EP0704766B1 - Transparente Aufzeichnungselemente für die elektrostatische Photokopie - Google Patents

Transparente Aufzeichnungselemente für die elektrostatische Photokopie Download PDF

Info

Publication number
EP0704766B1
EP0704766B1 EP95420257A EP95420257A EP0704766B1 EP 0704766 B1 EP0704766 B1 EP 0704766B1 EP 95420257 A EP95420257 A EP 95420257A EP 95420257 A EP95420257 A EP 95420257A EP 0704766 B1 EP0704766 B1 EP 0704766B1
Authority
EP
European Patent Office
Prior art keywords
acrylic polymer
polyester
radical
film
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95420257A
Other languages
English (en)
French (fr)
Other versions
EP0704766A1 (de
Inventor
Jean-Pierre Assante
Philippe Corsi
Nicole Pecate
Michel Prissette
Joel Richard
Didier Veyrat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Plastics Europe SA
Original Assignee
Toray Plastics Europe SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Plastics Europe SA filed Critical Toray Plastics Europe SA
Publication of EP0704766A1 publication Critical patent/EP0704766A1/de
Application granted granted Critical
Publication of EP0704766B1 publication Critical patent/EP0704766B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G7/00Selection of materials for use in image-receiving members, i.e. for reversal by physical contact; Manufacture thereof
    • G03G7/0006Cover layers for image-receiving members; Strippable coversheets
    • G03G7/002Organic components thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G7/00Selection of materials for use in image-receiving members, i.e. for reversal by physical contact; Manufacture thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G7/00Selection of materials for use in image-receiving members, i.e. for reversal by physical contact; Manufacture thereof
    • G03G7/0006Cover layers for image-receiving members; Strippable coversheets
    • G03G7/002Organic components thereof
    • G03G7/0026Organic components thereof being macromolecular
    • G03G7/004Organic components thereof being macromolecular obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G7/00Selection of materials for use in image-receiving members, i.e. for reversal by physical contact; Manufacture thereof
    • G03G7/0053Intermediate layers for image-receiving members
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G7/00Selection of materials for use in image-receiving members, i.e. for reversal by physical contact; Manufacture thereof
    • G03G7/006Substrates for image-receiving members; Image-receiving members comprising only one layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G7/00Selection of materials for use in image-receiving members, i.e. for reversal by physical contact; Manufacture thereof
    • G03G7/006Substrates for image-receiving members; Image-receiving members comprising only one layer
    • G03G7/0073Organic components thereof
    • G03G7/008Organic components thereof being macromolecular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to transparent elements comprising a polyester support for electrostatic photocopying.
  • the electric charge is dissipated by grounding, the others zones then constituting the electrostatic image of the source document; particles an electrostatic powder ink (hereafter toner) with a charge opposite to that of the electrostatic surface are then deposited on the latter by attraction electrostatic then the image thus obtained is brought into contact with a support, by transparent example, which is given an opposite electric charge to transfer toner from the electrostatic surface on the support.
  • the image thus obtained is fixed on the support by heat treatment and / or by pressure treatment.
  • the transparent supports used to make photocopies electrostatic sprayers must meet various requirements to allow obtaining excellent quality projected images, especially sharp images. They must have in particular transparency, dimensional stability and high sliding power, poor ability to accumulate static electricity charges and good adhesion to the image printing material. We know that these supports must more particularly present a transparency such as the percentage of light dispersed by the passage of a ray of light through their thickness, or turbidity, which is less than or equal to 7%. We also know that these supports, when they are obtained from a bi-oriented film, in particular a polyester, must have a dimensional stability such as their shrinkage at 150-170 ° C, that is to say in the temperature conditions necessary for fixing the toner, i.e. less than 1% within stretching directions.
  • polyester films are a material of choice for making transparent supports for projectable electrostatic photocopies.
  • their low sliding ability their great power of static electricity accumulation by friction or induction and their relative chemical inertia, which results in low adhesion of the toner to the support, are the source of problems which required solutions complicating obtaining transparent supports and making it more expensive.
  • the problem of slippage of polyester films cannot be solved by creating roughness surface by means of particles of a filler dispersed in the mass of the polyester.
  • the thickness of the films intended to serve as a photocopy medium electrostatic between 50 and 200 ⁇ m the presence of charge throughout their thickness gives them a high turbidity incompatible with such use.
  • the transparency can only be obtained at the cost of a reduction in the filler content which compromises the sliding of the supports and consequently the ability of the supports to slide on top of each other in the oars used in photocopying machines or to slide on the metal surfaces of said machines.
  • the low affinity of films polyester for toner results in easy removal of toner during manipulation of photocopies and progressive deterioration of the image.
  • the ability to accumulate static electricity from the polyester support both disrupts the regular deposit of toner on the support during photocopying, which affects the quality of the image, and the sheet feed of the supports from a ream.
  • EP-A-104 074 it was further suggested to deposit on one side of a polyester support film an acrylic coating containing a filler and providing adhesion to the toner and on the other side of the polyester support, a coating consisting of an electrically conductive polymer; the establishment of a primary coating between the polyester backing and the toner receiving layer is still recommended.
  • EP-A-240.147 and EP-A-442.567 describe transparent elements comprising a support polyester and a layer for receiving an image comprising an acrylic resin.
  • JP-A-4060644 describes a polyester film for making a microfilm, a film for an overhead projector, consisting of a sheet composed of two layers having a specific thickness ratio.
  • the present invention proposes precisely to solve in a simple way the problem of obtaining transparent elements for photocopying electrostatic said elements having excellent transparency, good slippery, good adhesion of the toner to the support and good electroconductivity and free from the disadvantages of previous transparent elements.
  • the expression “elements” transparencies for electrostatic photocopying "of elements usable directly to make projectable photocopies on a screen and taken in the form of a film continuous or sheets of suitable format obtained by cutting the films.
  • the free carboxylic functions are the free carboxylic functions total of the acrylic polymer.
  • the polyesters constituting the layers (A) and (B) of the support film (S) can be the same or different, although it's easier to use the same polyester to the two types of layers.
  • layer (A) call on the polyesters usually used to obtain bi-oriented semi-crystalline films. he these are film-forming linear polyesters, crystallizable by orientation and obtained from usually from one or more dicarboxylic aromatic acids or their derivatives (esters of lower aliphatic alcohols, halides for example) and one or more several aliphatic glycols.
  • aromatic diacids mention may be made of phthalic, terephthalic, isophthalic, naphthalenedicarboxylic acid-2,5; naphthalenedicarboxylic-2,6. These acids can be associated with a minor amount one or more aliphatic dicarboxylic acids such as adipic acids, azelaic, hexahydroterephthalic.
  • diols aliphatic there may be mentioned ethylene glycol; propanediol-1,3; 1,4-butanediol.
  • the crystallizable film-forming polyesters are polyterephthalates or polynaphthalenedicarboxylates of alkylenediols and, in in particular, polyethylene terephthalate (PET) or 1,4-butanediol or copolyesters comprising at least 80 mol% of terephthalate or naphthalene-dicarboxylate units of alkylene glycols.
  • PET polyethylene terephthalate
  • 1,4-butanediol or copolyesters comprising at least 80 mol% of terephthalate or naphthalene-dicarboxylate units of alkylene glycols.
  • the polyester is a polyterephthalate ethylene glycol whose viscosity index, measured in a 50/50 mixture by weight of phenol and 1,2-dichloro benzene according to ISO 1628-5, is between 55 ml / g and 75 ml / g.
  • the thin layer (B) can be made of the same polyester crystallizable as layer (A) or by a non-crystallizable polyester or less crystallizable as the polyester constituting the layer (A).
  • polyesters containing greater or lesser amounts of amorphous units such as those derived from isophthalic acid, neopentylglycol or cyclohexanedimethanol. It would not be departing from the scope of the present invention to use a blend of a crystallizable polyester and a polyester with amorphous patterns for make the thin charged layer (B). So we could use mixtures comprising from 20 to 80% by weight of a crystallizable polyester and from 80 to 20% by weight polyester with amorphous patterns.
  • Layer (B) could also be made up with a copolyester having a plurality of sulfonic groups or their salts alkali, alkaline earth or ammonium metals (hereinafter referred to as sulfonated copolyester), or by mixtures of copolyesters of this type with one or more polyesters do not containing no sulfonic groups such as semi-crystallizable polyesters or polyesters with amorphous patterns.
  • sulfonated copolyester a copolyester having a plurality of sulfonic groups or their salts alkali, alkaline earth or ammonium metals
  • the acrylic polymer comprises units chosen from the units derived acrylic acid, methacrylic acid, alkyl acrylates, methacrylates alkyl, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-methylolacrylamide, N-methoxymethacrylamide, styrene, butadiene, esters vinyl, at least part of these units coming from an alkyl acrylate and / or a alkyl methacrylate.
  • the acrylic polymer used in the invention contains at least units derived from alkyl acrylates chosen from acrylate methyl, ethyl acrylate, propyl acrylates and butyl acrylates and / or units derived from alkyl methacrylates chosen from methyl methacrylate, ethyl methacrylate, propyl methacrylates and butyl methacrylates.
  • the acrylic copolymers comprising units derived from methyl acrylate and / or ethyl and methyl and / or ethyl methacrylate are particularly suitable for constitute the primary coating (P) of the transparent elements of the invention.
  • the acrylic polymer can also include acrylic acid and / or acid units methacrylic, insofar as the rate of free carboxylic acid functions is less than 50 millimoles per 100 grams of said acrylic polymer and preferably remains less than or equal to 30 millimoles per 100g.
  • the acrylic polymer used in the composition of the primary coating (P) elements of the invention advantageously have a temperature of glass transition between 15 ° C and 30 ° C.
  • the anti-static character of the elements for electrostatic photocopying is an important parameter.
  • the acrylic polymer constituting the primary (P) elements for photocopying may contain up to 25% by weight of a compound (monomer or polymer) with quaternary ammonium groups.
  • This compound containing a quaternary ammonium group may be present in mixture with the acrylic polymer described above or may constitute a part patterns of said acrylic polymer.
  • the compound with quaternary ammonium groups represents from 2% to 15% by weight relative to the weight of the polymer assembly acrylic / compound with quaternary ammonium groups.
  • the compound containing quaternary ammonium groups of formula (I) will be copolymerizable with the acrylic polymer or will be used in admixture with said acrylic polymer.
  • the acrylic polymer When using a compound with quaternary ammonium groups, the acrylic polymer does not have a free carboxylic acid function.
  • the antistatic device is evaluated from the measurement of a half-discharge time.
  • the film surface is loaded with corona treatment at a potential of 500 V.
  • the corona charging device is stopped and the decrease in the temperature is observed. surface potential.
  • the measurement records the time to reach a surface potential 250 V. The shorter the time, the more the film is antistatic. We consider generally a satisfactory level of antistatism is reached as soon as this time of half discharge is less than or equal to 20 seconds and preferably less than or equal at 10 seconds.
  • the thickness of the primary coating (P) is preferably equal or less than 0.2 ⁇ m.
  • the support films have as high a transparency as possible, that is to say a turbidity (or haze) less than or equal to 7%.
  • the nature of the charges present in the layer (B) is not critical and we can use the charges usually used to communicate to movies polyester with sufficient roughness to ensure good machinability.
  • mineral fillers such as oxides and salts of elements of groups II, III and IV of the periodic table.
  • metal salts such as calcium carbonate or barium sulfate; of oxides such as silica, alumina, zirconia, mixtures of oxides, silicates or aluminosilicates.
  • These charges may have undergone a treatment intended to limit or prevent agglomeration of the particles which compose them and / or limit or prevent decohesion at the polyester / particle interface.
  • the particle concentration is chosen so as to ensure the support film both a turbidity less than or equal to 7% and a sufficient roughness (Rz lower or equal to 0.6 ⁇ m).
  • concentration and the particle size of the charges are chosen according to the thickness of the layer (B) and the melting point of the (or) polymer (s) constituting it and can be determined by a person skilled in the art for give the elements the desired transparency and roughness. We can do anything particularly refer to the teaching of patent EP-A-0 260 258 which describes films which may very well be suitable as transparent polyester support for the elements transparencies for electrostatic photocopying of the invention.
  • the shape of the particles of the charges introduced into the layer (s) (B) is not critical and we can use loads of various forms, spherical or not.
  • the two layers (B) can be distinguished from each other by their thickness, nature, concentration or particle diameter of the filler.
  • the two layers (B) are preferably identical.
  • the composite polyester support film can be obtained by all known processes for obtaining composite films, use is preferably made of composite films obtained by coextrusion which exhibit excellent cohesion to the interface of the layer (A) and of the layer (s) (B).
  • a flow (A) of polyester which can be crystallized and, simultaneously, using a second extruder, a flow of polyester (B) intended to form the layer (s) (B).
  • the two extruders are connected to a coextrusion box in which the flow (B) can be, if necessary, divided into two streams (B).
  • the streams of molten polymers are transformed into a film amorphous multilayer by passing through a flat die and the amorphous film thus obtained is subjected to the usual filming operations: quenching, stretching, heat setting and winding.
  • the filming conditions are those usually used industrially for obtaining oriented semi-crystalline polyester films.
  • the amorphous composite film is cooled to a temperature between 10 ° C. and 45 ° C on a casting drum.
  • the conditions for stretching the extruded composite film are those usually used in the manufacture of semi-crystalline polyester films.
  • a mono-stretching or a bi-stretching carried out successively or simultaneously in two directions in general orthogonal or in sequences at least 3 stretches where the stretching direction is changed in each sequence.
  • each mono-directional stretch can itself be carried out in several steps.
  • stretching sequences such as two successive bi-stretch treatments, each stretch can be carried out in several phases.
  • the composite film is subjected to bi-stretching in two perpendicular directions.
  • stretching longitudinal is carried out at a rate of 3 to 5 (i.e. the length of the stretched film represents 3 to 5 times the length of the amorphous film) and at a temperature of 80 to 135 ° C and the transverse stretching is carried out with a rate of 3 to 5 at a temperature of 90 to 135 ° C and preferably between 100 and 125 ° C.
  • the composite film After stretching, the composite film is subjected to a heat treatment at a temperature between 160 and 240 ° C.
  • Stretching can also be carried out simultaneously, i.e. both in the longitudinal direction and in the transverse direction, for example with a rate stretching from 3 to 5 and at a temperature of 80 to 120 ° C.
  • the speed of the extruders depends on the thicknesses desired for the layers (A) and (B) after stretching.
  • the thickness eA of the layer (A) can vary within wide limits; in generally, it is between approximately 50 ⁇ m and approximately 150 ⁇ m.
  • the thickness Layer eB (B) is not critical, it must be chosen so that the support film retains excellent transparency and in particular lower turbidity equal to 5% and preferably less than or equal to 4%.
  • the thickness allowing achieving this goal depends, to some extent, on the focus and particle size of the filler present in the layer (B); in a way general, it is preferable that the thickness of the layer (B) is equal to or less than 3 ⁇ m.
  • eB is between 0.5 ⁇ m and 1.5 ⁇ m.
  • the polyester support must have excellent dimensional stability at 150 ° C. More specifically, the support must have a shrinkage rate at 150 ° C in both directions of stretching, less than or equal to 1% and preferably less than or equal to 0.7%.
  • This objective is achieved by subjecting the bi-stretched and heat-fixed film to a relaxation treatment in the direction transverse and in the longitudinal direction according to the usual well-known methods of one skilled in the art.
  • the withdrawal rates in the longitudinal direction and in the transverse directions are chosen so that they do not have a difference of value too large, so as to avoid the formation of micro-waves of the elements transparencies after passing through the photocopying machines. It is better that the difference in shrinkage values in both directions is less than or equal to 0.3%.
  • the polyester composite support (S) preferably has a turbidity less than or equal to 7%, a withdrawal rate in the longitudinal directions and transverse stretch at 150 ° C less than or equal to 1% and a total roughness Rz less than or equal to 0.6 ⁇ m.
  • the coating (P) can be deposited on the composite polyester film by the various techniques known to those skilled in the art. So a dispersion or an aqueous solution of the acrylic polymer chosen can be deposited by gravity from a slot casting machine, or by passing the film through the emulsion or solution or by means of transfer rollers. The thickness of the layer is controlled by everything appropriate means.
  • the coating can be deposited either before stretching the film (line coating), either after stretching before or after heat setting (coating reprise). However, it is preferred to carry out the coating of the polyester film before stretching or between two draws.
  • a latex of the acrylic polymer, prepared will be used. by emulsion, microemulsion or, where appropriate, by polymerization polymerization in an organic medium. These techniques familiar to a person skilled in the art do not will not be recalled here.
  • So acrylic polymers used in the context of this invention are preferably used in the form of stable dispersions, or latex, in water or a hydro-organic medium.
  • the polymer does not contain hydrophyl group making it possible to easily obtain a latex, it can be associated with one or several ionic or nonionic surfactants, such as those usually used for obtaining aqueous dispersions well known to those skilled in the art.
  • the polymer content of the latexes is not critical and may vary within wide limits. In general, latexes containing from 1 to 50% by weight of polymer are well suited; preferably, latexes containing from 5 to 30% by weight of polymer.
  • the particle size of the polymer constituting the latex is chosen in such a way that the final thickness of the coating (P) does not erase the roughness of the underlying loaded layer (B); in general, latex is used whose diameter of the polymer particles is between approximately 0.01 ⁇ m and 0.3 ⁇ m and preferably between 0.05 ⁇ m and 0.15 ⁇ m.
  • the amount of aqueous coating composition deposited on the film depends on the one hand on its dry extract content and on the other hand on the desired thickness for coating the finished film, i.e. after stretching and heat setting when coating takes place online. This amount also depends on the time of coating; we must obviously take into account the variation in thickness of the front coating and after stretching, when the coating is carried out before stretching.
  • the polyester film is heat treated to remove water contained in the coating and, if necessary, to cause crosslinking of the polymer.
  • it is generally not necessary to heat treatment; drying and possibly crosslinking are made during stretching and heat setting.
  • the thickness eP of the coating layer (P) is such that it does not erase the roughness of the underlying loaded layer (B).
  • the use of online coating and choice of acrylic polymer allow this objective to be achieved, without compromising toner adhesion.
  • eP is between 0.02 and 0.2 ⁇ m and preferably between 0.02 and 0.15 ⁇ m.
  • a support (S) consisting of a thick uncharged layer (A) and at least one thin layer (B) preferably containing a filler, allows easy access, after depositing the adhesion layer (P) to elements transparencies for electrostatic photocopying which have all the properties transparency, processability and toner adhesion required. It is, finally, not necessary to multiply the deposition of the adhesion layers on the support (S), by primary example of adhesion then toner receiving layer, and to introduce into this last of the charges which may be subject to abrasion during the use of transparent. Furthermore, the use of a coextruded composite support (S) makes it possible to easily achieve a good compromise between transparency and machinability.
  • the solution is brought to 80 ° C.
  • the reaction mixture is maintained for 1 hour at 80 ° C., then is cooled.
  • the acrylic polymer has a glass transition temperature of 20 ° C and a rate of free carboxylic functions of 17 millimoles per 100 g of polymer.
  • the solution is brought to 75 ° C.
  • the reaction mixture is maintained for 1 hour at 75 ° C., then is cooled.
  • a latex B with 26% dry extract is obtained.
  • the acrylic polymer has a glass transition temperature of 21 ° C and a rate of free carboxylic functions of 0 millimole per 100 g of polymer.
  • the solution is brought to 60 ° C.
  • the reaction mixture is kept for 1 hour at 60 ° C., then is cooled.
  • a latex C with 27% dry extract is obtained.
  • the acrylic polymer has a glass transition temperature of 20 ° C and a rate of free carboxylic functions of 0 millimole per 100 g of polymer.
  • the solution is brought to 75 ° C.
  • the reaction mixture is maintained for 1 hour at 75 ° C., then is cooled.
  • a latex D with 27% dry extract is obtained.
  • the acrylic polymer has a glass transition temperature of 23 ° C and a rate of free carboxylic functions of 0 millimole per 100 g of polymer.
  • the solution is brought to 75 ° C.
  • the reaction mixture is maintained for 1 hour at 75 ° C., then is cooled.
  • a latex E with 27% dry extract is obtained.
  • the acrylic polymer has a glass transition temperature of 17 ° C and a rate of free carboxylic functions of 0 millimole per 100 g of polymer.
  • the solution is brought to 80 ° C.
  • the reaction mixture is maintained for 1 hour at 80 ° C., then is cooled.
  • a latex 1 at 25% of dry extract is obtained.
  • the acrylic polymer has a glass transition temperature of 33 ° C and a rate of free carboxylic functions of 150 millimoles per 100 g of polymer.
  • the water-dispersible polyester used is a patterned copolyester derived from terephthalic acid, isophthalic acid, Na isophthalic acid-5-sulfonate and ethylene glycol, sold under the brand name Gérol PS20.
  • the solution is brought to 80 ° C.
  • the reaction mixture is maintained for 1 hour at 80 ° C., then is cooled.
  • a latex J with 27% dry extract is obtained.
  • the acrylic polymer has a glass transition temperature of 30 ° C and a rate of free carboxylic functions of 102 millimoles per 100 g of polymer.
  • the solution is brought to 80 ° C.
  • the reaction mixture is maintained for 1 hour at 80 ° C., then is cooled.
  • a latex K with 25% dry extract is obtained.
  • the acrylic polymer has a glass transition temperature of 56 ° C and a rate of free carboxylic functions of 50 millimoles per 100 g of polymer.
  • the solution is brought to 80 ° C.
  • the reaction mixture is maintained for 1 hour at 80 ° C., then is cooled.
  • a latex L with 25% dry extract is obtained.
  • the acrylic polymer has a glass transition temperature of 58 ° C and a rate of free carboxylic functions of 100 millimoles per 100 g of polymer.
  • the solution is brought to 80 ° C.
  • the reaction mixture is maintained for 1 hour at 80 ° C., then is cooled.
  • a latex M with 25% dry extract is obtained.
  • the acrylic polymer has a glass transition temperature of 61 ° C and a rate of free carboxylic functions of 150 millimoles per 100 g of polymer.
  • the support film of the following examples is a polyterephthalate film bi-stretched ethylene glycol (PET), having a total thickness of 100 ⁇ m, composed of central layer A of 98.4 ⁇ m of unfilled PET film and on each of the faces of the layer A of a layer of 0.8 ⁇ m of PET comprising 0.3000% of a mineral filler with an average diameter of 3.5 ⁇ m (Sylobloc® type silica), the particle size having been measured with a Sympathec® brand laser granulometer and of the Helos type.
  • PET polyterephthalate film bi-stretched ethylene glycol
  • the preparation is carried out as follows.
  • the coextruded amorphous film is first of all mono-stretched in the longitudinal direction with a rate of 3.8, then coated on one of its faces with a latex as prepared in the examples and comparative tests described above (after dilution to present a dry extract of 17% by weight), at a rate of 1.4 g / m 2 (in the wet state).
  • the coating is dried, then the film is stretched in the transverse directions with a rate of 3.8.
  • the final layer of acrylic polymer is 0.06 ⁇ m.
  • the bi-stretched film is thermofixed at 235 ° C.
  • the film thus obtained has a haze of 4.5, a total roughness R z of 0.45 ⁇ m and shrinkages at 150 ° C. of 0.6% in the longitudinal and transverse directions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Light Receiving Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Liquid Crystal (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Claims (21)

  1. Transparente Elemente für die elektrostatische Photokopie, die einen transparenten Polyesterträger (S) umfassen, der auf mindestens einer seiner Seiten eine Toner-Haftgrundschicht (P) auf dem Polyesterträger aufweist, dadurch gekennzeichnet, dass der Polyesterträger (S) ein Verbund ist, gebildet aus:
    a) einem Dickfilm (A) aus halbkristallinem Polyester;
    b) einem Dünnfilm (B) auf mindestens einer der Seiten des Dickfilms (A), aus identischem Polyester oder abweichend von demjenigen, der die Schicht (A) bildet,
    und dadurch, dass die Grundschicht (P) ein Acrylpolymer enthält, das eine Glasübergangstemperatur zwischen 10 °C und 50 °C aufweist, einen Anteil an freien Carboxylgruppen COOH kleiner als 50 Millimol pro 100 Gramm des genannten Acrylpolymers aufweist und dadurch, dass die vorgenannte Grundschicht (P) eine Dicke ≤ 0,3 µm aufweist.
  2. Elemente nach Anspruch 1, dadurch gekennzeichnet, dass die Polyester, die die Schichten (A) und (B) der Trägerfolie (S) bilden, vorzugsweise kristallisierbare, folienbildende Polyester sind, ausgewählt aus den Polyterephthalaten und den Alkylendiol-Polynaphthalindicarboxylaten, insbesondere dem Ethylenglykol-Polyterephthalat oder dem Butandiol-1,4-Polyterephthalat und den Copolyestern, die wenigstens 80 Mol-% Terephthalat oder Alkylenglykol-Naphthalindicarboxylat enthalten.
  3. Elemente nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Acrylpolymer Einheiten umfasst, die aus Derivaten der Acrylsäure, der Methacrylsäure, der Alkylacrylate, der Alkylmethacrylate, des Acrylnitrils, des Methacrylnitrils, des Acrylamids, des Methacrylamids, des N-Méthylolacrylamids, des N-Methoxymethacrylamids, des Styrols, des Butadiens und der Vinylester gewählt sind, wobei mindestens ein Teil dieser Einheiten aus einem Alkylacrylat und/oder aus einem Alkylmethacrylat stammt.
  4. Elemente nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Acrylpolymer mindestens Alkylacrylat-Derivate umfasst, die aus der Gruppe Methylacrylat, Ethylacrylat, Propylacrylaten und Butylacrylaten gewählt sind, und/oder Alkylmethylacrylat-Derivate umfasst, die aus der Gruppe Methylmethacrylat, Ethylmethacrylat, Propylmethacrylaten und Butylmethacrylaten gewählt sind und vorzugsweise Derivate des Methyl- und/oder des Ethylacrylats und Methyl- und/oder Ethylmethacrylate umfasst.
  5. Elemente nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in dem Acrylpolymer die molare Menge freier Carboxylgruppen COOH ≤ 30 Millimol pro 100 Gramm des genannten Acrylpolymers ist.
  6. Elemente nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Acrylpolymer eine Glasübergangstemperatur aufweist, die zwischen 15 °C und 30 °C liegt.
  7. Elemente nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das die Grundschicht (P) aufbauende Acrylpolymer der Elemente für die Photokopie aus bis zu 25 Masse-% einer monomeren oder polymeren Verbindung mit quaternären Ammonium-Gruppen besteht.
  8. Elemente nach Anspruch 7, dadurch gekennzeichnet, dass die hergestellten Verbindungen mit quaternären Ammonium-Gruppen, oder die ursprünglich hergestellten Polymere mit quaternären Ammonium-Gruppen der folgenden allgemeinen Formel (I) entsprechen:
    Figure 00270001
    in welcher:
    R1 ein Acyloxyalkyl- oder Acylaminoalkylradikal bedeutet, das eine gesättigte Acyl-Gruppe, eine ethylenische Kohlenstoff-Kohlenstoff-Doppelbindung, ein Alcoxyalkylradikal, ein Aryloxyalkylradikal, ein Alkylaryloxyalkylradikal, ein Alcenyloxyalkylradikal oder ein Alcenylaryloxyalkylradikal enthält,
    R2, R3 und R4, identisch oder verschieden, ein Alkylradikal mit 1 bis 6 Kohlenstoffatomen oder ein Polyoxyethylenradikal
       -(CH2-CH2-O-)n-H oder -(CH2-CH2-O-)n-CH3 bedeuten, wobei n eine Zahl von 1 bis 12 ist,
    X ein Anion bedeutet, das aus der Gruppe gewählt ist, die umfasst: Halogenide - insbesondere das Chlorid, Sulfat, Sulfonat, Alkylsulfonate wie das Methylsulfonat, Arylsulfonate, Arylalkylsulfonate, Carbonat, Alkyl-Carbonate wie das Methylcarbonat, Nitrat, Phosphat, Alkyl-Phosphate oder Mischungen dieser Anionen.
  9. Elemente nach Anspruch 8, dadurch gekennzeichnet, dass die Verbindungen der Formel (I) aus den nicht polymerisierbaren Verbindungen, wie dem Stearamidopropyl -Dimethyl β-Hydroxyethyl-Ammonium-Nitrat, gewählt sind.
  10. Elemente nach Anspruch 8, dadurch gekennzeichnet, dass die Verbindungen der Formel (I) unter den polymerisierbaren Monomeren der allgemeinen Formeln (II) oder (III) gewählt sind:
    Figure 00280001
    Figure 00280002
    in welchen:
    R5, R6 und R7, identisch oder verschieden, ein Wasserstoffatom, ein Methylradikal oder ein Ethylradikal bedeuten,
    R8, R9 und R10, identisch oder verschieden, ein Alkylradikal mit 1 bis 4 Kohlenstoffatomen, ein Polyoxyethylenradikal -(CH2-CH2-O-)m- H oder -(CH2-CH2-O-)m-CH3 bedeuten, wobei m eine Zahl von 1 bis 8 ist,
    R11 ein zweiwertiges Radikal, wie das Polyethylen oder Hydroxyalkylen mit 1 bis 8 Kohlenstoffatomen, bedeutet,
    X ein Anion bedeutet, das aus der Gruppe gewählt ist, die umfasst: Halogenide - insbesondere das Chlorid, Sulfat, Sulfonat, Alkylsulfonate wie das Methylsulfonat, Arylsulfonate, Arylalkylsulfonate, Carbonat, Alkyl-Carbonate wie das Methylcarbonat, Nitrat, Phosphat, Alkyl-Phosphate oder Mischungen dieser Anionen
  11. Elemente nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Verbindung der quaternären Ammonium-Gruppen eine Masse von 2 % bis 15 % bezogen auf die Gesamtmasse des Acrylpolymers und der Verbindung mit quaternären Ammonium-Gruppen ausmacht, und dadurch, dass das Acrylpolymer keine freien Carbonsäuregruppen enthält.
  12. Elemente nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Schichtdicke eP der Grundschicht (P) zwischen 0,02 µm und 0,2 µm, und vorzugsweise zwischen 0,02 µm und 0,15 µm liegt.
  13. Elemente nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass in der Dickschicht (A) keine geladenen Teilchen vorliegen und die genannten Ladungen in der Dünnschicht (B) vorliegen, damit die Folien einen Trübungsgrad ≤ 7 % aufweisen.
  14. Elemente nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Dicke eA der Schicht (A) zwischen 50 µm und 150 µm liegt und dadurch, dass die Dicke eB der Schicht (B) < 3 um ist und vorzugsweise zwischen 0,5 µm und 1,5 µm liegt.
  15. Elemente nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Polyester-Schichtträger-Verbund (S) einen Trübungsgrad ≤ 7 %, eine Rückstell-Schrumpfung in der Längs- und Querrichtung der Reckung bei 150 °C ≤ 1 %, und eine totale Rauheit Rz ≤ 0,6 µm aufweist.
  16. Verfahren zur Herstellung von Elementen nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Polyester-Folienträger-Verbund durch ein Koextrusionsverfahren hergestellt wird, in dem man mit Hilfe eines ersten Extruders einen kristallisierbaren Polyesterfluss (A), und gleichzeitig, mit Hilfe eines zweiten Extruders, einen Polyesterfluss (B) extrudiert, der dazu bestimmt ist, eine oder die Schicht(en) (B) zu bilden, wobei die beiden Extruder mit einem Koextrusionsgehäuse verbunden sind, in dem der Fluss (B) gegebenenfalls in zwei Flüsse (B) aufgeteilt werden kann, die Strömungen der geschmolzenen Polymere durch ein flaches Zieheisen in eine mehrschichtige amorphe Folie umgeformt werden kann und die so erhaltene amorphe Folie den üblichen folienbildenden Vorgängen, wie Abschreckkühlung, Recken, Thermofixierung und Aufwicklung unterworfen wird und dadurch, dass das Auftragen der Schicht (B) auf wenigstens einer Seite der Polyesterfolie ausgeführt wird.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die extrudierte, amorphe Verbundfolie einer bidirektionalen Reckung in zwei senkrecht aufeinander stehenden Richtungen unterworfen wird, zuerst einer Reckung in Längsrichtung, dann einer Reckung in Querrichtung oder umgekehrt, wobei die Reckung in Längsrichtung mit einem Faktor von 3 bis 5 bei einer Temperatur von 80 bis 135 °C, die Reckung in Querrichtung mit einem Faktor von 3 bis 5 bei einer Temperatur von 90 bis 135°C, vorzugsweise von 100 bis 125°C, durchgeführt wird und die Verbundfolie nach der Reckung einer thermischen Behandlung bei einer Temperatur zwischen 160 und 240°C unterworfen wird.
  18. Verfahren nach einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, dass das Auftragen der Schicht (P) auf den Polyesterfolien-Verbund mittels verschiedener bekannter Techniken durchgeführt wird, wie durch das Auftragen einer Dispersion oder einer wässerigen Lösung des Acrylpolymers mittels Ausfließen durch einen Schlitz, oder mittels Durchführung des Polyesterfolien-Verbunds durch die Emulsion oder die Lösung, oder auch mittels Übertragungswalzen, wobei die Dicke der Schicht durch jedes geeignete Mittel kontrolliert wird und das Auftragen der Schicht entweder vor jedem Recken der Folie erfolgt, wenn das Beschichten im Zuge des Verfahrensablaufes stattfindet, oder nach der Reckung, vor oder nach der Thermofixierung, wenn das Beschichten wiederholt erfolgt, und vorzugsweise vor der Reckung oder zwischen zwei Reckungen.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass man von dem Acrylpolymer eine stabile Dispersion oder Latex - in Wasser oder einem hydroorganischen Milieu - herstellt, um das Auftragen der Schicht (P) zu realisieren.
  20. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der hergestellte Latex 1 bis 50 % der Acrylpolymermasse enthält, und vorzugsweise 5 bis 30 % der Acrylpolymermasse.
  21. Verfahren nach einem der Ansprüche 19 oder 20, dadurch gekennzeichnet, dass der Durchmesser der Partikel des Acrylpolymers, das den Latex aufbaut, zwischen 0,01 µm und 0,3 µm, vorzugsweise zwischen 0,05 µm und 0,15 µm liegt.
EP95420257A 1994-09-28 1995-09-15 Transparente Aufzeichnungselemente für die elektrostatische Photokopie Expired - Lifetime EP0704766B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9411808 1994-09-28
FR9411808A FR2725051B1 (fr) 1994-09-28 1994-09-28 Elements transparents pour photocopie electrostatique

Publications (2)

Publication Number Publication Date
EP0704766A1 EP0704766A1 (de) 1996-04-03
EP0704766B1 true EP0704766B1 (de) 2000-12-06

Family

ID=9467522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95420257A Expired - Lifetime EP0704766B1 (de) 1994-09-28 1995-09-15 Transparente Aufzeichnungselemente für die elektrostatische Photokopie

Country Status (20)

Country Link
US (1) US5968667A (de)
EP (1) EP0704766B1 (de)
JP (1) JP2778640B2 (de)
KR (1) KR100287241B1 (de)
CN (1) CN1114130C (de)
AT (1) ATE197996T1 (de)
BR (1) BR9504195A (de)
CA (1) CA2159271C (de)
DE (1) DE69519551T2 (de)
ES (1) ES2154325T3 (de)
FI (1) FI109434B (de)
FR (1) FR2725051B1 (de)
GR (1) GR3035353T3 (de)
IL (1) IL115430A (de)
MX (1) MX9504107A (de)
NO (1) NO953808L (de)
PT (1) PT704766E (de)
TR (1) TR199501181A2 (de)
TW (1) TW332175B (de)
ZA (1) ZA957787B (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048606A (en) * 1998-12-21 2000-04-11 Eastman Kodak Company Digital transmission display materials with voided polyester
JP4190113B2 (ja) * 1999-11-02 2008-12-03 尾池工業株式会社 画像受像体
US6462822B1 (en) 2001-04-02 2002-10-08 Hewlett-Packard Company Method and apparatus for detecting overhead transparencies
JP4562100B2 (ja) * 2008-03-14 2010-10-13 株式会社沖データ レンチキュラーレンズ媒体
US8190042B1 (en) 2008-05-16 2012-05-29 Oki Data Americas, Inc. Electrophotographic printing apparatus
CN110028687B (zh) * 2013-06-27 2022-03-18 可隆工业株式会社 聚酯膜及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US526847A (en) 1894-10-02 Steam-engine valve
JPS5942864B2 (ja) * 1979-04-13 1984-10-18 京セラミタ株式会社 投影用原稿の作成方法及びそれに用いる静電写真用転写フイルム
US4480003A (en) 1982-09-20 1984-10-30 Minnesota Mining And Manufacturing Company Construction for transparency film for plain paper copiers
FR2580226B1 (fr) 1985-04-15 1987-08-14 Rhone Poulenc Films Films polyesters, composites, etires utilisables notamment pour arts graphiques. procede d'obtention de tels films
US4711816A (en) * 1986-03-31 1987-12-08 Minnesota Mining And Manufacturing Company Transparent sheet material for electrostatic copiers
US4869955A (en) * 1988-03-11 1989-09-26 E. I. Du Pont De Nemours And Company Polyester support for preparing electrostatic transparencies
US5104721A (en) * 1990-02-13 1992-04-14 Arkwright Incorporated Electrophotographic printing media
US5055371A (en) * 1990-05-02 1991-10-08 Eastman Kodak Company Receiver sheet for toner images
JP2512214B2 (ja) * 1990-06-29 1996-07-03 ダイアホイルヘキスト株式会社 電子写真用ポリエステルフィルム
US5310595A (en) * 1992-09-18 1994-05-10 Minnesota Mining And Manufacturing Company Water-based transparent image recording sheet for plain paper copiers
US5310591A (en) * 1992-09-18 1994-05-10 Minnesota Mining And Manufacturing Company Image-receptive sheets for plain paper copiers
GB9303950D0 (en) * 1993-02-26 1993-04-14 Autotype Int Ltd Scrren printing origination film
JP3361150B2 (ja) * 1993-07-08 2003-01-07 富士写真フイルム株式会社 電子写真用フィルム

Also Published As

Publication number Publication date
NO953808L (no) 1996-03-29
KR960011571A (ko) 1996-04-20
ES2154325T3 (es) 2001-04-01
EP0704766A1 (de) 1996-04-03
BR9504195A (pt) 1996-08-06
CA2159271C (fr) 2004-08-24
FI954587A (fi) 1996-03-29
FI109434B (fi) 2002-07-31
FR2725051B1 (fr) 1997-01-03
CN1114130C (zh) 2003-07-09
GR3035353T3 (en) 2001-05-31
IL115430A (en) 1998-07-15
PT704766E (pt) 2001-04-30
TW332175B (en) 1998-05-21
ATE197996T1 (de) 2000-12-15
JPH08179544A (ja) 1996-07-12
MX9504107A (es) 1997-03-29
JP2778640B2 (ja) 1998-07-23
NO953808D0 (no) 1995-09-26
CN1138706A (zh) 1996-12-25
KR100287241B1 (ko) 2001-04-16
DE69519551T2 (de) 2001-06-07
DE69519551D1 (de) 2001-01-11
IL115430A0 (en) 1996-01-31
ZA957787B (en) 1996-04-09
CA2159271A1 (fr) 1996-03-29
FR2725051A1 (fr) 1996-03-29
FI954587A0 (fi) 1995-09-27
TR199501181A2 (tr) 1996-06-21
US5968667A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
EP0260203B1 (de) Verfahren zur Beschichtung von Polyesterfolien und Folien mit Oberflächenbeschichtung
US4439479A (en) Slippery biaxially stretched polyester films
JPH03290684A (ja) 静電複写トナー粒子を熱可塑性樹脂担持レシーバーに熱促進転写させる方法
EP0704766B1 (de) Transparente Aufzeichnungselemente für die elektrostatische Photokopie
EP0451179B1 (de) Als magnetischer aufzeichnungsträger verwendbare polyesterverbundfolie und davon abgeleitete magnetaufzeichnungssysteme
WO1990010666A1 (fr) Films polyester composites comme support de revetements finals
EP0430769B1 (de) Anwendung von nichthaftenden Verbundfolien aus Polyester als Grundlage für die Herstellung wenigstens einer in Sicherheitsgläsern verwendbaren Schicht aus Polyurethan
EP0916704A2 (de) Mit Polymerisaten beschichtete Substrate für die Herstellung von optisch veränderlichen Produkten
FR2654674A1 (fr) Films polyester composites antiadherents.
EP0539411B1 (de) Polyester verbundfilme und ihre verwendung als schutzschicht für fotopolymerplatten und mit diesen filmen vesehene fotopolymerplatten
JPH08201980A (ja) 写真用ポリエステルフイルム
JP3522777B2 (ja) ポリエステルフイルム及びその製造方法
US4492719A (en) Process for the production of slippery biaxially stretched polyester films
JP3206222B2 (ja) ポリエステル組成物
JPS58124620A (ja) 易滑性二軸延伸ポリエステルフイルムの製造法
FR2656320A1 (fr) Films polyester composites utilisables notamment comme supports pour materiaux d&#39;enregistrement magnetique et materiaux d&#39;enregistrement magnetique en resultant.
JPH09169089A (ja) 積層フイルム
JPH07258523A (ja) ポリエステル組成物
JP2001233978A (ja) ポリエステルフイルム及びその製造方法
FR2654672A1 (fr) Application de films polyester composites antiadherents en tant que support pour la formation d&#39;au moins une couche de polyurethane utilisable dans les vitrages de securite.
JPH08201969A (ja) 難燃性写真用ポリエステルフイルム
JPH07258522A (ja) ポリエステルフィルム
JPH0885730A (ja) 制電性フイルム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19960508

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TORAY PLASTICS EUROPE SA

17Q First examination report despatched

Effective date: 19980417

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 197996

Country of ref document: AT

Date of ref document: 20001215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69519551

Country of ref document: DE

Date of ref document: 20010111

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAPAT INTERNATIONAL S.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010116

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2154325

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20010206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20020816

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20020902

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020904

Year of fee payment: 8

Ref country code: DK

Payment date: 20020904

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020913

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020917

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020925

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020930

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20021202

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030915

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030916

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

BERE Be: lapsed

Owner name: S.A. *TORAY PLASTICS EUROPE

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040402

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040401

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20040331

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030916

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1002903

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110926

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120914

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20121001

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120917

Year of fee payment: 18

Ref country code: FR

Payment date: 20121004

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69519551

Country of ref document: DE

Effective date: 20140401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130915