EP0712146A1 - Feldeffekt-Elektronenquelle und Herstellungsverfahren dazu, Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz - Google Patents

Feldeffekt-Elektronenquelle und Herstellungsverfahren dazu, Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz Download PDF

Info

Publication number
EP0712146A1
EP0712146A1 EP95402450A EP95402450A EP0712146A1 EP 0712146 A1 EP0712146 A1 EP 0712146A1 EP 95402450 A EP95402450 A EP 95402450A EP 95402450 A EP95402450 A EP 95402450A EP 0712146 A1 EP0712146 A1 EP 0712146A1
Authority
EP
European Patent Office
Prior art keywords
diamond
source
micro
electrically insulating
clusters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95402450A
Other languages
English (en)
French (fr)
Other versions
EP0712146B1 (de
Inventor
Joel Danroc
Danh Van Tran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0712146A1 publication Critical patent/EP0712146A1/de
Application granted granted Critical
Publication of EP0712146B1 publication Critical patent/EP0712146B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • H01J3/022Electron guns using a field emission, photo emission, or secondary emission electron source with microengineered cathode, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30457Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels

Definitions

  • the present invention relates to a field effect electron source.
  • the invention has the same fields of application as electron sources with microtips ("microtips").
  • the present invention applies to the field of flat display devices also called “flat screens”, as well as to the manufacture of pressure measurement gauges.
  • a microtip electron source comprises at least one cathode conductor on an electrically insulating substrate, an electrically insulating layer which covers this cathode conductor and at least one grid formed on this electrically insulating layer.
  • Holes are formed through the grid and the insulating layer above the cathode conductor.
  • micro-tips are formed in these holes and carried by the cathode conductor.
  • each micro-tip is located substantially in the plane of the grid, this grid being used to extract electrons from the micro-tips.
  • the holes have very small dimensions (they have a diameter of less than 2 ⁇ m).
  • These other known display devices comprise a cathodoluminescent anode placed facing an electron source comprising layers of diamond or diamond-like carbon intended to emit electrons.
  • These layers are obtained by laser ablation or by chemical vapor deposition.
  • Diamond or diamond carbon emits electrons much more easily than the materials conventionally used for the manufacture of microtips.
  • the minimum electric field from which an electron emission can be obtained can be twenty times weaker than the minimum electric field corresponding to metals such as molybdenum, for example.
  • the deposits obtained are continuous layers and not micro-tips.
  • the resulting display devices are, as seen above, of the "diode" type, which poses a problem as regards their addressing.
  • the object of the present invention is to remedy the above drawbacks.
  • micro-cluster is meant a micro-heap composed of grains of diamond carbon powder or of diamond type which are in direct contact with their closest neighbors and / or bonded together by a metal.
  • the source object of the present invention emits more electrons than a microtip source, due to the use, in the present invention, of diamond or diamond-like carbon particles which have a higher emissivity than conventional electron-emitting materials such as molybdenum.
  • this device has a greater brightness than a microtip device, for the same control voltage.
  • this device using a source according to the invention requires a control voltage lower than that which is necessary for a microtip device.
  • the micro-clusters can be made of diamond or diamond-like carbon particles or can be made of such particles dispersed in a metal.
  • the micro-clusters can be linked by a deposit of a metal intended to consolidate these micro-clusters, diamond or diamond-like carbon particles emerging from this deposit on the surface of the micro- heap.
  • the process which is the subject of the invention can be implemented with large surface substrates and thus makes it possible to obtain electron sources (and therefore display screens) of large surface area (several tens of inches diagonally).
  • the temperature at which the micro-clusters are formed is close to the ambient temperature (of the order of 20 ° C.).
  • baths which are necessary for the implementation of the process which is the subject of the invention have a long service life (several months).
  • the micro-clusters formed by electrophoresis are then linked using a metal by electrochemical deposition, in order to consolidate these micro-clusters.
  • the diamond or diamond-like carbon particles have a size of the order of 1 ⁇ m or less than 1 ⁇ m.
  • nanometric powders are used.
  • These particles can be obtained from natural or artificial diamond or by a method chosen from laser synthesis, deposition chemical vapor phase and physical vapor deposition.
  • the holes formed through the grid layer and the electrically insulating layer may have a circular or rectangular shape.
  • the size of these holes can be chosen in a range ranging from approximately 1 ⁇ m to several tens of micrometers.
  • micro-clusters are formed in accordance with the process which is the subject of the invention is comparable to the structure in which the micro-tips are formed to manufacture a source with micro-tips.
  • the size of the holes that are formed in the structure to implement the process which is the subject of the invention can be significantly greater than that which is necessary for the implementation of a process for manufacturing a source. with micro-tips.
  • Holes 10 are formed through these grids 8 and the insulating layer 6 above the cathode conductors 4.
  • Micro-clusters 12 containing diamond or diamond-like carbon particles are formed in the holes 10 and carried by the cathode conductors 4.
  • cathode conductors 4 are parallel and that the grids 8 are parallel to each other and perpendicular to the cathode conductors 4.
  • the holes 10 and therefore the micro-clusters 12 are located in the areas where these grids cross the cathode conductors.
  • micro-clusters of such a zone which emit electrons when an appropriate electric voltage is applied, by means not shown, between the cathode conductor 4 and the grid 8 which correspond to this zone.
  • a cathodoluminescence display device is schematically represented in section in FIG. 2.
  • This device comprises the electron source 14 of FIG. 1.
  • the device of FIG. 2 also comprises a cathodoluminescent anode 16 placed opposite the source 14 and separated from the latter by a space 18 in which a vacuum has been created.
  • the cathodoluminescent anode 16 comprises an electrically insulating and transparent substrate 20 which is provided with an electrically conductive and transparent layer 22 forming an anode.
  • this layer 24 emits light which a user of the display device observes through the transparent substrate 20.
  • FIG. 3 schematically illustrates this method.
  • the diameter D1 of the holes (substantially circular) formed in the grid 8 and in the electrically insulating layer 6 can be advantageously greater than the diameter of the holes contained in the electron sources with microtips described in documents (1) to (4).
  • this diameter D1 can take values of the order of 1 ⁇ m up to 20 ⁇ m.
  • FIG. 4 schematically illustrates the fact that the holes 10, instead of having a circular shape, can have a rectangular shape.
  • the width D2 of these holes 10 in FIG. 4, of rectangular shape can be taken equal to the diameter D1 mentioned above and can therefore also be significantly greater than the diameter of the holes of the microtip sources.
  • a diamond or diamond type carbon powder is used.
  • This powder can be obtained by chemical vapor deposition from a mixture of hydrogen and light hydrocarbons.
  • This chemical vapor deposition can be assisted by an electron beam or be assisted by a plasma generated by microwaves.
  • This powder can also be synthesized by means of a laser, that is to say, more precisely, by chemical vapor deposition as previously but assisted by laser.
  • physical vapor deposition from carbon targets (graphite for example) and a plasma gas such as argon alone or mixed with hydrogen , hydrocarbons without dopant or with a dopant such as for example diborane.
  • This powder can also be obtained by laser ablation.
  • artificial diamonds can be prepared by compacting carbon, at high pressure and high temperature, and then making the powder from these artificial diamonds.
  • these diamond carbon powders and these diamond type carbon powders are chosen so as to have a micron or submicron particle size, preferably nanometric.
  • these diamond or diamond carbon powders can be doped or undoped.
  • Boron can for example be used as a dopant.
  • the deposition of the powder (diamond or diamond-like carbon particles) leading to the formation of micro-clusters 12 in the holes 10, on the cathode conductors 4, can be carried out by electrophoresis (cataphoresis or anaphoresis), possibly supplemented by a electrochemical metallic deposition of consolidation, or by electrochemical co-deposition of metal and carbon diamond or of diamond type.
  • the structure provided with holes 10 is placed in an appropriate solution 26 and the bottom of each hole 10 is brought to a positive potential during this deposition phase.
  • the cathode conductors 4 are brought to this positive potential thanks to to a suitable voltage source 28, the positive terminal of which is connected to these cathode conductors 4 while the negative terminal of this source is connected to a counter-electrode 32 of platinum or of stainless steel situated in the bath at a distance from the substrate d '' about 1 to 5 cm.
  • the fine powder of diamond or diamond-like carbon particles is suspended in solution 26 (before placing the structure in this solution).
  • the voltage supplied by the source 28 can range up to around 200 V.
  • the negative terminal of the source 28 which is connected to the cathode conductors 4 while the positive terminal of the source 28 is connected to a counter-electrode 32 of platinum or stainless steel located in the bath at a distance from the substrate of about 1 to 5 cm.
  • a voltage of up to approximately 200 V is then used.
  • a metal for example chosen from Ni, Co, Ag, Au, Rh or Pt or, more generally, from the transition metals, alloys thereof and precious metals.
  • a suitable electrical voltage is then applied between the cathode conductors 4 and an electrode 33 placed in this solution, by means of a voltage source 34.
  • This electrode 33 is for example made of nickel and the solution 30 contains for example 300 g / l of nickel sulphate, 30 g / l of nickel chloride, 30 g / l of boric acid and 0.6 g / l of lauryl sodium sulfate.
  • an electric current of 4 A / dm is used.
  • FIG. 5 shows the metallic deposit 36 which is formed on each micro-cluster 12 after this electrochemical deposition operation, revealing emerging parts of the particles of the micro-cluster.
  • micro-clusters can also be formed by electrochemical co-deposition of metal and of diamond or diamond-like carbon.
  • An appropriate current source is used, for example of the order of 4 A / dm, and the negative terminal of this source is applied to the cathode conductors and the positive terminal of this source to a nickel electrode placed in the bath .
  • the nickel is deposited in the holes, carrying with it the diamond particles, hence the formation of micro-clusters of nickel and diamond in these holes.
  • a powder of particles of silicon carbide or titanium carbide, of micron or submicron size can be used for the implementation of a process according to the invention, and use the same methods as above (electrophoresis, possibly supplemented by an electrochemical metallic deposition of consolidation, or electrochemical co-deposition of metal and such particles), to form the micro-clusters.
  • the tops of the micro-clusters are located substantially in the plane of the grids and these micro-clusters are in contact with these grids.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
EP95402450A 1994-11-08 1995-11-03 Feldeffekt-Elektronenquelle und Herstellungsverfahren dazu, Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz Expired - Lifetime EP0712146B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9413371 1994-11-08
FR9413371A FR2726688B1 (fr) 1994-11-08 1994-11-08 Source d'electrons a effet de champ et procede de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence

Publications (2)

Publication Number Publication Date
EP0712146A1 true EP0712146A1 (de) 1996-05-15
EP0712146B1 EP0712146B1 (de) 1999-06-30

Family

ID=9468611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402450A Expired - Lifetime EP0712146B1 (de) 1994-11-08 1995-11-03 Feldeffekt-Elektronenquelle und Herstellungsverfahren dazu, Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz

Country Status (5)

Country Link
US (1) US5828162A (de)
EP (1) EP0712146B1 (de)
JP (1) JPH08241664A (de)
DE (1) DE69510521T2 (de)
FR (1) FR2726688B1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018577A1 (en) * 1995-11-15 1997-05-22 E.I. Du Pont De Nemours And Company Process for making a field emitter cathode using a particulate field emitter material
WO1997018576A1 (en) * 1995-11-15 1997-05-22 E.I. Du Pont De Nemours And Company Diamond powder field emitters and field emitter cathodes made therefrom
EP0957503A2 (de) * 1998-05-15 1999-11-17 Sony Corporation Verfahren zur Herstellung einer Feldemissionskathode
EP1073085A2 (de) * 1999-07-29 2001-01-31 Sony Corporation Verfahren zur Herstellung eines Kaltkathodenfeldemitters und einer Anzeigevorrichtung
EP1073090A2 (de) * 1999-07-27 2001-01-31 Iljin Nanotech Co., Ltd. Feldemissionsanzeigevorrichtung mit Kohlenstoffnanoröhren und Verfahren
GB2322472B (en) * 1997-02-24 2001-11-28 Ibm Self stabilising non-thermionic cathode

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1056110B1 (de) * 1998-02-09 2009-12-16 Panasonic Corporation Elektronenemissionsvorrichtung, verfahren zur herstellung derselben und verfahren zur steuerung derselben; bildanzeige mit solchen elektronenemissions- vorrichtung und verfahren zur herstellung derselben
JP2000182508A (ja) * 1998-12-16 2000-06-30 Sony Corp 電界放出型カソード、電子放出装置、および電子放出装置の製造方法
JP3595718B2 (ja) * 1999-03-15 2004-12-02 株式会社東芝 表示素子およびその製造方法
JP2000306492A (ja) * 1999-04-21 2000-11-02 Hitachi Powdered Metals Co Ltd 電界放出型カソード、電子放出装置、および電子放出装置の製造方法
US6342755B1 (en) * 1999-08-11 2002-01-29 Sony Corporation Field emission cathodes having an emitting layer comprised of electron emitting particles and insulating particles
GB9919737D0 (en) * 1999-08-21 1999-10-20 Printable Field Emitters Limit Field emitters and devices
US6384520B1 (en) 1999-11-24 2002-05-07 Sony Corporation Cathode structure for planar emitter field emission displays
JP2001185019A (ja) 1999-12-27 2001-07-06 Hitachi Powdered Metals Co Ltd 電界放出型カソード、電子放出装置、及び電子放出装置の製造方法
JP3953276B2 (ja) * 2000-02-04 2007-08-08 株式会社アルバック グラファイトナノファイバー、電子放出源及びその作製方法、該電子放出源を有する表示素子、並びにリチウムイオン二次電池
JP3730476B2 (ja) 2000-03-31 2006-01-05 株式会社東芝 電界放出型冷陰極及びその製造方法
KR100366705B1 (ko) * 2000-05-26 2003-01-09 삼성에스디아이 주식회사 전기 화학 중합을 이용한 탄소나노튜브 에미터 제조 방법
WO2002103737A2 (en) * 2001-06-14 2002-12-27 Hyperion Catalysis International, Inc. Field emission devices using ion bombarded carbon nanotubes
US7210978B2 (en) * 2004-04-14 2007-05-01 Teco Nanotech Co., Ltd. Electron-emission type field-emission display and method of fabricating the same
CN100405523C (zh) * 2004-04-23 2008-07-23 清华大学 场发射显示器
US7736209B2 (en) * 2004-09-10 2010-06-15 Applied Nanotech Holdings, Inc. Enhanced electron field emission from carbon nanotubes without activation
CN100370571C (zh) * 2004-11-12 2008-02-20 清华大学 场发射阴极和场发射装置
TWI309843B (en) * 2006-06-19 2009-05-11 Tatung Co Electron emission source and field emission display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293593A (en) 1941-07-25 1942-08-18 Albert Shelby Hair treating apparatus
FR2593953A1 (fr) 1986-01-24 1987-08-07 Commissariat Energie Atomique Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ
FR2623013A1 (fr) 1987-11-06 1989-05-12 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
FR2663462A1 (fr) 1990-06-13 1991-12-20 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
US5199918A (en) * 1991-11-07 1993-04-06 Microelectronics And Computer Technology Corporation Method of forming field emitter device with diamond emission tips
GB2260641A (en) * 1991-09-30 1993-04-21 Kobe Steel Ltd Cold cathode emitter element
EP0555074A1 (de) * 1992-02-05 1993-08-11 Motorola, Inc. Elektronenquelle für Verarmungsbetrieb einer Elektronen-emittierenden Vorrichtung
FR2687839A1 (fr) 1992-02-26 1993-08-27 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ utilisant cette source.
US5289086A (en) * 1992-05-04 1994-02-22 Motorola, Inc. Electron device employing a diamond film electron source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084942A (en) * 1975-08-27 1978-04-18 Villalobos Humberto Fernandez Ultrasharp diamond edges and points and method of making
US5225820A (en) * 1988-06-29 1993-07-06 Commissariat A L'energie Atomique Microtip trichromatic fluorescent screen
US5473218A (en) * 1994-05-31 1995-12-05 Motorola, Inc. Diamond cold cathode using patterned metal for electron emission control

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293593A (en) 1941-07-25 1942-08-18 Albert Shelby Hair treating apparatus
FR2593953A1 (fr) 1986-01-24 1987-08-07 Commissariat Energie Atomique Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ
EP0234989A1 (de) * 1986-01-24 1987-09-02 Commissariat A L'energie Atomique Herstellungsverfahren einer feldeffektangeregten Kathodenlumineszenz-Wiedergabevorrichtung
FR2623013A1 (fr) 1987-11-06 1989-05-12 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
FR2663462A1 (fr) 1990-06-13 1991-12-20 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
GB2260641A (en) * 1991-09-30 1993-04-21 Kobe Steel Ltd Cold cathode emitter element
US5199918A (en) * 1991-11-07 1993-04-06 Microelectronics And Computer Technology Corporation Method of forming field emitter device with diamond emission tips
EP0555074A1 (de) * 1992-02-05 1993-08-11 Motorola, Inc. Elektronenquelle für Verarmungsbetrieb einer Elektronen-emittierenden Vorrichtung
FR2687839A1 (fr) 1992-02-26 1993-08-27 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ utilisant cette source.
EP0558393A1 (de) * 1992-02-26 1993-09-01 Commissariat A L'energie Atomique Elektronenquelle mit Mikropunktkathoden und Anzeigevorrichtung mit Kathodolumineszenz erregt durch Feldemission unter Anwendung dieser Quelle
US5289086A (en) * 1992-05-04 1994-02-22 Motorola, Inc. Electron device employing a diamond film electron source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N.KUMAR ET AL.: "development of nano-crystalline diamond-based field-emission displays", SID INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS, vol. 25, 14 June 1994 (1994-06-14), pages 43 - 46, XP000439084 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018577A1 (en) * 1995-11-15 1997-05-22 E.I. Du Pont De Nemours And Company Process for making a field emitter cathode using a particulate field emitter material
WO1997018576A1 (en) * 1995-11-15 1997-05-22 E.I. Du Pont De Nemours And Company Diamond powder field emitters and field emitter cathodes made therefrom
US5948465A (en) * 1995-11-15 1999-09-07 E. I. Du Pont De Nemours And Company Process for making a field emitter cathode using a particulate field emitter material
GB2322472B (en) * 1997-02-24 2001-11-28 Ibm Self stabilising non-thermionic cathode
EP0957503A2 (de) * 1998-05-15 1999-11-17 Sony Corporation Verfahren zur Herstellung einer Feldemissionskathode
EP0957503A3 (de) * 1998-05-15 2002-10-23 Sony Corporation Verfahren zur Herstellung einer Feldemissionskathode
EP1073090A2 (de) * 1999-07-27 2001-01-31 Iljin Nanotech Co., Ltd. Feldemissionsanzeigevorrichtung mit Kohlenstoffnanoröhren und Verfahren
EP1073090A3 (de) * 1999-07-27 2003-04-16 Iljin Nanotech Co., Ltd. Feldemissionsanzeigevorrichtung mit Kohlenstoffnanoröhren und Verfahren
EP1073085A2 (de) * 1999-07-29 2001-01-31 Sony Corporation Verfahren zur Herstellung eines Kaltkathodenfeldemitters und einer Anzeigevorrichtung
EP1073085A3 (de) * 1999-07-29 2003-04-09 Sony Corporation Verfahren zur Herstellung eines Kaltkathodenfeldemitters und einer Anzeigevorrichtung

Also Published As

Publication number Publication date
DE69510521D1 (de) 1999-08-05
FR2726688B1 (fr) 1996-12-06
DE69510521T2 (de) 2000-03-16
EP0712146B1 (de) 1999-06-30
JPH08241664A (ja) 1996-09-17
FR2726688A1 (fr) 1996-05-10
US5828162A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
EP0712146B1 (de) Feldeffekt-Elektronenquelle und Herstellungsverfahren dazu, Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz
EP0712147B1 (de) Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz
JP3699114B2 (ja) パッキング密度の高い電子放出デバイスの構造
EP1614765B1 (de) Niedertemperaturwachstum orientierter Kohlenstoff-Nanoröhrchen
US6462467B1 (en) Method for depositing a resistive material in a field emission cathode
US7741764B1 (en) DLC emitter devices and associated methods
EP0119459B1 (de) Stück, das ein mit einem harten und korrosionsfesten Überzug versehenes Substrat enthält
EP1885648A2 (de) Herstellungsverfahren für nanostrukturen
US20100048391A1 (en) Catalyst particles on a tip
FR2723255A1 (fr) Dispositif d'affichage a emission de champ et procede pour fabriquer de tels dispositifs
JP3604652B2 (ja) 電子放出陰極およびその製造方法
EP0708473B1 (de) Verfahren zur Herstellung einer Mikrospitzen-Elektronenquelle
JP2007319761A (ja) 炭素系ナノ材料生成用触媒組成物、炭素系ナノ材料デバイス、電子放出素子用カソード基板及びその作製方法、並びに電子放出素子デバイス及びその作製方法
EP0697710B1 (de) Herstellungsverfahren einer Mikrospitzen-Elektronenquelle
EP0802559B1 (de) Flacher Bildschirm mit Wasserstoffquelle
EP0689222B1 (de) Herstellungsverfahren einer Mikrospitzelektronenquelle
FR2517921A1 (fr) Dispositif electroluminescent et son procede d'obtention
US6593683B1 (en) Cold cathode and methods for producing the same
EP0943153A1 (de) Ein durch einen mikrospitzen-träger beobachtbares, mit einer mikrospitzen-elektronenquelle versehenes bildschirm und verfahren zur herstellung dieser quelle
Myers et al. Characterization of amorphous carbon coated silicon field emitters
JPH06131968A (ja) 電界放出型電子源およびアレイ状基板
EP1690277A2 (de) Feldemissionseinrichtung
EP0038742B1 (de) Herstellungsverfahren einer imprägnierten Kathode mit integriertem Gitter, nach diesem Verfahren hergestellte Kathode und mit einer solchen Kathode versehene Elektronenröhre
WO2002006559A1 (fr) Procede de fabrication de couches de carbone aptes a emettre des electrons, par depot chimique en phase vapeur
FR2721751A1 (fr) Procédé d'élaboration de micropointes à composition contrôlée sur de grandes surfaces.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19961022

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981008

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69510521

Country of ref document: DE

Date of ref document: 19990805

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990903

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041104

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051103