EP0703364B1 - Procédé et dispositif pour commander une micropompe - Google Patents

Procédé et dispositif pour commander une micropompe Download PDF

Info

Publication number
EP0703364B1
EP0703364B1 EP95112161A EP95112161A EP0703364B1 EP 0703364 B1 EP0703364 B1 EP 0703364B1 EP 95112161 A EP95112161 A EP 95112161A EP 95112161 A EP95112161 A EP 95112161A EP 0703364 B1 EP0703364 B1 EP 0703364B1
Authority
EP
European Patent Office
Prior art keywords
micropump
valve structure
resonance
driving signal
pumped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95112161A
Other languages
German (de)
English (en)
Other versions
EP0703364A1 (fr
Inventor
Roland Zengerle
Axel Richter
Stefan Kluge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0703364A1 publication Critical patent/EP0703364A1/fr
Application granted granted Critical
Publication of EP0703364B1 publication Critical patent/EP0703364B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/04Motor parameters of linear electric motors
    • F04B2203/0404Frequency of the electric current

Definitions

  • the present invention relates to a method and a device for controlling a micropump by means of a driver signal such that a conveying direction defined by a valve structure is reversed.
  • Micro diaphragm pumps are known for example from WO-93/05295. One of the pumps described there is shown in Fig. 1.
  • This micro-diaphragm pump 100 comprises a two-part displacement unit 102 and also a two-part valve unit 104.
  • the two parts of the displacement unit 102 comprise a flexible pump diaphragm 106 and a rigid counter electrode 108.
  • a so-called drive chamber 110 is formed between the pump diaphragm 106 and a counter chamber 108.
  • the pump membrane 106 is attracted by the counter electrode 108.
  • the volume of the pump chamber 112 increases and a fluid to be pumped is sucked in via an inlet.
  • the pump membrane 106 relaxes in its output region and displaces the fluid to be pumped into the outlet 116.
  • Two passive check valves 118, 120 which define a preferred direction for the fluid flow, result in a directional pumping action when the displacement unit 102 is periodically activated from inlet 114 to outlet 116 of the pump.
  • the behavior of the valves 118, 120 is quasi static, ie the position of the movable valve part results at all times from the hydrostatic pressure difference applied across the valve.
  • Known methods for controlling such a micro diaphragm pump enable a fluid to be pumped in the preferred direction defined by the valves 118, 120.
  • micromembrane pump In technical applications of the micromembrane pump, the situation often arises in which fluids, for example, both have to be transported to a sensor element and have to be removed again. This occurs, for example, in chemical analysis, in which liquids both have to be transported to a sensor element and have to be removed again. So far, a micro-diaphragm pump has to be used both for the forward transport and for the removal, these micro-diaphragm pumps being arranged in opposite directions. The need for the two micro diaphragm pumps increases the complexity of such analytical systems and their manufacturing costs and makes it difficult to fill them with a fluid when operating these systems.
  • the present invention is based on the object of creating a method and a device for controlling a micropump which make it possible to reverse the conveying direction defined by a valve structure.
  • the present invention provides a method for controlling a micropump by means of a driver signal, the micropump having a conveying direction defined by a valve structure, with the method step of applying the driver signal to the exciter frequency Micropump, the excitation frequency being in the range above a resonance of a system formed from the moving parts of the micropump and the fluid to be pumped, whereby the delivery direction defined by a valve structure is reversed.
  • the present invention provides a device for controlling a micropump by means of a driver signal, the micropump having a conveying direction defined by a valve structure, with a device for generating the driver signal with an excitation frequency which is in the range above a resonance of one of the moving parts of the micropump and the system to be pumped fluid lies, whereby the delivery direction defined by a valve structure is reversed.
  • the micropump can be designed as a micro-diaphragm pump.
  • An advantage of the present invention is that for practical applications in which both a transport and a transport of fluids to an element is required, only a micro-diaphragm pump has to be used, whereby the required space is reduced.
  • Another advantage is that the filling of such systems with a fluid is made easier.
  • Yet another advantage is that the manufacturing cost of such systems can be significantly reduced.
  • the method according to the invention and the device according to the invention make it possible to reverse the pumping direction in micro-diaphragm pumps (see FIG. 1) with so-called passive check valves 118, 120.
  • the displacement unit 102 is acted upon by a driver signal which has an operating frequency in the region of a resonance, which is essentially defined by the movable valve parts, which lies above this resonance.
  • this resonance is a resonance of a system which is formed from the moving parts of the micro diaphragm pump (106, 118, 120) and from the fluid to be pumped.
  • This behavior corresponds to that of an oscillatory, mechanical system, which is stimulated to a forced oscillation by an external force.
  • the amplitude of the vibration has the known resonance behavior.
  • the curves 200 and 202 shown in FIG. 2 represent the course of the deflection and the phase shift with different damping or quality factors.
  • the course of the curve 200 is assigned a quality factor of 3 and the course of the curve 202 is assigned a quality factor of 1 .
  • the deflection and phase shift of a movable valve part shown in FIG. 2 applies to a resonance of this part of 3000 Hz.
  • the curves in the first line indicate the so-called exciting pressure
  • the signal curves in the middle line indicate the opening state of the movable valve
  • the signal curves in the lower row show the time-dependent flow
  • the respective y-scales in any Units are shown.
  • the second effect is that the valve can only be opened in the positive direction (see second line of Fig. 3), i.e. the valve is completely closed for half a period.
  • the micro diaphragm pump In the frequency range from 1 Hz to 1 kHz, the micro diaphragm pump is in its so-called standard operating range, which is shown by arrow 400. In this standard operating range 400, the micro diaphragm pump has a positive pumping rate ( ⁇ > 0), which corresponds to a forward pumping effect.
  • the micro diaphragm pump In the frequency range from 2 kHz to 6 kHz, which is represented by the arrow 410, the micro diaphragm pump has a negative pumping rate ( ⁇ ⁇ 0), which corresponds to a backward pumping effect.
  • the resonance frequency of the movable valve parts used in a micro diaphragm pump can be varied by a suitable change in the shape of the valves used. This makes it possible to influence the frequency range 410 in which the negative pumping rate occurs.
  • the frequency range 410 where a negative pumping rate occurs is the frequency range where there is a phase difference of about 90 degrees to about 180 degrees between the drive signal and the deflection of the valves.
  • the frequency range in which a positive pumping rate occurs is that frequency range in which a phase difference of approximately 0 degrees to 90 degrees occurs between the driver signal and the deflection of the valve structure.
  • FIG. 5 shows a block diagram of the arrangement of a device for generating a driver signal and a micro diaphragm pump.
  • the device according to the invention for controlling a micro-diaphragm pump 510 by means of a driver signal comprises a device 500 for generating the driver signal with an excitation frequency which lies in the range above a resonance of the system formed from the moving parts of the micro-diaphragm pump 510 and the fluid to be pumped.
  • the driver signal is over one or more Signal lines 520 applied to the micro diaphragm pump 510.
  • the driver signal generating device generates a second driver signal with a second excitation frequency, which is in a range in which a phase difference of approximately 0 degrees to 90 degrees occurs between the driver signal and the deflection of the valve structure, in order to fluid to be pumped into that defined by the valve structure Pump direction of pumping.
  • the method according to the invention and the device according to the invention are not limited to micro-diaphragm pumps that use check valves.
  • the application of the invention to micro diaphragm pumps which use passive valves of a different design is readily possible.
  • the application of the present invention is not limited to a micro diaphragm pump that uses two valves.
  • the use of micro diaphragm pumps that use one valve or more than two valves is easily possible.
  • piezoelectric and pneumatic or thermopneumatic drive mechanisms for the micro diaphragm pump are also possible.
  • a two-phase thermal drive is also contemplated, in which a liquid is heated in a drive chamber, whereby a vapor bubble is formed, through which a pump membrane is actuated by displacement.
  • the thermal two-phase drive enables higher pressures to be generated than a purely thermopneumatic drive.
  • a piston displacer can also be considered in addition to a membrane displacer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Claims (9)

  1. Procédé pour commander une micropompe (100) à l'aide d'un signal d'excitation, la micropompe (100) ayant une direction de transport définie par une structure de soupape (118, 120), caractérisé par l'étape de procédé suivante, consistant à:
    appliquer sur la micropompe (100) le signal d'excitation avec une fréquence d'excitation, la fréquence d'excitation se situant dans la plage au-dessus d'une résonance d'un système formé par les éléments mobiles (106, 118, 120) de la micropompe (100) et par le fluide à pomper, d'où la direction de transport définie par la structure de soupape (118, 120) est inversée.
  2. Procédé suivant la revendication 1, caractérisé par le fait que la micropompe se présente sous forme de micropompe à membrane (100).
  3. Procédé suivant la revendication 1 ou 2, caractérisé par le fait que la plage dans laquelle se situe la fréquence d'excitation est la plage de fréquences dans laquelle il se produit une différence de phase d'environ 90 degrés à environ 180 degrés entre le signal d'excitation et la déflexion de la structure de soupape (118, 120).
  4. Procédé suivant l'une des revendications 1 à 3, caractérisé par le fait que la résonance est déterminée sensiblement par la structure de soupape (118, 120).
  5. Procédé suivant l'une des revendications 1 à 4, caractérisé par le fait que la résonance est une résonance de premier ordre ou une résonance d'ordre supérieur.
  6. Procédé suivant l'une des revendications 1 à 5, caractérisé, par ailleurs, par l'étape de procédé suivante, consistant à:
    appliquer sur la micropompe (100) un second signal d'excitation avec une seconde fréquence d'excitation, la seconde fréquence d'excitation se situant dans une plage dans laquelle il se produit une différence de phase d'environ 0 degré à 90 degrés entre le signal d'excitation et la déflexion de la structure de soupape (118, 120), pour pomper le fluide à pomper dans la direction de transport définie par la structure de soupape (118, 120).
  7. Dispositif pour commander une micropompe (510) à l'aide d'un signal d'excitation, la micropompe (100) ayant une direction de transport définie par une structure de soupape (118, 120), caractérisé par un dispositif (500) de production du signal d'excitation avec une fréquence d'excitation située dans la plage au-dessus d'une résonance d'un système formé par les éléments mobiles de la micropompe et par le fluide à pomper, d'où la direction de transport définie par la structure de soupape (118, 120) est inversée.
  8. Dispositif suivant la revendication 7, caractérisé par le fait que la micropompe se présente sous forme de micropompe à membrane (100).
  9. Dispositif suivant la revendication 7 ou 8, caractérisé par le fait que le dispositif de production du signal d'excitation (500) génère un second signal d'excitation avec une seconde fréquence d'excitation qui se situe dans une plage dans laquelle il se produit une différence de phase d'environ 0 degré à 90 degrés entre le signal d'excitation et la déflexion de la structure de soupape, pour pomper le fluide à pomper dans la direction de transport définie par la structure de soupape.
EP95112161A 1994-09-22 1995-08-02 Procédé et dispositif pour commander une micropompe Expired - Lifetime EP0703364B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4433894A DE4433894A1 (de) 1994-09-22 1994-09-22 Verfahren und Vorrichtung zur Ansteuerung einer Mikropumpe
DE4433894 1994-09-22

Publications (2)

Publication Number Publication Date
EP0703364A1 EP0703364A1 (fr) 1996-03-27
EP0703364B1 true EP0703364B1 (fr) 1997-04-23

Family

ID=6528930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95112161A Expired - Lifetime EP0703364B1 (fr) 1994-09-22 1995-08-02 Procédé et dispositif pour commander une micropompe

Country Status (2)

Country Link
EP (1) EP0703364B1 (fr)
DE (2) DE4433894A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US7897345B2 (en) 2003-11-12 2011-03-01 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US8016260B2 (en) 2007-07-19 2011-09-13 Formulatrix, Inc. Metering assembly and method of dispensing fluid
US8100293B2 (en) 2009-01-23 2012-01-24 Formulatrix, Inc. Microfluidic dispensing assembly
US8658418B2 (en) 2002-04-01 2014-02-25 Fluidigm Corporation Microfluidic particle-analysis systems
US9540689B2 (en) 1998-05-01 2017-01-10 Life Technologies Corporation Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
WO2021014444A1 (fr) * 2019-07-23 2021-01-28 Innotech Ltd Pompes et micro-clapets de non-retour accordés
WO2022162651A1 (fr) * 2021-01-27 2022-08-04 Q T Flow Ltd Agencement de pompage de fluide

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648694C1 (de) * 1996-11-25 1998-04-30 Vermes Mikrotechnik Gmbh Bidirektionale dynamische Mikropumpe
DE19719862A1 (de) * 1997-05-12 1998-11-19 Fraunhofer Ges Forschung Mikromembranpumpe
DE19719861A1 (de) * 1997-05-12 1998-11-19 Fraunhofer Ges Forschung Verfahren zum Herstellen eines Mikromembranpumpenkörpers
JP3582316B2 (ja) 1997-08-20 2004-10-27 株式会社日立製作所 化学分析装置
DE19802368C1 (de) * 1998-01-22 1999-08-05 Hahn Schickard Ges Mikrodosiervorrichtung
JP3543604B2 (ja) * 1998-03-04 2004-07-14 株式会社日立製作所 送液装置および自動分析装置
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US8709153B2 (en) 1999-06-28 2014-04-29 California Institute Of Technology Microfludic protein crystallography techniques
US8550119B2 (en) 1999-06-28 2013-10-08 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7217321B2 (en) 2001-04-06 2007-05-15 California Institute Of Technology Microfluidic protein crystallography techniques
EP1195523B1 (fr) * 1999-06-28 2005-03-02 California Institute of Technology Système de micropompes ou soupapes flexibles
US7244402B2 (en) 2001-04-06 2007-07-17 California Institute Of Technology Microfluidic protein crystallography
US7459022B2 (en) 2001-04-06 2008-12-02 California Institute Of Technology Microfluidic protein crystallography
US6929030B2 (en) 1999-06-28 2005-08-16 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7195670B2 (en) 2000-06-27 2007-03-27 California Institute Of Technology High throughput screening of crystallization of materials
US7306672B2 (en) 2001-04-06 2007-12-11 California Institute Of Technology Microfluidic free interface diffusion techniques
US8052792B2 (en) 2001-04-06 2011-11-08 California Institute Of Technology Microfluidic protein crystallography techniques
DK1065378T3 (da) 1999-06-28 2002-07-29 California Inst Of Techn Elastomere mikropumpe- og mikroventilsystemer
US7052545B2 (en) 2001-04-06 2006-05-30 California Institute Of Technology High throughput screening of crystallization of materials
US7144616B1 (en) 1999-06-28 2006-12-05 California Institute Of Technology Microfabricated elastomeric valve and pump systems
EP1557565B1 (fr) * 1999-06-28 2016-08-10 California Institute Of Technology Système de micropompes ou soupapes flexibles
US7867763B2 (en) 2004-01-25 2011-01-11 Fluidigm Corporation Integrated chip carriers with thermocycler interfaces and methods of using the same
US20050118073A1 (en) 2003-11-26 2005-06-02 Fluidigm Corporation Devices and methods for holding microfluidic devices
US7351376B1 (en) 2000-06-05 2008-04-01 California Institute Of Technology Integrated active flux microfluidic devices and methods
EP1334347A1 (fr) 2000-09-15 2003-08-13 California Institute Of Technology Dispositifs a debit transversal microfabriques et procedes associes
US7097809B2 (en) 2000-10-03 2006-08-29 California Institute Of Technology Combinatorial synthesis system
WO2002029106A2 (fr) 2000-10-03 2002-04-11 California Institute Of Technology Dispositifs microfluidiques et procedes d'utilisation
US7232109B2 (en) 2000-11-06 2007-06-19 California Institute Of Technology Electrostatic valves for microfluidic devices
WO2002060582A2 (fr) 2000-11-16 2002-08-08 Fluidigm Corporation Dispositifs microfluidiques permettant l'introduction et la liberation de liquides a partir de systemes microfluidiques
AU2002230524A1 (en) 2000-11-16 2002-05-27 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
EP1384022A4 (fr) 2001-04-06 2004-08-04 California Inst Of Techn Amplification d'acide nucleique au moyen de dispositifs microfluidiques
ATE500051T1 (de) 2001-04-06 2011-03-15 Fluidigm Corp Polymeroberflächenmodifikation
US6752922B2 (en) 2001-04-06 2004-06-22 Fluidigm Corporation Microfluidic chromatography
US7075162B2 (en) 2001-08-30 2006-07-11 Fluidigm Corporation Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes
WO2003031066A1 (fr) 2001-10-11 2003-04-17 California Institute Of Technology Dispositifs utilisant du gel auto-assemble et procede de fabrication associe
US8440093B1 (en) 2001-10-26 2013-05-14 Fuidigm Corporation Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels
US7118910B2 (en) 2001-11-30 2006-10-10 Fluidigm Corporation Microfluidic device and methods of using same
US7691333B2 (en) 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
EP1551753A2 (fr) 2002-09-25 2005-07-13 California Institute Of Technology Integration microfluidique a grande echelle
EP1546412B1 (fr) 2002-10-02 2014-05-21 California Institute Of Technology Analyse microfluidique d'acides nucleiques
US7476363B2 (en) 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
EP2340890B1 (fr) 2003-04-03 2016-10-19 Fluidigm Corporation Procédé pour réaliser PCR numérique
US20050145496A1 (en) 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US8828663B2 (en) 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
WO2004094020A2 (fr) 2003-04-17 2004-11-04 Fluidigm Corporation Dispositifs et systemes de cristallogenese et methodes d'utilisation de ceux-ci
AU2004240944A1 (en) 2003-05-20 2004-12-02 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
SG145697A1 (en) 2003-07-28 2008-09-29 Fluidigm Corp Image processing method and system for microfluidic devices
US7413712B2 (en) 2003-08-11 2008-08-19 California Institute Of Technology Microfluidic rotary flow reactor matrix
US7407799B2 (en) 2004-01-16 2008-08-05 California Institute Of Technology Microfluidic chemostat
MXPA06008399A (es) 2004-01-25 2008-03-07 Fluidigm Corp Dispositivos formadores de cristal y sistemas y metodos para hacer y utilizar los mismos.
CA2557177A1 (fr) 2004-02-19 2005-09-01 Stephen Quake Procedes et kits pour analyser des sequences de polynucleotides
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
DE102006003744B3 (de) * 2006-01-26 2007-09-13 Albert-Ludwigs-Universität Freiburg Vorrichtung zur Bewegung von Flüssigkeiten und/oder Gasen
US7815868B1 (en) 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
JP4824743B2 (ja) * 2008-12-26 2011-11-30 アイダエンジニアリング株式会社 マイクロ流路チップ
DE102013015453A1 (de) 2012-12-21 2014-07-10 Thomas Magnete Gmbh Hubkolbenpumpe mit zwei Förderrichtungen
DE102015224622A1 (de) 2015-12-08 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Freistrahldosiersystem
WO2020064060A1 (fr) 2018-09-26 2020-04-02 Trafag Ag Micro-actionneur ainsi que procédé de fabrication et utilisations

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344743A (en) * 1979-12-04 1982-08-17 Bessman Samuel P Piezoelectric driven diaphragm micro-pump
JPH03217672A (ja) * 1990-01-23 1991-09-25 Seiko Epson Corp マイクロポンプの吐出量制御方法
DE4135655A1 (de) * 1991-09-11 1993-03-18 Fraunhofer Ges Forschung Mikrominiaturisierte, elektrostatisch betriebene membranpumpe
DE4200838C2 (de) * 1992-01-15 1994-12-22 Knf Neuberger Gmbh Pumpe mit vom Fördermedium gesteuerten Ventilen

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540689B2 (en) 1998-05-01 2017-01-10 Life Technologies Corporation Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US8658418B2 (en) 2002-04-01 2014-02-25 Fluidigm Corporation Microfluidic particle-analysis systems
US7897345B2 (en) 2003-11-12 2011-03-01 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US9012144B2 (en) 2003-11-12 2015-04-21 Fluidigm Corporation Short cycle methods for sequencing polynucleotides
US8016260B2 (en) 2007-07-19 2011-09-13 Formulatrix, Inc. Metering assembly and method of dispensing fluid
US8100293B2 (en) 2009-01-23 2012-01-24 Formulatrix, Inc. Microfluidic dispensing assembly
US8550298B2 (en) 2009-01-23 2013-10-08 Formulatrix, Inc. Microfluidic dispensing assembly
WO2021014444A1 (fr) * 2019-07-23 2021-01-28 Innotech Ltd Pompes et micro-clapets de non-retour accordés
WO2022162651A1 (fr) * 2021-01-27 2022-08-04 Q T Flow Ltd Agencement de pompage de fluide

Also Published As

Publication number Publication date
EP0703364A1 (fr) 1996-03-27
DE4433894A1 (de) 1996-03-28
DE59500196D1 (de) 1997-05-28

Similar Documents

Publication Publication Date Title
EP0703364B1 (fr) Procédé et dispositif pour commander une micropompe
EP0826109B1 (fr) Pompe a fluide depourvue de soupape anti-retour
EP0835381B1 (fr) Pompe a fluide
EP2205869B1 (fr) Pompe à membrane
EP2531760B1 (fr) Elément structural microfluidique conçu pour la manipulation d'un fluide et puce microfluidique
EP2207963B1 (fr) Pompe et ensemble pompe
EP3559463B1 (fr) Pompe volumétrique pour liquides médicaux et dispositif de traitement du sang ainsi que procédé de commande associé
DE102008045524A1 (de) Verfahren zur autonomen Steuerung eines Chemikalien-Einspritzsystems für Öl- und Gas-Bohrlöcher
DE2162330A1 (de) Durchfluss-regelvorrichtung
DE4223019C1 (de) Ventillose Mikropumpe
DE4239464A1 (de) Elektrothermische, statische Mikropumpe
DE102019117261A1 (de) Ventillose bi-direktionale Mikropumpe mit integrierter Ventilfunktion
EP1764504A1 (fr) Pompe à dosage activé par force electro-magnétique
EP3336351A1 (fr) Pompe à chambre et procédé de fonctionnement d'une pompe à chambre
EP3037662B1 (fr) Système de pompe pour milieux liquides et gazeux
DE3826547C2 (de) Fluidbetätigter Motor
EP3861238B1 (fr) Microsoupape hydraulique
EP2685104B1 (fr) Module de pompes et pompe volumétrique
EP0844395B1 (fr) Micropompe réversible
EP3167192B1 (fr) Dispositif pour fournir des fluides se trouvant sous une pression apte à être prédéterminée
DE19534378C1 (de) Fluidpumpe
DE10313158A1 (de) Mikropumpe mit einem membranartigen Aktor
DE10013797B4 (de) Schwinganker-Membranpumpe
DE19536491A1 (de) Vorrichtung zur Förderung gasförmiger oder flüssiger Medien
DE2347493C2 (de) Dosiervorrichtung zur durchflußabhängigen Dosierung von Fluids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19960304

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960924

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: 0508;05MIFJACOBACCI & PERANI S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970424

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59500196

Country of ref document: DE

Date of ref document: 19970528

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020821

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020822

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040722

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041021

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428