EP0705809A1 - Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat - Google Patents

Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat Download PDF

Info

Publication number
EP0705809A1
EP0705809A1 EP95112990A EP95112990A EP0705809A1 EP 0705809 A1 EP0705809 A1 EP 0705809A1 EP 95112990 A EP95112990 A EP 95112990A EP 95112990 A EP95112990 A EP 95112990A EP 0705809 A1 EP0705809 A1 EP 0705809A1
Authority
EP
European Patent Office
Prior art keywords
mass
solid fuel
fuel according
oxide
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95112990A
Other languages
English (en)
French (fr)
Other versions
EP0705809B1 (de
Inventor
Klaus Dr. Menke
Jutta Dr. Böhnlein-Mauss
Helmut Schmid
Klaus Martin Dr. Bucerius
Walther Dr. Engel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0705809A1 publication Critical patent/EP0705809A1/de
Application granted granted Critical
Publication of EP0705809B1 publication Critical patent/EP0705809B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • C06B31/30Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with vegetable matter; with resin; with rubber
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/007Ballistic modifiers, burning rate catalysts, burning rate depressing agents, e.g. for gas generating

Definitions

  • the invention relates to a solid fuel for rocket engines or gas generators, which contains ammonium nitrate (AN) in pure or phase-stabilized form (PSAN) as an oxidizer.
  • AN ammonium nitrate
  • PSAN phase-stabilized form
  • Solid fuels of the type mentioned generally have a low burning rate and a high pressure exponent.
  • the burning rate can be increased by adding solid energetic substances, such as octogen (HMX) or hexogen (RDX), or metals with high heat of combustion, such as aluminum or boron.
  • Combinations with high-energy binders serve the same goal. These include isocyanate-bound glycidyl azidopolymer (GAP), polymers containing nitrate esters, such as polyglycidyl nitrate and polynitratomethylethyloxetane, or nitroamino-substituted polymers. Even if this can increase the rate of combustion, the pressure exponent and the temperature coefficient are not or only slightly reduced.
  • the combustion behavior can be influenced favorably by adding lead and copper salts or oxides in combination with soot, but these additives can only be used to a limited extent with fuels containing ammonium nitrate.
  • the object of the invention is to improve the combustion behavior of solid fuels on the basis of pure and phase-stabilized ammonium nitrate.
  • such a solid fuel consists of 35 to 80% by mass ammonium nitrate (AN) in pure form or phase-stabilized form (PSAN) with nickel oxide, potassium or cesium nitrate with an average grain size of 5 to 200 ⁇ m, 15 to 50% by mass of a binder system from one Binder polymer and a high-energy plasticizer as well as 0.2 to 5.0 mass% of a combustion moderator made of vanadium / molybdenum oxide as an oxide mixture or mixed oxide.
  • AN ammonium nitrate
  • PSAN phase-stabilized form
  • Solid fuels of this formulation show a very favorable burning behavior. Depending on the composition, burning rates of over 8mm / s at normal temperature and a combustion chamber pressure of 10 MPa are achieved. The pressure exponent in the range from 4 to 25 MPa, possibly 7 to 25 MPa, reaches values of n 3 ⁇ 4 0.6, in the favorable case n 3 ⁇ 4 0.5. This combustion behavior makes the solid fuel composed according to the invention particularly suitable for use in missiles for tactical or strategic missile defense.
  • the solid propellants according to the invention are initially distinguished by the fact that they contain pure AN as the oxidizer or phase-stabilized ammonium nitrate reacted with nickel oxide, potassium or cesium nitrate as the oxidizer, the nickel oxides preferably containing 1 to 7% by mass, potassium or cesium nitrate containing 3 to 15 % By mass are used. They stabilize the crystal phases of the AN and suppress larger volume changes in the grain in the temperature range from -40 ° to + 70 ° C. The incorporation into the crystal matrix of the AN takes place via a chemical reaction of the additives with the melt of the pure ammonium nitrate with elimination of water.
  • AN is preferably used in pure form with a water content below 0.2% by mass or NiO-stabilized PSAN, while PSAN stabilized with potassium or cesium nitrate brings with it somewhat higher smoke proportions.
  • the combustion behavior is significantly influenced by the grain size of the AN or PSAN.
  • a finely crystalline form with an average grain size of 5 to 200 ⁇ m with a proportion of 35 to 80 mass% in the fuel is preferred.
  • Particularly favorable burn-up values result when the AN or PSAN fraction predominantly in smaller ones Grain size from 10 to 80 ⁇ m and less in average grain size from 100 to 160 ⁇ m is available.
  • the solid propellant according to the invention can also contain high-energy substances, in particular nitramines, such as hexogen (RDX) or octogen (HMX) with an average particle size of 2 to 200 ⁇ m with a proportion of 1 to 4% by mass.
  • nitramines such as hexogen (RDX) or octogen (HMX) with an average particle size of 2 to 200 ⁇ m with a proportion of 1 to 4% by mass.
  • metals such as aluminum, magnesium or boron can be part of the fuel with 0.5 to 20% by mass.
  • a grain size of 0.1 to 50 ⁇ m is recommended.
  • stabilizers which act as nitrogen oxide and acid scavengers.
  • These are preferably diphenylamine, 2-nitrodiphenylamine, N-methylnitroaniline, which are used alone or in combination with one another in concentrations of 0.4 to 2% by mass. These can be combined, in particular in the case of fuels containing nitric acid ester, with small amounts in the range of 0.5% by mass of the magnesium oxide acting in the same sense.
  • combustion moderators made from vanadium / molybdenum oxide as oxide mixture or mixed oxide used according to the invention with 0.2 to 5.0 mass% are advantageously added with carbon black or graphite in a fraction of 5 to 20 mass% of the fraction of the combustion moderator.
  • binder system consisting of a binder polymer and a high-energy plasticizer.
  • the binder polymer itself can be inert, it preferably being an isocyanate-curing, bifunctional or trifunctional hydroxyl-substituted polyester or polyether prepolymer.
  • high-energy polymers preferably isocyanate-curing, di- or trifunctional hydroxy-substituted glycidyl azidopolymer, can also be used.
  • the high-energy plasticizers are preferably selected from the group of chemically stable nitrate esters, nitro, nitroamino or azido plasticizers.
  • TMETN Trimethylolethane trinitrate
  • BTTN butanetriol trinitrate
  • DEGDN diethylene glycol dinitrate
  • nitro plasticizer is a 1: 1 mixture of bisdinitropropyl formal / acetal (BDNPF / A), while a nitro amino plasticizer is a 1: 1 mixture of N-ethyl and N-methylnitratoethylnitroamine (EtNENA, MeNENA) or Nn-butyl-N -nitratoethylnitroamine (BuNENA) or N, N'-dinitratoethylnitroamine (DINA) is suitable.
  • EtNENA N-ethyl and N-methylnitratoethylnitroamine
  • BuNENA Nn-butyl-N -nitratoethylnitroamine
  • DINA N, N'-dinitratoethylnitroamine
  • GAP-A bisazido-terminated GAP oligomers
  • DANPE 5-diazido-3-nitroaminopentane
  • the ratio polymer / plasticizer is 1: 3 to 20: 1 mass%.
  • the binder polymers can of course also be used in pure form.
  • the purer or phase stabilized ammonium nitrate is preferably 0.1 to 1% by mass of its anti-caking agent fraction, e.g. ultra-fine (grain size about 0.02 ⁇ m) silica gel, sodium lauryl sulfonate, tricalcium phosphate or other surfactants are added.
  • its anti-caking agent fraction e.g. ultra-fine (grain size about 0.02 ⁇ m) silica gel, sodium lauryl sulfonate, tricalcium phosphate or other surfactants are added.
  • the vanadium / molybdenum oxide combustion moderators can be ideally combined with nickel and copper salts, oxides or complexes, which leads to a further increase in the combustion rate.
  • the combustion moderators preferably consist of mixed oxides in which molybdenum is present in the + VI and + V oxidation states and vanadium in the + IV and + V oxidation states.
  • Exemplary compositions of the mixed oxides are V6Mo4O25 and V6Mo15 O25O60.
  • the mixed oxides can furthermore contain chromium (III) and titanium (IV) oxides as the inactive carrier material or one which also participates in the reaction.
  • the combustion moderators have a grain size in the range from 1 to 60 ⁇ m, preferably 1 to 10 ⁇ m and a high internal surface area of 5 to 100 m 2 / g, preferably 20 to 60 m 2 / g.
  • the burning rate in the low pressure range can be increased further compared to coarser grain and the pressure exponent can be further reduced.
  • the solid propellants according to the invention experience an advantageous further development in that high-melting Metal carbides or nitrides, preferably silicon and zirconium carbide in the concentration range from 0.1 to 1 mass% are added. Above all, this suppresses an unstable, oscillating combustion behavior when used in rocket engines. This is particularly important for low-smoke burning fuels without the addition of metal.
  • Solid fuels of the type described in particular with oxidizers in the form of pure AN or Ni-PSAN, are suitable due to their energy content, their low-smoke, hydrochloric acid-free combustion and their comparatively low, mechanical and detonative sensitivity for use in rocket engines, while lower-energy formulations with a higher binder content are suitable for use as gas generator propellants.
  • Table 1 shows nine different formulations with pure ammonium nitrate and a PSAN phase-stabilized with 3% nickel oxide.
  • the burning rate r (mm / s) at 20 ° C and at three different combustion chamber pressures is given in the lower part of the table for the individual formulations. Below this is the pressure exponent n for various pressure ranges given in brackets.
  • AN3 to AN8 Due to the high plasticizer content, AN3 to AN8 have high specific impulses of 234s for AN6 and AN8 and 237s for AN3, AN4 and AN5 with a relaxation ratio of 70: 1.
  • the synergistic effect of copper compounds and V / Mo oxide combustion moderators has proven to be particularly favorable. Copper phthalocyanate has proven to be the most favorable in the combination of increase in the rate of combustion, reduction in the pressure exponent and acceptable stability properties.
  • the burning behavior of the formulation AN9 shows that the nickel diaminodinitrate as phase stabilizer in the AN also has a favorable effect on the burning behavior. This is also observed with the addition of nickel phthalocyanate in the AN8 formulation. The addition of RDX also increases the burning rate without, however, positively influencing the pressure exponent.
  • Table 2 shows with the examples AN10, AN11 and AN12 AN / GAP fuel formulations in which the combustion moderator is contained in different grain sizes and grain distributions with otherwise the same composition.
  • the lower part of the table clearly shows the increase in the burn-off rate achieved with the grain becoming smaller, while at the same time lowering the pressure exponent.
  • AN13 shows the burning behavior when formulated with an azido softener
  • AN14 is a formulation with the addition of zirconium carbide, with the help of which combustion oscillations are suppressed when the fuel is used in rocket engines.
  • Figure 3 shows effective combustion control even with a high nitrate ester content in the fuel without RDX addition. This is due to the synergistic effect of Cu and Ni complexes with the V / Mo oxide combustion moderators.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Ein Festtreibstoff für Raketenantriebe oder Gasgeneratoren besteht aus 35 bis 80 Massen-% Ammoniumnitrat (AN) in reiner oder mit Nickeloxid, Kalium- oder Cäsiumnitrat phasenstabilisierter Form (PSAN) mit einer mittleren Korngröße von 5 bis 200µm, 15 bis 50 Massen-% eines Bindersystems aus einem Binderpolymer und einem energiereichen Weichmacher, sowie 0,2 bis 5 Massen-% eines Abbrandmoderators aus Vanadium/Molybdänoxid als Oxidmischung oder Mischoxid.

Description

  • Die Erfindung betrifft einen Festtreibstoff für Raketenantriebe oder Gasgeneratoren, der als Oxidator Ammoniumnitrat (AN) in reiner oder phasenstabilisierter Form (PSAN) enthält.
  • Festtreibstoffe der genannten Art weisen in der Regel eine niedrige Abbrandgeschwindigkeit und einen hohen Druckexponenten auf. Die Abbrandgeschwindigkeit läßt sich durch Zusatz von festen energetischen Stoffen, wie Oktogen (HMX) oder Hexogen (RDX), oder von Metallen mit hoher Verbrennungswärme, wie Aluminium oder Bor steigern. Dem gleichen Ziel dienen auch Kombinationen mit energiereichen Bindern. Hierzu zählen isocyanat-gebundenes Glycidylazidopolymer (GAP), nitratesterhaltige Polymere, wie Polyglycidylnitrat und Polynitratomethylethyloxetan oder nitroamino-substituierte Polymere. Auch wenn sich hierdurch die Abbrandgeschwindigkeit steigern läßt, werden der Druckexponent und der Temperaturkoeffizient nicht oder nur wenig erniedrigt.
  • Zusätze von Ammoniumperchlorat, die zu einer Steigerung der Abbrandgeschwindigkeit führen, senken zwar bei höherer Dosierung den Druckexponenten, führen jedoch zur Bildung von Salzsäure im Abgas und damit zu starker Rauchbildung bei hoher Luftfeuchtigkeit.
  • Bei Doublebase- und Composit Doublebase-Festtreibstoffen läßt sich das Abbrandverhalten durch Zusatz von Blei- und Kupfersalzen oder -oxiden in Verbindung mit Ruß günstig beeinflußen, doch lassen sich diese Zusätze bei ammoniumnitrathaltigen Treibstoffen nur in begrenztem Maß einsetzen. Die genannten Salze und Oxide wirken wiederum vornehmlich im Sinne einer Steigerung der Abbrandgeschwindigkeit, können jedoch den Druckexponenten nicht ausreichend absenken.
  • Der Erfindung liegt die Aufgabe zugrunde, das Abbrandverhalten von Festtreibstoffen auf der Basis von reinem und phasenstabilisiertem Ammoniumnitrat zu verbessern.
  • Erfindungsgemäß besteht ein solcher Festtreibstoff aus 35 bis 80 Massen-% Ammoniumnitrat (AN) in reiner oder mit Nickeloxid, Kalium- oder Cäsiumnitrat phasenstabilisierter Form (PSAN) mit einer mittleren Korngröße von 5 bis 200µm, 15 bis 50 Massen-% eines Bindersystems aus einem Binderpolymer und einem energiereichen Weichmacher sowie 0,2 bis 5,0 Massen-% eines Abbrandmoderators aus Vanadium/Molybdänoxid als Oxidmischung oder Mischoxid.
  • Festtreibstoffe dieser Formulierung zeigen ein sehr günstiges Abbrandverhalten. Es werden je nach Zusammensetzung Abbrandgeschwindigkeiten über 8mm/s bei Normaltemperatur und einem Brennkammerdruck von 10 MPa erreicht. Der Druckexponent erreicht im Bereich von 4 bis 25 MPa, gegebenenfalls 7 bis 25 MPa, Werte von n ¾ 0,6, im günstigen Fall n ¾ 0,5. Dieses Abbrandverhalten verleiht dem erfindungsgemäß zusammengesetzten Festtreibstoff besondere Eignung zum Einsatz in Flugkörpern der taktischen oder strategischen Raketenabwehr.
  • Die erfindungsgemäßen Festtreibstoffe zeichnen sich zunächst dadurch aus, daß sie als Oxidator reines AN oder mit Nickeloxid, Kalium- oder Cäsiumnitrat umgesetztes phasenstabilisiertes Ammoniumnitrat als Oxidator enthalten, wobei die Nickeloxide vorzugsweise mit 1 bis 7 Massen-%, Kalium- oder Cäsiumnitrat mit 3 bis 15 Massen-% eingesetzt werden. Sie stabiliseren die Kristallphasen des AN und unterdrücken größere Volumenänderungen des Korns im Temperaturbereich von -40° bis +70°C. Der Einbau in die Kristallmatrix des AN geschieht über eine chemische Reaktion der Additive mit der Schmelze des reinen Ammoniumnitrats unter Abspaltung von Wasser. Die für die Herstellung des Treibstoffs günstigste Partikelform kann durch Versprühen der Schmelze und schnelles Abkühlen im kalten, zyklonartig geführten Luftstrom erhalten werden. Für raucharme Treibstoffe wird vorzugsweise AN in reiner Form mit einem Wassergehalt unter 0,2 Massen-% oder NiO-stabilisiertes PSAN eingesetzt, während mit Kalium- oder Cäsiumnitrat stabilisiertes PSAN etwas höhere Rauchanteile mit sich bringt.
  • Das Abbrandverhalten wird maßgeblich durch die Korngröße des AN bzw. PSAN beeinflußt. Bevorzugt wird eine feinkristalline Form mit einer mittleren Korngröße von 5 bis 200 µm bei einem Anteil von 35 bis 80 Massen-% im Treibstoff. Besonders günstige Abbrandwerte ergeben sich dann, wenn die AN- bzw. PSAN-Fraktion überwiegend in kleinerer Korngröße von 10 bis 80µm und weniger in mittlerer Korngröße von 100 bis 160 µm vorliegt.
  • Der erfindungsgemäße Festtreibstoff kann ferner energiereiche Stoffe, insbesondere Nitramine enthalten, wie Hexogen (RDX) oder Oktogen (HMX) mit einer mittleren Korngröße von 2 bis 200 µm bei einem Anteil von 1 bis 4 Massen-%.
  • Weiterhin können Metalle, wie Aluminium, Magnesium oder Bor mit 0,5 bis 20 Massen-% Bestandteil des Treibstoffs sein. Hierbei empfiehlt sich eine Korngröße von 0,1 bis 50 µm.
  • Um dem Treibstoff eine ausreichende chemische Stabilität zu verleihen, werden ihm mit Vorteil Stabilisatoren zugesetzt die als Stickoxid- und Säurefänger wirken. Hierbei handelt es sich vorzugsweise um Diphenylamin, 2-Nitrodiphenylamin, N-Methylnitroanilin, die jeweils allein oder in Kombination miteinander in Konzentrationen von 0,4 bis 2 Massen-% zum Einsatz kommen. Diese lassen sich insbesondere bei salpetersäureesterhaltigen Treibstoffen mit geringen Mengen im Bereich von 0,5 Massen-% des im gleichen Sinne wirkenden Magnesiumoxids kombinieren.
  • Die erfindungsgemäß mit 0,2 bis 5,0 Massen-% eingesetzten Abbrandmoderatoren aus Vanadium/Molybdänoxid als Oxidmischung oder Mischoxid werden vorteilhafterweise mit Ruß oder Graphit mit einem Anteil von 5 bis 20 Massen-% der Fraktion des Abbrandmoderators zugesetzt.
  • Weiterer wesentlicher Bestandteil in Konzentrationen von 15 bis 50 Massen-% ist ein Bindersystem, bestehend aus einem Binderpolymer und einem energiereichen Weichmacher. Das Binderpolymer selbst kann inert sein, wobei es sich vorzugsweise um isocyanathärtende, bi- oder trifunktionell hydroxisubstituierte Polyester- oder Polyetherpräpolymere handelt. Stattdessen könnnen auch energiereiche Polymere, vorzugsweise isocyanathärtendes, di- oder trifunktionelles hydroxisubstituiertes Glycidylazidopolymer eingesetzt werden.
  • Die energiereichen Weichmacher werden vorzugsweise aus der Gruppe der chemisch stabilen Nitratester, Nitro-, Nitroamino- oder Azidoweichmacher ausgewählt.
  • Als Nitratester kommen vor allem Trimethylolethantrinitrat (TMETN), Butantrioltrinitrat (BTTN) oder Diethylenglykoldinitrat (DEGDN) in Frage.
  • Als Beispiel für einen Nitroweichmacher sei ein 1:1 Gemisch von Bisdinitropropylformal/acetal (BDNPF/A) erwähnt, während als Nitroaminoweichmacher ein 1:1 Gemisch von N-Ethyl- und N- Methylnitratoethylnitroamin (EtNENA, MeNENA) oder N-n-Butyl-N-nitratoethylnitroamin (BuNENA) oder N, N'-Dinitratoethylnitroamin (DINA) geeignet ist.
  • Als Azidoweichmacher kommen insbesondere kurzkettige, bisazidoterminierte GAP-Oligomere (GAP-A) oder das 1, 5-Diazido-3-nitroaminopentan (DANPE) in Frage.
  • Je nach Inhalt, Verträglichkeit und Energieinhalt der Binderkomponenten beträgt das Verhältnis Polymer/Weichmacher 1:3 bis 20:1 Massen-%. Selbstverständlich können die Binderpolymere auch in reiner Form verwendet werden.
  • Dem reineren oder phasenstabilisierten Ammoniumnitrat werden vorzugsweise 0,1 bis 1 Massen-% seiner Fraktion Antibackmittel, z.B. ultrafeines (Korngröße etwa 0,02µm) Silicagel, Natriumlaurylsulfonat, Tricalciumphosphat oder andere Tenside zugesetzt.
  • Erfindungsgemäß lassen sich die Vanadium/Molybdänoxid-Abbrandmoderatoren in idealer Weise mit Nickel und Kupfer-Salzen, -Oxiden, oder -Komplexen verbinden, was eine weitere Steigerung der Abbrandgeschwindigkeit mit sich bringt.
  • Die Abbrandmoderatoren bestehen vorzugsweise aus Mischoxiden, in denen Molybdän in der Oxidationsstufe +VI und Vanadium in den Oxidationsstufen +IV und +V vorliegen. Beispielhafte Zusammensetzungen der Mischoxide sind V₆Mo₄O₂₅ und V₆Mo₁₅ O₂₅O₆₀.
    Die Mischoxide können ferner Chrom (III)- sowie Titan (IV)-Oxide als inaktives oder ebenfalls am Reaktionsgeschehen teilnehmendes Trägermaterial enthalten.
  • In bevorzugter Ausführung weisen die Abbrandmoderatoren eine Korngröße im Bereich von 1 bis 60µm, vorzugsweise 1 bis 10µm und eine hohe innere Oberfläche von 5 bis 100m²/g, vorzugsweise 20 bis 60m²/g auf.
  • Bei einer mittleren Korngröße unter 10µm und gleichbleibender, hoher innerer Oberfläche lassen sich gegenüber groberem Korn die Abbrandgeschwindigkeit im niederen Druckbereich weiter anheben und der Druckexponent weiter absenken.
  • Die erfindungsgemäßen Festtreibstoffe erfahren eine vorteilhafte Weiterentwicklung dadurch, daß hochschmelzende Metallcarbide oder -nitride, vorzugsweise Silicium- und Zirkoncarbid im Konzentrationsbereich von 0,1 bis 1 Massen-% zugegeben werden. Damit wird vor allem ein instabiles oszillierendes Abbrandverhalten bei der Anwendung in Raketenmotoren unterdrückt. Dies ist vor allem für raucharm brennende Treibstoffe ohne Metallzusatz von Bedeutung.
  • Festtreibstoffe der beschriebenen Art, insbesondere mit Oxidatoren in Gestalt von reinem AN oder Ni-PSAN, eignen sich durch ihren Energieinhalt, ihren raucharmen, salzsäurefreien Abbrand und ihre vergleichsweise geringe, mechanische und detonative Empfindlichkeit für den Einsatz in Raketenmotoren, während energieärmere Formulierungen mit höherem Binderanteil für die Anwendung als Gasgeneratortreibsätze geeignet sind.
  • Beispiele
  • Tabelle 1 zeigt in ihrem oberen Teil neun verschiedene Fomulierungen mit reinem Ammoniumnitrat und eine mit 3% Nickeloxid phasenstabilisierten PSAN. Im unteren Teil der Tabelle ist zu den einzelnen Formulierungen die Abbrandgeschwindigkeit r (mm/s) bei 20°C und bei drei verschiedenen Brennkammerdrucken angegeben. Darunter findet sich der Druckexponent n für verschiedene, in Klammern angegebene Druckbereiche.
  • Neben der Abhängigkeit von der Art des zugegebenen Abbrandmoderators ist dabei auch eine Abhängigkeit vom Grob/Fein-Anteil des eingesetzten Ammoniumnitrats sowie vom Gehalt des Azidopolymeren in Relation zum Weichmacherteil beobachtbar. Mit überwiegendem Anteil von AN der mittleren Korngröße 160 µm werden mit V/Mo-Oxid Abbrandmoderatoren bei AN1 nur kanpp 8 mm/s bei 10 MPa Brennkammerdruck erreicht. Ohne oder mit konventionellen Abbrandmoderatoren auf der Basis von Bleisalzen und Ruß sind es bei gleicher Formulierung nur 6,6 mm/s. Demgegenüber tritt bei AN2 mit überwiegendem Feinanteil des Ammoniumnitrats eine deutliche Steigerung der Abbrandgeschwindigkeit mit weiterer Senkung des Druckexponenten ein.
  • AN3 bis AN8 besitzen durch den hohen Weichmacheranteil hohe spezifische Impulse von 234s bei AN6 und AN8 sowie 237s bei AN3, AN4 und AN5 bei einem Enspannungsverhältnis von 70:1. Als besonders günstig hat sich in diesem Fall die synergistische Wirkung von Kupferverbindungen und V/Mo-Oxid-Abbrandmoderatoren erwiesen. Am günstigsten in der Kombination von Abbrandgeschwindigkeitssteigerung, Senkung des Druckexponenten und annehmbaren Stabilitätseigenschaften hat sich dabei Kupferphthalocyanat erwiesen.
  • Das Abbrandverhalten der Formulierung AN9 zeigt, daß auch das Nickeldiaminodinitrat als Phasenstabilisator im AN eine günstige Wirkung auf das Abbrandverhalten ausübt. Ebenso wird dies beim Zusatz von Nickelphthalocyanat in der Formulierung AN8 beobachtet. Der Zusatz von RDX bewirkt ebenfalls eine Steigerung der Abbrandgeschwindigkeit, ohne jedoch den Druckexponenten positiv zu beeinflußen.
  • Tabelle 2 zeigt mit den Beispielen AN10, AN11 und AN12 AN/GAP-Treibstofformulierungen, bei denen der Abbrandmoderator in unterschiedlicher Korngröße und Kornverteilung bei sonst gleicher Zusammensetzung enthalten ist. Im unteren Teil der Tabelle ist die mit kleiner werdendem Korn erzielte Steigerung der Abbrandgeschwindigkeit bei gleichzeitiger Absenkung des Druckexponenten deutlich ersichtlich. AN13 zeigt das Abbrandverhalten bei einer Formulierung mit Azidoweichmacher, während AN14 eine Formulierung mit Zusatz von Zirkoncarbid ist, mit dessen Hilfe Abbrandoszillationen beim Einsatz des Treibstoffs in Raketenmotoren unterdrückt werden.
  • In den Diagrammen ist das Abbrandverhalten als Funktion lg r [mm/s] = f(lg p) [MPa] = n lg p + A
    Figure imgb0001
    , wobei A=Konstante
    Figure imgb0002
    (Vieilles Gesetz: r=A x p n
    Figure imgb0003
    ) aufgezeigt, und zwar in Abbildung 1 für die Formulierungen AN1, AN2 und AN9, in Abbildung 2 für AN3, AN4 und AN5, in Abbildung 3 für AN7, AN8 und AN9 und in den Abbildungen 4 und 5 für die Formulierungen AN10, AN11, AN12 bzw. AN 13 und AN14.
  • Der Vergleich von Abbildung 1 und 2 zeigt, daß bei gleichem RDX-Gehalt von 10% die Wirkung des Abbrandmoderators bei hohem Weichmacheranteil weniger ausgeprägt ist als bei hohem GAP-Anteil ( Pl=Platiziser
    Figure imgb0004
    ). Abbildung 3 zeigt eine wirkungsvolle Abbrandregelung auch bei hohem Nitratesteranteil im Treibstoff ohne RDX-Zusatz. Hierfür verantwortlich ist die synergistische Wirkung von Cu- und Ni-Komplexen mit den V-/Mo-Oxid Abbrandmoderatoren.
    Figure imgb0005
    Tabelle 2
    Treibstofformulierungen und Abbrandeigenschaften
    AN 10 AN 11 AN 12 AN 13 AN 14
    AN 160 µm 25,6 25,6 25,6 25,6 18
    AN 55 µm 38,4 38,4 38,4 38,4 42
    RDX 5 µm - - - - 5
    GAP/N 100 11 11 11 11 15
    TMETN 11 11 11 17,6 8
    BTTN 11 11 11 - 8
    GAP-A - - - 4,4 -
    DPA 0,6 0,6 0,6 0,6 0,5
    V/Mo-oxid 53 µm - 2,0 - - -
    V/Mo-oxid 11 µm 2,0 - - 2,0 -
    V/Mo-oxid 3,7 µm - - 2,0 - 2,4
    Ruß 0,4 0,4 0,4 0,4 0,6
    Zirkoncarbid - - - - 0,5
    Abbrandgeschwindigkeit bei 20°C (mm/s)
    r₂MPa 3,8 3,2 5,1 4,4 5,3
    r₇MPa 6,5 6,1 7,5 7,6 8,7
    r₁₀MPa 8,3 7,3 9,4 9,2 10,5
    Druckexponenten n 0,59 0,51 (2-10) 0,55 (4-25) 0,49 (2-18) 0,50 (4-25)
    (Bereich MPa) (4-25) 0,69 (10-25)

Claims (25)

  1. Festtreibstoff für Raketenantriebe oder Gasgeneratoren, bestehend aus 35 bis 80 Massen-% Ammoniumnitrat (AN) in reiner oder mit Nickeloxid, Kalium- oder Cäsiumnitrat phasenstabilisierter Form (PSAN) mit einer mittleren Korngröße von 5 bis 200µm, 15 bis 50 Massen-% eines Bindersystems aus einem Binderpolymer und einem energiereichen Weichmacher, sowie 0,2 bis 5 Massen-% eines Abbrandmoderators aus Vanadiumoxid/Molybdänoxid als Oxidmischung oder Mischoxid.
  2. Festtreibstoff nach Anspruch 1 mit einem weiteren Anteil von 1 bis 40 Massen-% energiereicher Nitramine ausgewählt unter Hexogen oder Oktogen, mit einer mittleren Korngröße von 2 bis 200µm.
  3. Festtreibstoff nach Anspruch 1 oder 2 mit einem weiteren Anteil von 0,5 bis 20 Massen-% Metalle, ausgewählt unter Aluminium, Magnesium und Bor mit einer Korngröße von 0,1 bis 50µm.
  4. Festtreibstoff nach einem der Ansprüche 1 bis 3 mit einem weiteren Anteil von 0,4 bis 2 Massen-% eines als Stickoxid- und Säurefänger wirkenden Stabilisators aus Diphenylamin, 2-Nitrodiphenylamin oder N-Methylnitroanilin oder einer Kombination derselben.
  5. Festtreibstoff nach einem der Ansprüche 1 bis 4 mit einem Zusatz von Ruß oder Graphit mit 5 bis 50 Massen-% der Fraktion des Abbrandmoderators.
  6. Festtreibstoff nach einem der Ansprüche 1 bis 5, bei dem das Binderpolymer ein isocyanathärtendes bi- oder trifunktionelles hydroxysubstituiertes Polyester- oder Polyetherprepolymer ist.
  7. Festtreibstoff nach einem der Ansprüche 1 bis 5, bei dem das Binderpolymer ein energiereiches Polymer ist.
  8. Festtreibstoff nach Anspruch 7, bei dem das energiereiche Polymer ein isocyanathärtendes, bi- oder trifunktionelles hydroxysubstituiertes Glycidylazidopolymer (GAP) ist.
  9. Festtreibstoff nach einem der Ansprüche 1 bis 8, bei dem der energiereiche Weichmacher aus der Gruppe der chemisch stabilen Nitratester, Nitro-, Nitroamino- oder Azidoweichmacher ausgewählt ist.
  10. Festtreibstoff nach Anspruch 9, bei dem der Nitratester ein Trimethylolethantrinitrat (TMETN), Butantrioltrinitrat (BTTN) oder Diethylenglykoldinitrat (DEGDN) ist.
  11. Festtreibstoff nach Anspruch 9, bei dem der Nitroweichmacher ein 1:1 Gemisch von Bisdinitropropylformal/Bisdinitropropylacetal (BDNPF/BDNPA) ist.
  12. Festtreibstoff nach Anspruch 9, bei dem der Nitroaminoweichmacher ein 1:1 Gemisch von N-Ethyl- und N-Methylnitratoethylnitroamin (EtNENA und MeNENA) oder N-n-Butyl-N-nitratoethylnitramin (BuNENA) oder N, N'-Dinitratoethylnitramin (DINA) ist.
  13. Festtreibstoff nach Anspruch 9, bei dem der Azidoweichmacher aus kurzkettigen GAP-Oligomeren (GAP-A) mit endständigen Bisazido-Gruppen oder aus 1,5 Diazido-3-nitroaminopentan (DANPE) besteht.
  14. Festtreibstoff nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Binderpolymere und die Weichmacher in Abhängigkeit von Art, Verträglichkeit und Energieinhalt im Bindersystem in einem Verhältnis von 1:3 bis 20:1 Massen-% vorliegen.
  15. Festtreibstoff nach einem der Ansprüche 1 bis 14, bei dem das reine Ammoniumnitrat einen Wassergehalt unter 0,2 Massen-% aufweist.
  16. Festtreibstoff nach einem der Ansprüche 1 bis 14, bei dem Ammoniumnitrat eingesetzt wird, das durch Umsetzung mit 1 bis 7 Massen-% Nickeloxid oder 3 bis 15 Massen-% Kalium- oder Cäsiumnitrat phasenstabilisiert ist.
  17. Festtreibstoff nach Anspruch 16, bei dem das phasenstabilisierte Ammoniumnitrat (PSAN) durch Einmischen der Additive in die Schmelze des reinen Ammoniumnitrats (AN) und Versprühen der Schmelze unter gleichzeitigem Abkühlen erhältlich ist.
  18. Festtreibstoff nach einem der Ansprüche 15 bis 17, wobei dem Ammoniumnitrat 0,1 bis 1 Massen-% seiner Fraktion an ultrafeinem Silicagel (Korngröße etwa 0,02µm), Natriumlaurylsulfonat, Tricalciumphosphat oder anderen oberflächenaktiven Tensiden als Antibackmittel zugesetzt sind.
  19. Festtreibstoff nach einem der Ansprüche 1 bis 18, wobei das Ammoniumnitrat mit einer mittleren Korngröße von 10 bis 80µm vorliegt.
  20. Festtreibstoff nach einem der Ansprüche 1 bis 19, bei dem die Vanadiumoxid/Molybdänoxid-Abbrandmoderatoren in Verbindung mit Cu- und Ni-Salzen, Oxiden oder Komplexen eingesetzt sind.
  21. Festtreibstoff nach einem der Ansprüche 1 bis 20, wobei die Abbrandmoderatoren Mischoxide von Molybdän der Oxidationsstufen +VI und Vanadium der Oxidationsstufen +V und +IV enthalten.
  22. Festtreibstoff nach einem der Ansprüche 1 bis 21, wobei die Abbrandmoderatoren als Trägermaterial Chrom (III)- oder Titan (IV)-Oxide aufweisen.
  23. Festtreibstoff nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß die Abbrandmoderatoren eine Korngröße im Bereich von 1 bis 60µm, vorzugsweise 1 bis 10µm, und eine große innere Oberfläche von 5 bis 100m²/g, vorzugsweise 20 bis 60m²/g aufweisen.
  24. Festtreibstoff nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß dieser bei Verwendung in Raketenmotoren 0,1 bis 1% Massen-% an hochschmelzenden Metallcarbiden oder -nitriden als Additive zur Unterdrückung eines instabilen, oszillierenden Abbrandverhaltens enthält.
  25. Festtreibstoff nach Anspruch 22, dadurch gekennzeichnet, daß die Additive Silicium- und/oder Zirkoniumcarbid sind.
EP95112990A 1994-10-05 1995-08-18 Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat Expired - Lifetime EP0705809B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4435524A DE4435524C2 (de) 1994-10-05 1994-10-05 Festtreibstoff auf der Basis von reinem oder phasenstabilisiertem Ammoniumnitrat
DE4435524 1994-10-05

Publications (2)

Publication Number Publication Date
EP0705809A1 true EP0705809A1 (de) 1996-04-10
EP0705809B1 EP0705809B1 (de) 1997-07-02

Family

ID=6529973

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95112990A Expired - Lifetime EP0705809B1 (de) 1994-10-05 1995-08-18 Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat

Country Status (5)

Country Link
US (1) US5596168A (de)
EP (1) EP0705809B1 (de)
DE (2) DE4435524C2 (de)
ES (1) ES2105826T3 (de)
NO (1) NO303909B1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042639A1 (de) * 1997-03-26 1998-10-01 Basf Aktiengesellschaft Abbrandmoderatoren für gaserzeugende mischungen
EP1121335A2 (de) * 1998-08-07 2001-08-08 Atlantic Research Corporation Verbesserte gaserzeugende zusammensetzung
US6505562B1 (en) 1997-03-24 2003-01-14 Daicel Chemical Industries, Ltd. Gas generator composition and molding thereof

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2280029C (en) * 1997-02-08 2006-06-06 Diehl Stiftung & Co. Propellent charge powder for barrel-type weapons
DE19742203A1 (de) * 1997-09-24 1999-03-25 Trw Airbag Sys Gmbh Partikelfreies gaserzeugendes Gemisch
US6019861A (en) * 1997-10-07 2000-02-01 Breed Automotive Technology, Inc. Gas generating compositions containing phase stabilized ammonium nitrate
US6231702B1 (en) * 1998-02-20 2001-05-15 Trw Inc. Cool burning ammonium nitrate based gas generating composition
US6143104A (en) * 1998-02-20 2000-11-07 Trw Inc. Cool burning gas generating composition
JPH11292678A (ja) * 1998-04-15 1999-10-26 Daicel Chem Ind Ltd エアバッグ用ガス発生剤組成物
JP2000103691A (ja) 1998-09-28 2000-04-11 Daicel Chem Ind Ltd ガス発生剤組成物
US6103030A (en) * 1998-12-28 2000-08-15 Autoliv Asp, Inc. Burn rate-enhanced high gas yield non-azide gas generants
US6588797B1 (en) * 1999-04-15 2003-07-08 Trw Inc. Reduced smoke gas generant with improved temperature stability
US6168677B1 (en) * 1999-09-02 2001-01-02 The United States Of America As Represented By The Secretary Of The Army Minimum signature isocyanate cured propellants containing bismuth compounds as ballistic modifiers
US6315930B1 (en) * 1999-09-24 2001-11-13 Autoliv Asp, Inc. Method for making a propellant having a relatively low burn rate exponent and high gas yield for use in a vehicle inflator
AU6122799A (en) * 1999-10-06 2001-05-10 Nof Corporation Gas generator composition
US6224697B1 (en) 1999-12-03 2001-05-01 Autoliv Development Ab Gas generant manufacture
US6372191B1 (en) 1999-12-03 2002-04-16 Autoliv Asp, Inc. Phase stabilized ammonium nitrate and method of making the same
US6802533B1 (en) * 2000-04-19 2004-10-12 Trw Inc. Gas generating material for vehicle occupant protection device
DE20010154U1 (de) 2000-06-07 2000-09-07 Trw Airbag Sys Gmbh & Co Kg Anzündmischung zur Verwendung in Gasgeneratoren
US6436211B1 (en) 2000-07-18 2002-08-20 Autoliv Asp, Inc. Gas generant manufacture
US6652682B1 (en) * 2001-10-17 2003-11-25 The United States Of America As Represented By The Secretary Of The Navy Propellant composition comprising nano-sized boron particles
CN100519721C (zh) * 2002-02-08 2009-07-29 Sk能源株式会社 清洁加热器管道的清洁剂和清洁方法
US6872265B2 (en) 2003-01-30 2005-03-29 Autoliv Asp, Inc. Phase-stabilized ammonium nitrate
DE10332729A1 (de) * 2003-07-17 2005-02-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Partikel aus mit Additiven versetztem Ammoniumnitrat und Verfahren zu ihrer Herstellung
DE10332730B4 (de) * 2003-07-17 2008-11-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Partikel aus Ammoniumnitrat (AN) und Verfahren zu ihrer Herstellung
US20070149432A1 (en) * 2004-08-03 2007-06-28 Jeon-Keun Oh Cleaning agent and method for cleaning heater tubes
RU2481319C1 (ru) * 2011-12-02 2013-05-10 Открытое акционерное общество "Федеральный научно-производственный центр "Алтай" Твердотопливный газогенерирующий состав
RU2541332C1 (ru) * 2013-12-02 2015-02-10 Открытое акционерное общество "Федеральный научно-производственный центр "Алтай" Твердотопливная металлизированная композиция
RU2541265C1 (ru) * 2013-12-02 2015-02-10 Открытое акционерное общество "Федеральный научно-производственный центр "Алтай" Способ получения высокоэнергетического композита
RU2543019C1 (ru) * 2013-12-02 2015-02-27 Открытое акционерное общество "Федеральный научно-производственный центр "Алтай" Твердотопливная композиция на основе нитрата аммония
US11919831B2 (en) * 2019-02-05 2024-03-05 Dyno Nobel Asia Pacific Pty Limited Phase-stabilized ammonium nitrate prills and related products and methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949352A (en) * 1956-10-01 1960-08-16 North American Aviation Inc Propellant composition
GB862289A (en) * 1956-03-26 1961-03-08 Phillips Petroleum Co Solid propellants
US3027282A (en) * 1958-12-29 1962-03-27 Phillips Petroleum Co Composite propellants containing modifying agents
US4158583A (en) * 1977-12-16 1979-06-19 Nasa High performance ammonium nitrate propellant
DE3642850C1 (de) * 1986-12-16 1988-02-18 Fraunhofer Ges Forschung Verfahren zur Herstellung von partikelfoermigem Ammoniumnitrat fuer feste Treib- oder Explosivstoffe
GB2200903A (en) * 1987-02-12 1988-08-17 Bayern Chemie Gmbh Flugchemie A composite solid propellant
US5074938A (en) * 1990-05-25 1991-12-24 Thiokol Corporation Low pressure exponent propellants containing boron
US5076868A (en) * 1990-06-01 1991-12-31 Thiokol Corporation High performance, low cost solid propellant compositions producing halogen free exhaust
EP0553476A1 (de) * 1991-12-27 1993-08-04 Hercules Incorporated Chlorfreier Raketenkomposittreibstoff
EP0576326A1 (de) * 1992-06-12 1993-12-29 S.N.C. Livbag Pyrotechnische, ein nichttoxisches heisses Gas erzeugende Zusammensetzung und ihre Anwendung in einer Schutzeinrichtung für Insassin eines Kraftfahrzeuges

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822154A (en) * 1962-10-01 1974-07-02 Aerojet General Co Suppression of unstable burning using finely divided metal oxides
US3340111A (en) * 1963-03-26 1967-09-05 Aerojet General Co Solid propellant catalyzed with copper-chromium complex
US3609115A (en) * 1963-09-30 1971-09-28 North American Rockwell Propellant binder
US3629019A (en) * 1964-08-11 1971-12-21 Aerojet General Co Solid propellant composition containing polyesters and an inorganic oxide burning rate catalyst
US4318270A (en) * 1968-04-11 1982-03-09 The United States Of America As Represented By The Secretary Of The Navy Additives for suppressing the radar attenuation of rocket propellant exhaust plumes
US4166045A (en) * 1973-05-02 1979-08-28 United Technologies Corporation Purification of combustion catalysts and solid propellant compositions containing the same
US3924405A (en) * 1973-06-07 1975-12-09 Aerojet General Co Solid propellants with stability enhanced additives of particulate refractory carbides or oxides
DE2644211B2 (de) * 1976-09-30 1978-12-07 Bayern-Chemie Gesellschaft Fuer Flugchemische Antriebe Mbh, 8261 Aschau Composit-Festtreibstoff
US4411717A (en) * 1983-02-02 1983-10-25 The United States Of America As Represented By The Secretary Of The Air Force Solid rocket propellants comprising guignet's green pigment
DE3523953A1 (de) * 1985-07-04 1987-01-15 Fraunhofer Ges Forschung Verfahren und vorrichtung zur herstellung von festtreibstoffen
EP0584899A3 (de) * 1992-08-05 1995-08-02 Morton Int Inc Verfahren zur Regulierung der Brenngeschwindigkeit und des Schmelzpunktes der Schlacke durch Inkorporation von Zusätzen zu Azid enthaltenden gaserzeugenden Zusammensetzungen.
US5292387A (en) * 1993-01-28 1994-03-08 Thiokol Corporation Phase-stabilized ammonium nitrate and method of making same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB862289A (en) * 1956-03-26 1961-03-08 Phillips Petroleum Co Solid propellants
US2949352A (en) * 1956-10-01 1960-08-16 North American Aviation Inc Propellant composition
US3027282A (en) * 1958-12-29 1962-03-27 Phillips Petroleum Co Composite propellants containing modifying agents
US4158583A (en) * 1977-12-16 1979-06-19 Nasa High performance ammonium nitrate propellant
DE3642850C1 (de) * 1986-12-16 1988-02-18 Fraunhofer Ges Forschung Verfahren zur Herstellung von partikelfoermigem Ammoniumnitrat fuer feste Treib- oder Explosivstoffe
GB2200903A (en) * 1987-02-12 1988-08-17 Bayern Chemie Gmbh Flugchemie A composite solid propellant
US5074938A (en) * 1990-05-25 1991-12-24 Thiokol Corporation Low pressure exponent propellants containing boron
US5076868A (en) * 1990-06-01 1991-12-31 Thiokol Corporation High performance, low cost solid propellant compositions producing halogen free exhaust
EP0553476A1 (de) * 1991-12-27 1993-08-04 Hercules Incorporated Chlorfreier Raketenkomposittreibstoff
EP0576326A1 (de) * 1992-06-12 1993-12-29 S.N.C. Livbag Pyrotechnische, ein nichttoxisches heisses Gas erzeugende Zusammensetzung und ihre Anwendung in einer Schutzeinrichtung für Insassin eines Kraftfahrzeuges

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505562B1 (en) 1997-03-24 2003-01-14 Daicel Chemical Industries, Ltd. Gas generator composition and molding thereof
WO1998042639A1 (de) * 1997-03-26 1998-10-01 Basf Aktiengesellschaft Abbrandmoderatoren für gaserzeugende mischungen
EP1121335A2 (de) * 1998-08-07 2001-08-08 Atlantic Research Corporation Verbesserte gaserzeugende zusammensetzung
EP1121335A4 (de) * 1998-08-07 2002-10-16 Atlantic Res Corp Verbesserte gaserzeugende zusammensetzung

Also Published As

Publication number Publication date
DE4435524A1 (de) 1996-04-11
NO953923D0 (no) 1995-10-03
DE59500344D1 (de) 1997-08-07
ES2105826T3 (es) 1997-10-16
NO303909B1 (no) 1998-09-21
NO953923L (no) 1996-04-09
DE4435524C2 (de) 1996-08-22
EP0705809B1 (de) 1997-07-02
US5596168A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
EP0705809B1 (de) Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat
EP0705808B1 (de) Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat
DE3835854C2 (de)
DE69309969T2 (de) Sprengstoffzusammensetzung mit unempfindlicher hoher sprengkraft
EP0666248B1 (de) Gaserzeugende Mischung
DE69220200T2 (de) Chlorfreier Raketenkomposittreibstoff
DE69308897T2 (de) Phasenstabilisiertes ammoniumnitrat und verfahren zur herstellung
US4092188A (en) Nitramine propellants
US5741998A (en) Propellant formulations based on dinitramide salts and energetic binders
DE4401213C1 (de) Gaserzeugende Mischung
EP1031548B1 (de) Verfahren zur Herstellung von ein-, zwei- oder dreibasigen Treibladungspulvern für Rohrwaffenmunition
DE3131445A1 (de) Verbesserte treibmittel mit einem gehalt an triaminoguanidinnitrat
DE19730872A1 (de) Pyrotechnische Mischung als Treibmittel oder als Gassatz mit Kohlenmonoxid-reduzierten Schwaden
EP1932817A1 (de) Nitratoethylnitroamin Treibmittel für Automobilsicherheitssysteme
DE2820969C1 (de) Composit-Festtreibstoff mit stabilem Abbrand
DE2263860C3 (de) Feststoff-Projektiltreibladung
DE2900020C2 (de) Verfahren zur Herstellung eines mehrbasigen Treibladungspulvers
DE3704305C2 (de)
DE2820783C1 (de) Composit-Festtreibstoff mit stabilem Abbrand
EP0528392B1 (de) Verwendung von polymodalem beta-Oktogen
EP3939952A1 (de) Schnellbrennender festtreibstoff mit einem oxidator, einem energetischen binder und einem metallischen abbrandmodifikator sowie verfahren zu dessen herstellung
US3914142A (en) Solid propellants with biradical burning rate catalysts
DE102004004529B4 (de) Weichmacher für einen Treibsatz mit umgebungstemperaturunabhängigem Abbrand
DE10058705C1 (de) Verfahren zur Herstellung gießfähiger kunststoffgebundener Sprengladungen
DE102011100113B4 (de) Gasgenerator-Treibstoffzusammensetzung, Verfahrenzu ihrer Herstellung und deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB NL

17P Request for examination filed

Effective date: 19960725

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19961114

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB NL

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970704

REF Corresponds to:

Ref document number: 59500344

Country of ref document: DE

Date of ref document: 19970807

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2105826

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050803

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050818

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050819

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050829

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060818

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081031

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302