EP0682720B1 - Schmelzspinnverfahren für filamente - Google Patents
Schmelzspinnverfahren für filamente Download PDFInfo
- Publication number
- EP0682720B1 EP0682720B1 EP95900885A EP95900885A EP0682720B1 EP 0682720 B1 EP0682720 B1 EP 0682720B1 EP 95900885 A EP95900885 A EP 95900885A EP 95900885 A EP95900885 A EP 95900885A EP 0682720 B1 EP0682720 B1 EP 0682720B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- yarn
- air
- speed
- air current
- thread
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002074 melt spinning Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 claims description 33
- 238000009987 spinning Methods 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 21
- 238000004804 winding Methods 0.000 claims description 13
- 239000002861 polymer material Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 238000007711 solidification Methods 0.000 description 15
- 230000008023 solidification Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 229920000728 polyester Polymers 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 8
- 239000004753 textile Substances 0.000 description 8
- 238000007710 freezing Methods 0.000 description 6
- 230000008014 freezing Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010411 cooking Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 230000003716 rejuvenation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/088—Cooling filaments, threads or the like, leaving the spinnerettes
- D01D5/092—Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
Definitions
- the invention relates to a method of manufacture (for spinning) filaments e.g. made of polyester, polyamide (Polycondensates) or polypropylene. There will also be corresponding ones Devices proposed.
- the Filament delivery speeds increase by the extrusion of a melt is formed by a spinneret will.
- the level of "delivery speed" is not absolute value that can apply to any spinning process. Rather, it becomes dependent on the thread to be spun certainly. For example, it is basically between technical Differentiated threads and textile threads, and textile Threads themselves are now called POY (Partially Oriented Yarn) or spun as FDY (Fully Drawn Yarn).
- the expression "assisted accompanying air flow” is supposed to indicate the effect of special means, that generate an accompanying air flow that differs from one Accompanying air flow differs, which anyway when moving the thread through the air by sweeping the thread arises.
- the aforementioned proposals all saw the generation of the supported air flow after the solidification of the Thread.
- the invention is based on findings, some of which in Article "Schnellspinnen von Polyamid 6.6" by Dr. H. Breuer et al in the magazine “Chemical fibers / textile industry", September 1992, page 662ff. After these Insights are the textile technology and morphological Fast spun polycondensate data in one wide range regardless of the spinning conditions. Just the take-off speed has a noticeable influence.
- the invention is based on the further finding that the influence of the take-off speed is actually over the load on the thread (filament stress) until it solidifies affects. Accordingly, according to the invention Measures are taken to target this burden and thereby to influence the thread properties.
- the invention provides a melt spinning process before, on the surface of the thread a Air flow is generated in the thread running direction, thereby characterized that the flow over at least one Part of the length of the thread flows where the polymer material is still has not been frozen, and that over this partial length of the thread, the speed of the air flow in the thread running direction is so high that the thread has no or negligible stress due to friction between the thread and the adjacent layer of air.
- the thread is preferably supplied to a winding device and in it to a coil (pack) at a given Speed wound up.
- the winding speed be so high that from a predetermined point in the spinning line at the thread speed prevailing at this point without assisting the air flow in the direction of the thread, the friction between the thread and an additional load on the thread in the adjacent air layer would cause which affect the thread properties would.
- an air flow at such a high speed in the Thread running direction creates the frictional forces between the thread and the adjacent air layer below one Limit where they significantly affect the thread properties can.
- the air flow preferably accompanies the thread at least to a point in the spinning line where the thread properties essentially by the friction forces mentioned can no longer be influenced, i.e. up to one Point near a point where the polymer material solidifies has been.
- the speed of the air flow will up to the point mentioned so high that the unwanted Frictional forces do not arise.
- the air flow is preferably generated such that it flows as evenly as possible in the thread running direction means that it has as little turbulence as possible and if possible small lateral forces on the thread exercises.
- the invention continues to see a melt spinning process, after which the thread to a Spooling device is delivered where it is attached to a spool predetermined speed is wound up, the Winding speed is set so high that without Support the air flow in the direction of the thread "Necking" would occur in the thread course, characterized in that that the air flow in the thread running direction is supported in such a way that necking is avoided.
- the first aspect of the invention can be advantageous with the second aspect can be combined, creating special advantages can be achieved because this causes the strain on the thread when Freezing is reduced in two ways, namely, that the forces acting on the thread be reduced and that the exaggerated rejuvenation (Necking) the thread before solidification is avoided.
- the invention is initially based on the simplest possible Spinning line explained, so the description is not incidental Explanations is difficult. That is why POY method has been chosen as an example.
- the invention is not limited to this example. For example by applying known godets to others Procedure to be adjusted. This is after the description of the figures briefly discussed it again.
- FIG. 1 schematically shows part of a nozzle plate 10, a single hole 12 in this plate 10, creating a Melt 14 is pressed out by means not shown, and the resulting filament 16.
- the simplicity for the sake of a single filament 16 is shown - but it can known to be several filaments 16 simultaneously (each by a separate hole can be formed in the plate 10).
- This in 1 is completed by that the filament 16 in a bobbin 18 in a winding unit (Winder or winder) 20 is wound up.
- Windder or winder winding unit
- the filament tapers compared to its original cross-section when pressed from hole 12. Find below EP solidification point no further (substantial) change in the filament cross-section instead of.
- the speed of a "polymer particle" between the nozzle plate and the winder influenced by very complex effects, some of which have not yet been researched. After the polymer has solidified, this is in an arrangement according to FIG. 1 Speed (the "take-off speed") only and determined solely by the winder 20, and it applies from the freezing point EP into the winder 20.
- Stress FR Q
- Q is the area size of the cross section in the thread piece mentioned.
- the stress, the resultant FR and the area size Q are all three a function of the distance from the nozzle plate 10.
- the level of the load is immediately after the filaments emerge hardly depends on the air friction from the spinneret, because the filament speed is relative in this area is low.
- the burden in this area is from Acceleration and the viscosity in the longitudinal direction dependent. But after the acceleration of the filament speed exceeds a certain limit, one occurs substantial additional load due to air friction, if no measures are taken, this additional burden to avoid or limit.
- the amount of stress during solidification is for some filament properties (such as the elongation at break, the tensile strength, the cooking shrink and some more) decisive.
- This stress for example with POY spinning, the more the values of the achievable thread properties are less favorable out.
- FIG. 2 The elements of Figure 2 are basically the same as that 1, and they have the same reference numerals Mistake. The difference is that Means (not shown in Fig. 2) are provided for a To generate airflow LS in the direction of the thread.
- the current LS now forms the filament 16 above the solidification point EP adjacent layer of air at a speed VR flows in the direction of the thread, which is the same (or almost as high) as the speed of the Filament surface.
- the frictional forces Fr are therefore now negligible, which is a decrease in the resultant FR enables.
- the air flow LS contacts the filament 16 first at a point EB that is at a distance A below the plate 10 is arranged and it remains in contact with the filament up to the solidification point EP.
- Fig. 3 shows a first embodiment for practical implementation of the new principle.
- the nozzle plate is now at 25 indicated the winder at 27 and the one building up in the winder Coil with 28.
- Filaments 29 formed (three shown) attached to one given point P can be combined into a thread F.
- In front of the winder 27 there is a finish by means of a metering device 31 applied and at most a vortex performed by the device 33.
- the metering pump is not shown, which supplies the spinneret 25 with melt and with a given quantity / time unit. This quantity along with the number of holes in the nozzle plate and the Take-off speed gives the thickness of each filament, the so-called decitex per filament. If corresponds the procedure the usual today.
- the chamber 43 forms an extension of the tube 35 in the Thread running direction, so that the thread without deflection after the Passing through the tube 35 also through the chamber 43 and out an outlet 45 can run out.
- the exit is 45 constructed in such a way that it does not prevent the thread from running, but the entry of room air into the chamber 43 at this Counteracts. Ceramic thread guides can be found at the outlet 45 46 can be provided.
- the distance between the exit 45 and the device 31 can be chosen to be short, that no significant tension build-up due to air friction on solidified thread can take place.
- the lower end part of the chamber 43 is a perforated surface 47 formed and is surrounded by a collecting ring 49, the connected to the vacuum generator 37 via a channel 51 is.
- Means are preferably provided in or on the channel 51, to be able to control the flow rate, e.g. a valve 53, a throttle 55 and a measuring device 57 to the Measure differential pressure before or after the throttle.
- the chamber 43 is in the direction of the thread expanding connector (a "trumpet") 58 with the Tube 35 connected.
- the high air speed in tube 35 this will reduce something before the air enters the chamber 43 occurs.
- Another slowdown takes place when crossing from the chamber 43 into the collecting ring 49 instead.
- By these measures will increase the risk of turbulence reduced in airflow.
- By reducing the Air speed below the tube 35 can be the thread tension may be increased, which may be for winding is advantageous.
- For the usual winding process is one Inlet tension of the thread in the range 0.08 to 0.15 CN / dtex advantageous.
- a tapered in the direction of the thread Mouthpiece (a "funnel") 59 is provided above the upper end 39 of Tube 35 .
- the funnel 59 (and possibly also the trumpet 58) are preferably with a profile on its inner surface, if possible little turbulence is generated in the air flow.
- the funnel 59 is arranged inside a perforated cylinder 61, through which room air is sucked in.
- This perforated Cylinder 61 extends back to the heater box 63, which comprises the spinneret 25.
- Another perforated Cylinder 65 may be provided around the first cylinder 61 to form a calming space 67 in between, which also helps to avoid air turbulence.
- a roller (a godet) or roller unit After leaving chamber 43 (in front of the winder) a roller (a godet) or roller unit can be provided. As a result, the "roving" emerging from the chamber are stretched, which is to produce FDY yarns or technical yarns can be used.
- the godet could but only serve to tighten the thread tension before winding affect without aiming to stretch.
- the perforated cylinder 61 can be a wire mesh, perforated Sheet, sintered body or fiber element are formed. Of the minimum diameter of the cylinder 61 is so large that the still (thick) liquid filaments 29 the inner surface of the Do not touch cylinder 61.
- the axial length can be 5 to 200 cm.
- the tube 35 may have an inner diameter e.g. of 0.5 cm up to 20 cm.
- the material of the pipe is not important if the filaments touch the inner surface do not stick to it and the wall itself does not melt.
- the inner diameter of the tube 35 is compared to the negative pressure to choose the generator 37 so that the necessary Air speed in the tube 35 can be maintained. This air speed is preferably as high or even even higher than the take-off speed, i.e. the filament speed after freezing.
- a protected zone Z can be between the spinneret 25 and a place where the incoming air flow touched the filaments for the first time. This zone Z can thereby that a ring 64 is formed on the heating box 63 is attached below the spinneret 25.
- the heater box 63 can alternatively even below the spinneret 25th push forward.
- the incoming air can be preheated.
- air blasting agent 60 are provided, the air jets in the Introduce the axial direction of the tube 35 along the inner surface. These air blasting means 60 can also be used as aids can be used for threading.
- Fig. 4 shows a variant, which cooling the thread slows down to the startle of the polymer upon exit to avoid from the spinneret 25.
- the nozzle 25 is in this Case followed by a heated sheath 70 which one prevents sharp drop in thread temperature.
- This effect is further supported by the cylinder 61 in an upper part 61A and a lower part 61B by one Foreclosure 72 is divided, above the foreclosure Warm air is supplied to the cylinder part 61A while the relatively cold room air access to the cylinder part 61B is granted.
- the air flow in tube 35 could arise from blown air, which is inserted into the upper end of the tube.
- the air speed when entering the tube 35 can be influenced by an aperture 74, which the cylinder 61st surrounds and opposite the cylinder in the thread running direction can be moved.
- the aperture 74 has no perforation and therefore limits the access of indoor air to the perforated Cylinder 61 (or enables this access if the aperture 74 is moved down).
- the air speed in tube 35 should be the thread speed correspond as previously explained.
- a PES (polyester) yarn is wound at a speed of approx. 3600 m / min (without being wound up) to a Godet unit delivered.
- the unit generates a delay of about 1.45 and the drawn yarn is at a take-off speed of approx. 5200 m / min spooled with a yarn to give up to 6 decitex per filament.
- the delivery speed is increased the godet unit increased to approx. 7000 m / min without the properties of the original yarn to change significantly. Of the Delay remains unchanged, so the properties of the known yarns are retained.
- the take-off speed is increased to more than 10,000 m / min.
- PES or PA (polyamide) yarn is made at one speed between 400 and 600 m / min (e.g. PES tire cord, approx. 400 m / min) delivered to a godet unit. After stretching in the godet unit, the yarn is drawn off at a take-off speed between 2000 and 3500 m / min (e.g. PES tire cord, 2200 up to 2500 m / min).
- the spooled yarn has one Strength from 7 to 9 g / den at up to 10 decitex per filament on.
- the yarn can be Nozzle at a speed of more than 1000 m / min Properties unchanged compared to the known method to be delivered to the godet unit. This makes possible an increase in the take-off speed to more than 5500 m / min at also compared to the known method unchanged properties of the wound yarn.
- High modulus, low shrinkage (HMLS) yarns are recently considered Tire cord has been used.
- a PES yarn is used at a speed of 3000 to 3500 m / min a godet unit is delivered where the original is stretched.
- the drawn yarn is at a take-off speed of approx. 6000 m / min.
- this yarn can meet the requirement profiles for certain applications.
- the embodiment according to Fig. 5 comprises e.g. a Spinneret 25, a tube 35, a chamber 43 and an air vent 51.
- the area between the nozzle 25 and the tube 35 is 5 was not particularly shown, it can be shown in FIG. 3 or 4 can be designed.
- a heat treatment channel in FIG. 5 80 is provided below the chamber 43 .
- This channel goes through up flowing warm air (temperature e.g. 200 to 240 ° C) solidified yarn back to a temperature above the Glass point (but below the melting temperature) heated.
- the yarn emerging from the channel turns on Godetschreib 82.84 delivered, the yarn through the Godets is not stretched.
- the thread tension when entering the Godet pair is so high that the yarn on a stretch or Expansion point DP is stretched in the channel.
- the thread tension after the Godet pair is suitable for winding in the winder 27.
- FIG. 6 A preferred variant of this extended method is shown schematically in Fig. 6, wherein the heat treatment integrated in the device provided for this invention becomes. 6 shows the lower end part of the tube 35 (near the solidification point EP). Instead of chamber 43 3 is now a relatively large expansion channel 90 provided, e.g. around the air flow velocity of approx Reduce 7000 m / min to approx. 500 m / min.
- the slow flowing air in channel 90 is through a heating means 92 heated to such a temperature that the yarn to a temperature above the glass point is heated below the melting point.
- the Slowing the air flow also results in an increase in Air resistance (the air friction) and a corresponding Increase in thread tension. This results in a stretch or Expansion point DP in the lower part of channel 90. By stretching the crystallinity is increased, which is low Cooking shrinkage results. Yarns made by this process can be used directly in textile applications (e.g. Knitting, weaving) can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Artificial Filaments (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CH3610/93 | 1993-12-03 | ||
| CH361093 | 1993-12-03 | ||
| PCT/IB1994/000380 WO1995015409A1 (de) | 1993-12-03 | 1994-12-02 | Schmelzspinnverfahren für filamente |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0682720A1 EP0682720A1 (de) | 1995-11-22 |
| EP0682720B1 true EP0682720B1 (de) | 1998-06-03 |
Family
ID=4259692
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP95900885A Expired - Lifetime EP0682720B1 (de) | 1993-12-03 | 1994-12-02 | Schmelzspinnverfahren für filamente |
Country Status (8)
| Country | Link |
|---|---|
| EP (1) | EP0682720B1 (enExample) |
| JP (1) | JP4101869B2 (enExample) |
| KR (1) | KR100344007B1 (enExample) |
| CN (1) | CN1119461A (enExample) |
| BR (1) | BR9406246A (enExample) |
| DE (1) | DE59406138D1 (enExample) |
| TW (1) | TW268054B (enExample) |
| WO (1) | WO1995015409A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000028117A1 (de) * | 1998-11-09 | 2000-05-18 | Barmag Ag | Verfahren und vorrichtung zum herstellen eines hochorientierten fadens |
| US6716014B2 (en) | 1998-07-23 | 2004-04-06 | Barmag Ag | Apparatus and method for melt spinning a synthetic yarn |
| US6899836B2 (en) | 2002-05-24 | 2005-05-31 | Invista North America S.A R.L. | Process of making polyamide filaments |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5824248A (en) * | 1996-10-16 | 1998-10-20 | E. I. Du Pont De Nemours And Company | Spinning polymeric filaments |
| US6090485A (en) * | 1996-10-16 | 2000-07-18 | E. I. Du Pont De Nemours And Company | Continuous filament yarns |
| TW476818B (en) * | 1998-02-21 | 2002-02-21 | Barmag Barmer Maschf | Method and apparatus for spinning a multifilament yarn |
| CN1141422C (zh) * | 1998-06-22 | 2004-03-10 | 巴马格股份公司 | 用于纺合成长丝的纺丝装置 |
| WO2000008242A1 (de) * | 1998-08-07 | 2000-02-17 | Barmag Ag | Fadenpräparierung |
| DE19915762A1 (de) * | 1999-04-08 | 2000-10-12 | Lurgi Zimmer Ag | Kühlsystem für Filamentbündel |
| US6444151B1 (en) * | 1999-04-15 | 2002-09-03 | E. I. Du Pont De Nemours And Company | Apparatus and process for spinning polymeric filaments |
| EP1079008A1 (de) * | 1999-08-26 | 2001-02-28 | B a r m a g AG | Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens |
| DE50005349D1 (de) | 1999-09-07 | 2004-03-25 | Barmag Barmer Maschf | Verfahren zum schmelzspinnen |
| US6692687B2 (en) * | 2000-01-20 | 2004-02-17 | E. I. Du Pont De Nemours And Company | Method for high-speed spinning of bicomponent fibers |
| JP2003520303A (ja) | 2000-01-20 | 2003-07-02 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 2成分繊維の高速紡糸方法 |
| KR101076550B1 (ko) * | 2005-01-28 | 2011-10-24 | 엠엠알 마켓팅 앤드 매니지먼트 아게 로트크레우즈 | 유체를 압출하기 위한 방법 |
| EP2550381A2 (de) * | 2010-03-24 | 2013-01-30 | Oerlikon Textile GmbH & Co. KG | Verfahren und vorrichtung zum schmelzspinnen und abkühlen einer vielzahl synthetischer fäden |
| JP2015014071A (ja) * | 2013-07-08 | 2015-01-22 | Tmtマシナリー株式会社 | 糸条冷却装置 |
| JP7149100B2 (ja) * | 2018-05-16 | 2022-10-06 | Tmtマシナリー株式会社 | 紡糸冷却装置 |
| DE102022003355A1 (de) * | 2022-09-12 | 2024-03-14 | Oerlikon Textile Gmbh & Co. Kg | Vorrichtung und Verfahren zur Herstellung synthetischer Fäden |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH468482A (de) * | 1967-05-01 | 1969-02-15 | Inventa Ag | Vorrichtung zur Verhinderung von Luftwirbelbildung im Spinnschacht |
| US3611485A (en) * | 1968-12-30 | 1971-10-12 | Monsanto Co | Spinning chimney |
| ATE131224T1 (de) * | 1991-09-06 | 1995-12-15 | Akzo Nobel Nv | Vorrichtung zum schnellspinnen von multifilen fäden und deren verwendung. |
| DE9306510U1 (de) * | 1992-06-13 | 1993-06-09 | Barmag AG, 5630 Remscheid | Spinnvorrichtung zum Spinnen synthetischer Fäden |
| DE4223198A1 (de) * | 1992-07-15 | 1994-01-20 | Zimmer Ag | Verfahren und Vorrichtung zur Herstellung synthetischer Endlosfilamente |
| BR9400682A (pt) * | 1993-03-05 | 1994-10-18 | Akzo Nv | Aparelho para a fiação em fusão de fios multifilamentares e sua aplicação |
-
1994
- 1994-12-01 TW TW083111172A patent/TW268054B/zh active
- 1994-12-02 EP EP95900885A patent/EP0682720B1/de not_active Expired - Lifetime
- 1994-12-02 KR KR1019950703168A patent/KR100344007B1/ko not_active Expired - Fee Related
- 1994-12-02 WO PCT/IB1994/000380 patent/WO1995015409A1/de not_active Ceased
- 1994-12-02 JP JP51551495A patent/JP4101869B2/ja not_active Expired - Fee Related
- 1994-12-02 BR BR9406246A patent/BR9406246A/pt not_active IP Right Cessation
- 1994-12-02 DE DE59406138T patent/DE59406138D1/de not_active Expired - Lifetime
- 1994-12-02 CN CN94191488A patent/CN1119461A/zh active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6716014B2 (en) | 1998-07-23 | 2004-04-06 | Barmag Ag | Apparatus and method for melt spinning a synthetic yarn |
| WO2000028117A1 (de) * | 1998-11-09 | 2000-05-18 | Barmag Ag | Verfahren und vorrichtung zum herstellen eines hochorientierten fadens |
| US6478996B1 (en) | 1998-11-09 | 2002-11-12 | Barmag Ag | Method and apparatus for producing a highly oriented yarn |
| US6899836B2 (en) | 2002-05-24 | 2005-05-31 | Invista North America S.A R.L. | Process of making polyamide filaments |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0682720A1 (de) | 1995-11-22 |
| HK1009718A1 (en) | 1999-06-04 |
| KR960703374A (ko) | 1996-08-17 |
| JPH08506393A (ja) | 1996-07-09 |
| KR100344007B1 (ko) | 2002-11-30 |
| TW268054B (enExample) | 1996-01-11 |
| CN1119461A (zh) | 1996-03-27 |
| BR9406246A (pt) | 1996-01-09 |
| JP4101869B2 (ja) | 2008-06-18 |
| WO1995015409A1 (de) | 1995-06-08 |
| DE59406138D1 (de) | 1998-07-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0682720B1 (de) | Schmelzspinnverfahren für filamente | |
| DE3781313T3 (de) | Verfahren und Vorrichtung. | |
| EP1090170B1 (de) | Spinnvorrichtung zum spinnen eines synthetischen fadens | |
| EP1102878B1 (de) | Spinnvorrichtung und -verfahren zum spinnen eines synthetischen fadens | |
| DE19535143B4 (de) | Vorrichtung und Verfahren zur thermischen Behandlung von Fasern | |
| EP1192301A1 (de) | Verfahren und vorrichtung zur herstellung von im wesentlichen endlosen feinen fäden | |
| DE2117659A1 (de) | Verfahren zum Herstellen von Fäden und Fasern | |
| EP1079008A1 (de) | Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens | |
| CH642403A5 (de) | Spindelloses spinnverfahren und vorrichtung zur herstellung von garnen auf einer spinnmaschine. | |
| DE2925006C2 (de) | Verfahren zur Herstellung schmelzgesponnener und molekularorientierend verstreckter, kristalliner Filamente | |
| EP1045930B1 (de) | Verfahren und vorrichtung zum herstellen eines hochorientierten fadens | |
| EP3505659A1 (de) | Verfahren und vorrichtung zum filamentspinnen mit umlenkung | |
| EP0541552B1 (de) | Verfahren und spinnvorrichtung zur herstellung von mikrofilamenten | |
| DE3026451A1 (de) | Verfahren zur herstellung hochfester technischer garne durch spinnstrecken und durch das verfahren hergestellte garne, insbesondere aus polyamid- und polyesterfaeden | |
| DE19506369A1 (de) | Verfahren und Vorrichtung zum Heizen eines synthetischen Fadens | |
| WO1998036110A1 (de) | Verstreckvorrichtung und verfahren zur herstellung verstreckter kunststoffilamente | |
| CH631495A5 (de) | Streckspinnverfahren fuer die herstellung von polyester-endlosgarn. | |
| DE19716394C1 (de) | Verfahren und Vorrichtung zur passiven verzögerten Abkühlung von Spinnfilamenten | |
| DE2211395A1 (de) | Verfahren zum herstellen von dreidimensional gekraeuselten faeden und fasern | |
| EP1352114A1 (de) | Verfahren zum spinnstrecken von schmelzgesponnenen garnen | |
| EP0480550B1 (de) | Verfahren und Vorrichtung zur Herstellung von Spinnvliesen | |
| DE10116294A1 (de) | Verfahren zm Schmelzspinnen eines Verbundfadens und Spinnvorrichtung | |
| DE3036683C2 (de) | Verfahren zum Schmelzspinnen von synthetischen Polymeren | |
| DE2741193A1 (de) | Verfahren und vorrichtung zur herstellung von thermoplastischen faeden | |
| DE1902213A1 (de) | Verfahren zur Herstellung von Polyamid-Kraeuselfaeden |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19950729 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE GB IT LI |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| 17Q | First examination report despatched |
Effective date: 19970312 |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MEARS, RONALD |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MEARS, RONALD |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB IT LI |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: TROESCH SCHEIDEGGER WERNER AG Ref country code: CH Ref legal event code: EP |
|
| REF | Corresponds to: |
Ref document number: 59406138 Country of ref document: DE Date of ref document: 19980709 |
|
| ITF | It: translation for a ep patent filed | ||
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980826 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: MEARS, RONALD TRANSFER- BARMAG AG |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20091224 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20091217 Year of fee payment: 16 Ref country code: GB Payment date: 20091231 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091229 Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20101202 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101231 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59406138 Country of ref document: DE Effective date: 20110701 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101202 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110701 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101202 |