • an appropriate electrolytic bath 64 containing for example 10% HCl at 37% and 90% H 2 O for the dissolution of nickel iron
  • an electrical voltage for example 1 to 2 V for the dissolution of iron-nickel
  • the material of elements 60 is eliminated substantially symmetrical around the Z axis of the holes 18 and the ions metals produced by the chemical attack on the material elements 60 are partly eliminated thanks to the electrolyte renewal and partly redeposited on the grid layer.
  • the fraction redeposited ions is more or less important and can be checked.
  • this step of forming microtips is done with the glass substrate above and the electrolytic bath below, so that allow parts 68 to fall into the bath electrolytic.
  • the interest of the process object of the present invention is to enable the manufacture of self-aligned microtips over the diaper holes grid 16, using a non-directive technique, in an isotropic liquid medium (electrolytic bath 64).

Description

La présente invention concerne un procédé de fabrication d'une source d'électrons à micropointes ("microtips").
Elle s'applique notamment à la fabrication de dispositifs de visualisation plats.
Lorsqu'une différence de potentiel est appliquée entre deux électrodes dont l'une est pointue, le champ électrique ainsi engendré peut facilement atteindre, à l'extrémité de cette électrode pointue, une valeur de l'ordre de 107 V/cm, valeur suffisante pour que des électrons soient extraits de cette électrode.
Un tel principe est utilisé pour réaliser des sources froides d'électrons, capables de remplacer les filaments chauffants émetteurs d'électrons, du fait que de telles sources froides ont une réponse plus rapide, une plus faible consommation électrique et sont susceptibles d'une plus grande miniaturisation que ces filaments chauffants.
L'une des applications les plus importantes de ces sources froides d'électrons, encore appelées "sources à micropointes", est la fabrication de tubes plats de télévision.
On rappelle le principe de ces tubes plats, ou écrans plats, en faisant référence aux figures 1 et 2.
La figure 1 est une vue en coupe schématique et partielle d'un tel écran plat et la figure 2 est une vue en perspective schématique et partielle de cet écran plat.
L'écran plat des figures 1 et 2 comprend une source d'électrons à micropointes 2 et un substrat en verre 4 qui est séparé de la source 2 par un espace de faible épaisseur dans lequel on a fait le vide.
Le substrat 4 porte, en regard de la source 2, une couche transparente, électriquement conductrice 6, par exemple en oxyde d'indium et d'étain, cette couche 6 portant elle-même des éléments cathodoluminescents 8, encore appelés "luminophores".
La source à micropointes 2 comprend, sur un substrat électriquement isolant 10, par exemple en verre, un ensemble de conducteurs cathodiques parallèles 12 qui constituent les colonnes de l'écran.
Ces conducteurs cathodiques sont recouverts par une couche 14 d'un matériau électriquement isolant tel que la silice.
Un ensemble d'autres conducteurs électriques parallèles 15 est placé au-dessus de la couche isolante 14 et ces autres conducteurs 15, ou grilles, sont perpendiculaires aux conducteurs cathodiques 12 pour constituer les lignes de l'écran.
Au niveau des intersections entre les conducteurs cathodiques et les grilles, des trous 18, 19 sont formés à travers la couche isolante 14 et ces grilles 15 et des micropointes 20 faites d'un matériau émetteur d'électrons sont formées dans ces trous et reposent sur les conducteurs cathodiques 12.
Les luminophores 8 sont formés sur la couche conductrice transparente 6, en regard de ces intersections, comme on le voit sur la figure 2.
Les électrons sont extraits par application de tensions électriques appropriées entre les grilles et les micropointes puis ces électrons sont accélérés grâce à des tensions électriques appropriées appliquées entre les grilles et la couche conductrice 6 constituant l'anode de l'écran.
Chaque luminophore 8 excité par des électrons 22 émet de la lumière 24.
Un balayage de tension approprié sur les lignes et les colonnes de l'écran permet de former une image.
Seules les micropointes situées à l'intersection d'une ligne et d'une colonne alimentées en tension émettent des électrons pour former un élément d'image ou pixel.
Chaque pixel est en fait "excité" par plusieurs centaines de micropointes dont les dimensions sont de l'ordre de 1 µm, généralement de 1,5 µm, et qui sont espacées les unes des autres d'une distance de l'ordre de quelques micromètres, typiquement de 5 µm.
Ces petites dimensions sont indispensables, pour, d'une part, ne pas avoir à utiliser des tensions trop élevées entre les grilles et les micropointes (tensions de l'ordre de 50 V) et, d'autre part, pour avoir une émission de courant suffisamment élevée par unité de surface (environ 1 mA/mm2).
Un écran plat utilise ainsi typiquement de l'ordre de 10000 micropointes par millimètre carré sur des surfaces de plusieurs décimètres carrés.
Les écrans plats actuellement fabriqués ont des surfaces de l'ordre de 5 dm2 et on envisage de fabriquer des écrans plats dont les surfaces iraient jusqu'à environ 1 m2.
Cependant, il n'est pas facile d'obtenir des sources à micropointes ayant d'aussi grandes surfaces avec les procédés connus de fabrication des micropointes.
Le procédé le plus utilisé pour fabriquer ces micropointes est le procédé dit de Spindt (du nom de son inventeur).
On consultera à ce sujet par exemple le document suivant :
(1) C.A. Spindt, J. Appl. Phys., vol.39, p.3504, 1968.
On voit sur la figure 3, qui illustre schématiquement ce procédé, une structure comprenant le substrat isolant 10 sur lequel sont formés les conducteurs cathodiques 12, et la couche isolante 14 qui est formée sur ces conducteurs cathodiques et qui porte une couche de grille 16 électriquement conductrice.
Les grilles proprement dites sont obtenues à partir de cette couche de grille 16, après avoir formé les micropointes comme on va le voir.
Après avoir gravé par attaque chimique les trous 18 et 19 respectivement dans la couche isolante 14 et dans la couche de grille 16, une couche en nickel 16a est déposée sur la couche de grille 16 par évaporation sous vide et sous incidence rasante.
On obtient les micropointes 20 par évaporation d'un matériau émetteur d'électrons 26.
Une couche 28 de ce matériau se forme alors à la surface de la couche de grille 16a.
De ce fait, les trous 19 formés dans ces couches 16 et 16a diminuent progressivement au fur et à mesure que l'épaisseur de la couche 28 augmente.
L'évaporation étant très directive, le diamètre des dépôts de matériau 26 dans les trous 18 de la couche isolante 14 varie comme le diamètre des trous de la couche 16a et de la couche de grille 16, ce qui conduit à la forme en pointe des dépôts dans les trous 18, c'est-à-dire aux micropointes 20.
On élimine ensuite la couche 28 par dissolution sélective de la couche en nickel 16a, ce qui fait apparaítre ces micropointes.
Le principal avantage de ce procédé connu est qu'il ne demande pas d'alignement précis de masques de microlithographie puisque ce sont les trous de la couche de grille qui définissent eux-mêmes les micropointes.
Il serait en effet quasiment irréalisable de graver d'abord les micropointes puis les trous de la couche de grille par des méthodes classiques de microlithographie, avec une précision d'alignement supérieure au micromètre sur de grandes surfaces.
Un autre procédé connu de fabrication des micropointes est décrit dans le document suivant :
(2) Oxidation-Sharpened Gated Field Emitter Array Process, N.E. McGruer et al., IEEE Transactions on Electron Devices, (38) 1991 October, n°10.
Cet autre procédé est schématiquement illustré par la figure 4.
On voit sur cette figure 4 un substrat en silicium 30.
On commence par oxyder superficiellement ce substrat puis des disques 32 sont formés à partir de la couche de silice qui résulte de cette oxydation.
Une gravure ionique réactive du substrat de silicium 30 permet alors la formation de piédestals 34 en silicium, les disques 32 servant de masques.
On forme ensuite une couche de silice 36 sur le substrat 30 par évaporation de silice 38.
Il se forme alors une couche 40 de silice sur chaque disque 32.
Les piédestals 34 sont ensuite oxydés thermiquement, ce qui conduit à la formation de micropointes 42 à partir de ces piédestals.
On forme ensuite une couche de grille 44 par évaporation d'un matériau électriquement conducteur sur la couche de silice 36.
Au cours de cette évaporation, une couche 46 de ce matériau se forme également sur la couche 40 de silice associée à chaque disque 32.
On élimine ensuite la silice qui recouvre les micropointes 42 ainsi que les disques 32 et les couches 40 et 46 correspondantes.
L'inconvénient des procédés connus que l'on vient de décrire est qu'ils nécessitent des évaporations très directives.
En reprenant par exemple l'exemple de la figure 3, l'angle d'incidence  d'un faisceau d'évaporation F varie en fonction de la position des trous 19 de la couche de grille 16, ce qui conduit au phénomène illustré sur la figure 5, c'est-à-dire à des micropointes dont les axes Y sont d'autant moins perpendiculaires à la surface du substrat 10 que l'angle d'incidence  est grand.
Il en résulte une variation de la forme des micropointes, variation qui induit une dispersion des caractéristiques d'émission des électrons, et, à la limite, un court-circuit entre des micropointes et la couche de grille.
Pour résoudre ce problème, on peut songer à augmenter la distance L entre la source d'évaporation 48 (contenant le matériau 26) et la surface de la structure sur laquelle on évapore ce matériau 26, afin de maintenir l'angle  dans des limites acceptables.
Cependant ceci conduit à une augmentation trop importante de la taille des équipements de fabrication des micropointes ainsi qu'à une trop grande diminution de la vitesse de dépôt.
La présente invention a pour but de remédier à ces inconvénients.
Elle a pour objet un procédé de fabrication d'une source d'électrons à micropointes, procédé selon lequel :
  • on fabrique une structure comprenant un substrat électriquement isolant, au moins un conducteur cathodique sur ce substrat, une couche électriquement isolante qui recouvre chaque conducteur cathodique, une couche de grille électriquement conductrice qui recouvre cette couche électriquement isolante, des trous étant formés à travers cette couche de grille et la couche électriquement isolante, au niveau de chaque conducteur cathodique, et
  • on forme, dans chaque trou, une micropointe qui est faite en un matériau métallique émetteur d'électrons et qui repose sur le conducteur cathodique correspondant à ce trou,
ce procédé étant caractérisé en ce que la formation des micropointes comprend les étapes suivantes :
  • on forme une couche de protection électriquement isolante sur la couche de grille,
  • on forme un dépôt chimique, de préférence électrolytique, du matériau métallique émetteur d'électrons au fond des trous jusqu'à ce que ce matériau métallique déborde de ceux-ci,
  • on élimine la couche de protection, et
  • on réalise une attaque électrolytique du matériau métallique déposé, de manière à obtenir les micropointes à partir de ce matériau métallique.
Selon un mode de mise en oeuvre particulier du procédé objet de l'invention, préféré pour sa simplicité de mise en oeuvre, on utilise la couche de grille comme cathode pour l'attaque électrolytique du matériau métallique.
Pendant cette phase de dissolution, il est avantageux de renouveler, par tout moyen connu, l'électrolyte se situant autour du matériau métallique de façon à éviter une surconcentration en ions métalliques qui pourrait freiner la dissolution et provoquer un redépôt important de ce matériau sur la grille autour des micropointes en formation.
Un faible redépôt ou un redépôt contrôlé qui s'étale sur l'ensemble de la grille est toléré ; il entraíne une réduction sensible du diamètre des trous, qui est plutôt favorable à l'émission d'électrons par les micropointes.
La couche de protection peut être formée en déposant, sous incidence rasante, une couche d'un matériau électriquement isolant sur la couche de grille.
Cependant, cette couche de protection est de préférence formée par oxydation anodique de la couche de grille.
La couche de grille peut être faite d'un matériau choisi dans le groupe comprenant le niobium, le tantale et l'aluminium.
Le matériau métallique peut être choisi dans le groupe comprenant le fer, le nickel, le chrome, le Fe-Ni, l'or, l'argent et le cuivre.
La couche de protection peut être éliminée par attaque chimique.
Cette couche de protection peut également être éliminée par gravure ionique réactive.
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
  • la figure 1, déjà décrite, est une vue en coupe schématique et partielle d'un écran plat,
  • la figure 2, déjà décrite, est une vue schématique et partielle en perspective de cet écran plat,
  • la figure 3, déjà décrite, illustre schématiquement un procédé connu de fabrication des micropointes d'une source d'électrons à micropointes,
  • la figure 4, déjà décrite, illustre schématiquement un autre procédé connu de fabrication des micropointes d'une source d'électrons à micropointes,
  • la figure 5, déjà décrite, illustre schématiquement des inconvénients de ces procédés connus, et
  • les figures 6A à 6E illustrent schématiquement des étapes d'un mode de mise en oeuvre particulier du procédé objet de l'invention.
Selon ce mode de mise en oeuvre particulier, on commence par former (figure 6A) une structure 49 du genre de celle qui est représentée sur la figure 3 et qui comprend le substrat électriquement isolant 10 sur lequel sont formés les conducteurs cathodiques 12, la couche électriquement isolante 14 formée sur ces conducteurs cathodiques et la couche de grille 16 formée sur cette couche électriquement isolante 14 (étant entendu que, dans d'autres modes de mise en oeuvre particuliers, la structure pourrait ne comprendre qu'un seul conducteur cathodique).
On voit également les trous sensiblement circulaires 18 et 19 respectivement formés à travers la couche isolante 14 et à travers la couche de grille 16.
Les procédés permettant d'obtenir une telle structure sont connus dans l'état de la technique.
A titre d'exemple, le substrat 10 est en verre, les conducteurs cathodiques sont constitués d'une bicouche de chrome et de cuivre, la couche 14 est en silice et la couche de grille 16 est en niobium, en tantale ou en aluminium.
On forme ensuite une couche de protection sur la couche de grille 16 (figure 6B).
Pour ce faire, on peut réaliser une évaporation de silice, sous incidence rasante, sur la couche de grille 16, pour recouvrir celle-ci de silice.
Cependant, de préférence, on réalise une oxydation anodique de la couche de grille 16, ce qui conduit à la formation d'une couche 50 d'oxyde de niobium ou d'oxyde de tantale ou d'oxyde d'aluminium dans l'exemple considéré, qui recouvre la partie restante de la couche de grille 16, comme on le voit sur la figure 6B.
Cette oxydation anodique conduit à une couverture plus fiable de la couche de grille que l'évaporation sous incidence rasante mentionnée plus haut et est plus simple de mise en oeuvre.
On réalise ensuite un dépôt électrolytique d'un matériau métallique au fond des trous 18 jusqu'à ce que ce matériau métallique déborde de ces trous comme on le voit sur la figure 6C, une partie de ce matériau étant alors au-dessus de la couche 50.
Pour ce faire, on place la structure 49, comprenant la couche protectrice 50, dans un bain électrolytique approprié 54 (contenant des ions du matériau métallique à déposer) et l'on place également dans ce bain électrolytique un bloc 56 de ce matériau métallique.
Quand ce matériau métallique est du fer-nickel, on peut utiliser le bain électrolytique dont la composition est la suivante :
NiCl2, 6H2O 50 g.l-1
NiSO4, 6H2O 21 g.l-1
FeSO4 2 g.l-1
H3BO3 25 g.l-1
Saccharinate de Na 0,8 g.l-1
On applique ensuite une tension électrique appropriée, grâce à une source de tension 58, entre les conducteurs cathodiques 12 et ce bloc 56.
Dans le cas où le matériau métallique est le fer-nickel, on peut utiliser les conditions suivantes pour le dépôt électrolytique :
  • densité de courant : 0,5 à 2 mA/cm2
  • tension : 1 à 2V
  • température ambiante.
  • Pour l'électrolyse, les conducteurs cathodiques 12 servent de cathode et le bloc 56 sert d'anode.
    Les éléments électriquement conducteurs 60, qui résultent du dépôt du matériau métallique au fond des trous 18, sont en contact avec les conducteurs cathodiques mais sont électriquement isolés de la couche grille 16 grâce à la couche protectrice 50 qui recouvre cette dernière.
    On élimine ensuite cette couche protectrice 50 par une attaque chimique ou par gravure ionique réactive (figure 6D).
    On réalise ensuite une attaque électrolytique des éléments électriquement conducteurs 60 de manière à former les micropointes 62 à partir de ceux-ci (figure 6E).
    Pour ce faire, on place la structure, où la couche protectrice 50 a été supprimée, dans un bain électrolytique approprié 64 (contenant par exemple 10% de HCl à 37% et 90% de H2O pour la dissolution du fer nickel) et, au moyen d'une source de tension électrique appropriée 66, on établit une tension électrique (par exemple 1 à 2V pour la dissolution du fer-nickel) entre les conducteurs cathodiques 12 qui, dans ce cas, servent d'anode, et la couche de grille 16 qui sert de cathode.
    De préférence on assure un renouvellement de l'électrolyte par agitation et/ou par circulation, de façon à éviter une concentration en ions autour du matériau des éléments 60.
    Au cours de l'électrolyse, le matériau des éléments 60 est éliminé de façon sensiblement symétrique autour de l'axe Z des trous 18 et les ions métalliques produits par l'attaque chimique du matériau des éléments 60 sont pour partie éliminés grâce au renouvellement de l'électrolyte et pour partie redéposés sur la couche de grille.
    En fonction du matériau des éléments 60 et du taux de renouvellement de l'électrolyte, la fraction redéposée des ions est plus ou moins importante et peut être contrôlée.
    L'usure des éléments conducteurs 60 par électrolyse conduit à l'obtention :
    • d'éléments pointus qui affleurent sensiblement à la surface de la couche de grille 16 et constituent les micropointes 62, et
    • de parties 68 qui se détachent de ces micropointes et restent dans le bain électrolytique comme on le voit sur la figure 6E.
    De préférence, cette étape de formation des micropointes se fait avec le substrat de verre au-dessus et le bain électrolytique au-dessous, de façon à permettre aux parties 68 de tomber dans le bain électrolytique.
    On termine ensuite la formation de la source d'électrons à micropointes en réalisant de manière connue, à partir de la couche de grille 16, des grilles parallèles (non représentées) faisant un angle avec les conducteurs cathodiques (mais s'il n'y avait qu'un conducteur cathodique, on garderait la couche de grille telle quelle).
    L'intérêt du procédé objet de la présente invention est de permettre la fabrication de micropointes auto-alignées sur les trous de la couche de grille 16, au moyen d'une technique non directive, en milieu liquide isotrope (bain électrolytique 64).
    Ce procédé objet de l'invention est donc indépendant de la surface de la structure où l'on veut former les micropointes.

    Claims (9)

    1. Procédé de fabrication d'une source d'électrons à micropointes, procédé selon lequel :
      on fabrique une structure (49) comprenant un substrat électriquement isolant (10), au moins un conducteur cathodique (12) sur ce substrat, une couche électriquement isolante (14) qui recouvre chaque conducteur cathodique, une couche de grille électriquement conductrice (16) qui recouvre cette couche électriquement isolante, des trous (18, 19) étant formés à travers cette couche de grille et la couche électriquement isolante, au niveau de chaque conducteur cathodique, et
      on forme, dans chaque trou, une micropointe (62) qui est faite d'un matériau métallique émetteur d'électrons et qui repose sur le conducteur cathodique correspondant à ce trou,
      ce procédé étant caractérisé en ce que la formation des micropointes comprend les étapes suivantes :
      on forme une couche de protection électriquement isolante (50) sur la couche de grille (16),
      on forme un dépôt chimique du matériau métallique émetteur d'électrons au fond des trous jusqu'à ce que ce matériau métallique déborde de ceux-ci,
      on élimine la couche de protection (50), et
      on réalise une attaque électrolytique du matériau métallique déposé, de manière à obtenir les micropointes (62) à partir de ce matériau métallique.
    2. Procédé selon la revendication 1, caractérisé en ce que le dépôt chimique du matériau métallique émetteur d'électrons est un dépôt électrolytique.
    3. Procédé selon l'une quelconque des revendications let 2, caractérisé en ce qu'on utilise la couche de grille (16) comme cathode pour l'attaque électrolytique du matériau métallique.
    4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on forme la couche de protection (50) en déposant, sous incidence rasante, une couche d'un matériau électriquement isolant sur la couche de grille (16).
    5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on forme la couche de protection par oxydation anodique de la couche de grille (16).
    6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la couche de grille (16) est faite d'un matériau choisi dans le groupe comprenant le niobium, le tantale et l'aluminium.
    7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le matériau métallique est choisi dans le groupe comprenant le fer, le nickel, le chrome, le Fe-Ni, l'or, l'argent et le cuivre.
    8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la couche de protection (50) est éliminée par attaque chimique.
    9. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la couche de protection (50) est éliminée par gravure ionique réactive.
    EP95401863A 1994-08-16 1995-08-09 Procédé de fabrication d'une source d'électrons à micropointes Expired - Lifetime EP0697710B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9410041A FR2723799B1 (fr) 1994-08-16 1994-08-16 Procede de fabrication d'une source d'electrons a micropointes
    FR9410041 1994-08-16

    Publications (2)

    Publication Number Publication Date
    EP0697710A1 EP0697710A1 (fr) 1996-02-21
    EP0697710B1 true EP0697710B1 (fr) 1998-11-11

    Family

    ID=9466324

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95401863A Expired - Lifetime EP0697710B1 (fr) 1994-08-16 1995-08-09 Procédé de fabrication d'une source d'électrons à micropointes

    Country Status (5)

    Country Link
    US (1) US5676818A (fr)
    EP (1) EP0697710B1 (fr)
    JP (1) JPH0869749A (fr)
    DE (1) DE69505914T2 (fr)
    FR (1) FR2723799B1 (fr)

    Families Citing this family (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5766446A (en) * 1996-03-05 1998-06-16 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
    US5893967A (en) * 1996-03-05 1999-04-13 Candescent Technologies Corporation Impedance-assisted electrochemical removal of material, particularly excess emitter material in electron-emitting device
    FR2757999B1 (fr) * 1996-12-30 1999-01-29 Commissariat Energie Atomique Procede d'auto-alignement utilisable en micro-electronique et application a la realisation d'une grille de focalisation pour ecran plat a micropointes
    US6120674A (en) * 1997-06-30 2000-09-19 Candescent Technologies Corporation Electrochemical removal of material in electron-emitting device
    US6007695A (en) * 1997-09-30 1999-12-28 Candescent Technologies Corporation Selective removal of material using self-initiated galvanic activity in electrolytic bath
    FR2770683B1 (fr) * 1997-11-03 1999-11-26 Commissariat Energie Atomique Procede de fabrication d'une source d'electrons a micropointes
    FR2778757B1 (fr) * 1998-05-12 2001-10-05 Commissariat Energie Atomique Systeme d'inscription d'informations sur un support sensible aux rayons x

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE68913419T2 (de) * 1988-03-25 1994-06-01 Thomson Csf Herstellungsverfahren von feldemissions-elektronenquellen und anwendung zur herstellung von emitter-matrizen.
    US5026437A (en) * 1990-01-22 1991-06-25 Tencor Instruments Cantilevered microtip manufacturing by ion implantation and etching
    FR2663462B1 (fr) * 1990-06-13 1992-09-11 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
    JP2961334B2 (ja) * 1991-05-28 1999-10-12 セイコーインスツルメンツ株式会社 尖鋭な金属針を持つ原子間力顕微鏡のカンチレバー製造法
    US5151061A (en) * 1992-02-21 1992-09-29 Micron Technology, Inc. Method to form self-aligned tips for flat panel displays

    Also Published As

    Publication number Publication date
    US5676818A (en) 1997-10-14
    FR2723799A1 (fr) 1996-02-23
    JPH0869749A (ja) 1996-03-12
    FR2723799B1 (fr) 1996-09-20
    DE69505914T2 (de) 1999-06-10
    EP0697710A1 (fr) 1996-02-21
    DE69505914D1 (de) 1998-12-17

    Similar Documents

    Publication Publication Date Title
    EP0172089B1 (fr) Dispositif de visualisation par cathodoluminescence excitée par émission de champ
    EP0558393B1 (fr) Source d'électrons à cathodes émissives à micropointes et dispositif de visualisation par cathodoluminescence excitée par émission de champ utilisant cette source
    EP0461990B1 (fr) Source d'électrons à cathodes émissives à micropointes
    EP0234989A1 (fr) Procédé de fabrication d'un dispositif de visualisation par cathodoluminescence excitée par émission de champ
    EP1885649A2 (fr) Procede de fabrication d'une cathode emissive
    EP0697710B1 (fr) Procédé de fabrication d'une source d'électrons à micropointes
    JPH1186719A (ja) 電界放射型素子の製造方法
    FR2705830A1 (fr) Procédé de fabrication de dispositifs d'affichage à micropointes, utilisant la lithographie par ions lourds.
    EP0708473B1 (fr) Procédé de fabrication d'une source d'électrons à micropointes
    US5683282A (en) Method for manufacturing flat cold cathode arrays
    EP1000433B1 (fr) Procede de fabrication d'une source d'electrons a micropointes, a grille de focalisation auto-alignee
    FR2736203A1 (fr) Dispositif d'affichage a emission de champ lateral et procede de fabrication de ce dernier
    FR2700217A1 (fr) Procédé de réalisation sur silicium, de cathodes émissives à micropointes pour écran plat de petites dimensions, et produits obtenus.
    EP0943153A1 (fr) Ecran d'affichage comprenant une source d'electrons a micropointes, observable a travers le support des micropointes, et procede de fabrication de cette source
    EP0668604A1 (fr) Procédé de fabrication de cathode d'écran fluorescent à micropointes et produit obtenu
    EP0856868B1 (fr) Source d'électrons à micropointes et dispositif de visualisation avec telle source
    WO2000002222A1 (fr) Dispositif a emission de champ
    EP1029338A1 (fr) Procede de fabrication d'une source d'electrons a micropointes
    EP0616356B1 (fr) Dispositif d'affichage à micropointes et procédé de fabrication de ce dispositif
    EP1023741B1 (fr) Source d'electrons a micropointes, a grille de focalisation et a densite elevee de micropointes, et ecran plat utilisant une telle source
    FR2764729A1 (fr) Procede de fabrication d'espaceurs pour ecran plat de visualisation
    FR2779243A1 (fr) Procede de realisation par photolithographie d'ouvertures auto-alignees sur une structure, en particulier pour ecran plat a micropointes
    FR2797092A1 (fr) Procede de fabrication d'une anode d'un ecran plat de visualisation
    FR2786026A1 (fr) Procede de formation de reliefs sur un substrat au moyen d'un masque de gravure ou de depot
    FR2788879A1 (fr) Ecran a emission de champ equipe de microcanaux

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE GB IT

    17P Request for examination filed

    Effective date: 19960727

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19980129

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE GB IT

    REF Corresponds to:

    Ref document number: 69505914

    Country of ref document: DE

    Date of ref document: 19981217

    ITF It: translation for a ep patent filed

    Owner name: JACOBACCI & PERANI S.P.A.

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990114

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20030806

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20030822

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040809

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050301

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040809

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050809