EP0663964A1 - SCHUTZ GEGEN KORROSIVE UND EROSIVE ANGRIFFE BEI TEMPERATUREN BIS ETWA 500 oC FÜR EIN AUS CHROMSTAHL BESTEHENDES SUBSTRAT. - Google Patents

SCHUTZ GEGEN KORROSIVE UND EROSIVE ANGRIFFE BEI TEMPERATUREN BIS ETWA 500 oC FÜR EIN AUS CHROMSTAHL BESTEHENDES SUBSTRAT.

Info

Publication number
EP0663964A1
EP0663964A1 EP93920767A EP93920767A EP0663964A1 EP 0663964 A1 EP0663964 A1 EP 0663964A1 EP 93920767 A EP93920767 A EP 93920767A EP 93920767 A EP93920767 A EP 93920767A EP 0663964 A1 EP0663964 A1 EP 0663964A1
Authority
EP
European Patent Office
Prior art keywords
substrate
layer
metal layer
aluminum
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93920767A
Other languages
English (en)
French (fr)
Other versions
EP0663964B1 (de
Inventor
Friedhelm Schmitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP93920767A priority Critical patent/EP0663964B1/de
Publication of EP0663964A1 publication Critical patent/EP0663964A1/de
Application granted granted Critical
Publication of EP0663964B1 publication Critical patent/EP0663964B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Definitions

  • the invention relates to protection against corrosive and erosive attack at temperatures up to about 500 * C for an existing chromium steel substrate by means of a Schutz ⁇ layer, which contains aluminum.
  • the invention relates to substrates on components for all types of turbomachinery, in particular turbocompressors regardless of the type of their drive, and on gas and steam turbines, with particular reference being made to components of such turbomachinery which are to be operated at temperatures of up to about 500 ° C. .
  • a particularly important field of application of the invention is the protection of compressor blades and other components loaded in this way in the turbocompressors of gas turbines.
  • blades for turbomachines which mainly consist of ferritic and / or ferritic-martensitic base materials, are included
  • Protective layers made of aluminum alloys in particular of aluminum alloys with 6 to 15% by weight of silicon, are provided. Such aluminum alloys are to be applied to the blades using a high-speed spraying process.
  • Aluminum pigment coatings which may have inorganic or organic top layers. Also from the book “Praxis der Kraftwerk-Chemie”, published by Hans-Günter Heitmann, Vulkan-Verlag, Essen, 1986, in particular the article contained therein "Gasturbinen-Roon" by F. Schmitz, pp. 57A ff essential information on the problem of corrosive and erosive attacks in the compressors of gas turbine systems. Details on the erosive and corrosive attacks, in particular on vibration crack corrosion, and on the problems that occur when using conventional high-temperature lacquer protective layers are also explained.
  • the invention is the Auf ⁇ based on the object, a considerably improved protection for an existing chromium steel substrate to achieve, the cost of achieving protection also being kept low, possibly even reduced, shall be.
  • methods for the formation of such protection, protective layers which ensure such protection, substrates which are provided with such protection and methods for producing such substrates are to be specified.
  • the inventive method for achieving protection against a corrosive and / or erosive attack at a temperature up to about 500 * C for a chrome steel existing of the substrate, forming said ge on the substrate, a protective layer, includes that aluminum, is characterized ge ⁇ indicates that an aluminum-containing metal layer is applied to the substrate and is hardened or cured at least on its surface to form the protective layer.
  • the invention is based on the knowledge that the hardenability or hardenability of the aluminum itself or of the aluminum base materials can advantageously be used to form a protection of the type mentioned.
  • the metal layer containing aluminum can be hardened, for example, chemically, in particular by oxidation, or mechanically, in particular by rolling. Curing is understood to mean, for example, a structural change in the metal layer caused by heat treatment, in particular precipitation hardening.
  • the hardening or hardening need not necessarily cover the entire metal layer; it may be advantageous to restrict the hardening or hardening to a part near the surface and thus a so-called "duplex
  • the hard layer formed according to the invention advantageously has a Vickers hardness HV 0.025 of more than about 200, considerably more than HV 0.025 of a conventional high-temperature lacquer layer, where HV 0.025 is usually at most 120.
  • the metal layer to be applied to the substrate to be protected advantageously consists mainly of aluminum and is accordingly in particular an aluminum-based alloy, for example with the addition of at least one of the elements magnesium, copper and zinc. Silicon, manganese and titanium can also be used as additives.
  • the hardening or hardening of the metal layer takes place with particular advantage in such a way that the metal layer is converted at least on its surface into a hard layer.
  • the hard layer can be produced by numerous different methods that may be combined with one another, in particular mechanical strengthening, chemical or thermal treatment. It is particularly favorable if a part of the metal layer remains under the hard layer, so that the protective layer is a duplex layer which comprises the metal layer and the hard layer.
  • a duplex layer which comprises a rather hard layer on the one hand and a rather ductile metal layer on the other hand, is particularly favorable since hard layers and ductile layers each withstand different types of erosion: hard layers are suitable as protection against erosion attack by particles which strike grazing to approximately at an angle, ductile metal layers are advantageous for protection against erosion through at large angles, in particular at an angle to approximately vertical, impacting particles.
  • the duplex layer can therefore provide protection against eroding particles regardless of their angle of incidence, although removal of the hard layer must initially be expected in areas of the component where the particles meet approximately vertically until which is exposed to erosion resistant to large impact angles, ductile metal layer.
  • the oxidizing is preferably an anodizing, in particular anodizing.
  • the hard layer obtained can be additionally compacted by treating it with boiling water or a boiling, aqueous salt solution. Details of this are known in the field of anodic oxidation of aluminum and do not require any further explanation at this point. Any oxidation of an aluminum-containing layer produces a surface layer which has aluminum oxide or corundum, one of the hardest minerals, as an essential component. In order to achieve a particularly thick, dense and hard layer, anodic oxidation is particularly suitable.
  • layers of essentially pure aluminum can be used for anodic oxidation, but in particular also layers of aluminum-magnesium alloys.
  • aluminum-based alloys with the addition of magnesium in a proportion by weight of between 0.5% and 5%, in particular between 1% and A%, possibly with further small proportions of silicon, iron, copper, chromium, zinc and / or titanium in the usual framework.
  • An alternative method of forming a hard layer on a metal layer is to use a hardenable alloy to form the metal layer followed by hardening.
  • the hardening can be limited to a region of the metal layer near the surface are achieved by curing, for example, by irradiation with laser light; it can also cover the entire metal layer, for which the component provided with the metal layer can be heat-treated in a conventional manner in an oven.
  • An aluminum-based alloy with additions of magnesium and copper or zinc is particularly suitable as the hardenable alloy.
  • an aluminum-based alloy is used with a weight proportion of magnesium between 0, A and 2% and copper between 3.5 and 5%, with usual impurities and possibly further admixtures, as mentioned above.
  • an aluminum-based alloy with a weight proportion of zinc between 1% and 5%, in particular between A% and 5%, and magnesium up to 2%, in particular between 1% and 1.5%, also with usual impurities and any other admixtures.
  • the metal layer is applied electrochemically, in particular by electroplating, as part of any configuration of the method.
  • Electroplating produces a particularly uniform and dense layer with extremely low porosity, in which the occurrence of pitting corrosion is accordingly suppressed.
  • Pitting corrosion occurs when an electrically conductive liquid, for example a water drop with salt or ash parts, enters a pore of the protective layer and with the protective layer and the Substrate forms a galvanic element.
  • the decomposition processes occurring in such an element can, starting from the pore, spread into the boundary layer between the protective layer and the substrate and destroy the substrate under the externally intact protective layer. For this reason, the electrochemical application of the metal layer is particularly preferred since it avoids pores.
  • a protective layer is provided on a substrate made of chrome steel, which protective layer provides protection against corrosive and erosive attack at Tem ⁇ temperatures up to about 500 * C has and by at least superficial hardening or curing a coating applied to the substrate, aluminum-containing metal layer by the method according to the invention was formed.
  • the invention also relates to a substrate which is provided with a protective layer according to the invention as protection against corrosive and / or erosive attack at a temperature of up to about 500 ° C.
  • a substrate can in particular belong to a blade of a turbomachine such as a turbocompressor, be it a rotor blade or a guide blade.
  • the blade can have a foot part for fastening the component and a blade part which is the effective part in the thermodynamic process in the turbomachine, and at least one of which is a gas, in particular air, gas turbine exhaust gas or steam, exposed sheet part has a substrate protected according to the invention.
  • the substrate preferably consists of a chromium steel with the following proportions, the proportions being given in percentages by weight: 0.1 to 0.3% carbon 11 to 17% chromium 0 to 6% nickel 0 to 1.5 X molybdenum 0 to 1 % Vanadium 0 to 1% silicon 0 to 1% manganese balance iron with manufacturing-related impurities.
  • the substrate protected according to the invention preferably has, at least in part, a ferritic or martensitic structure.
  • chromium steels which are suitable for substrates to be protected according to the invention are the chromium steels X20 Cr 13, X20 CrMoV 12 1, X20 CrNiMo 15 5 1, X12 CrNiMo 12.
  • the chromium steel X20 Cr 13 is regarded as particularly preferred.
  • the method according to the invention for producing a substrate which has protection against a corrosive and / or erosive attack at a temperature of up to about 500 ° C. is characterized by the use of the method described above for forming the protection.
  • the invention relates to achieving protection for a substrate, in particular a substrate on a turbine or compressor blade of a turbomachine, against one Corrosive and / or erosive attack at a temperature up to about 500 'C.
  • a protective layer is formed on the substrate, which contains aluminum.
  • a metal layer containing aluminum is first applied and hardened or cured at least on its surface to form the protective layer.
  • highly effective protection against corrosion and erosion can be obtained with simple means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft die Erzielung eines Schutzes gegen einen korrosiven und erosiven Angriff bei einer Temperatur bis etwa 500 °C für ein aus Chromstahl bestehendes Substrat. Auf dem Substrat wird eine Schutzschicht gebildet, welche Aluminium beinhaltet. Erfindungsgemäss wird zunächst eine Aluminium beinhaltende Metallschicht aufgebracht und zur Bildung der Schutzschicht zumindest an ihrer Oberfläche gehärtet oder ausgehärtert. Im Rahmen der Erfindung kann mit einfachen Mitteln ein hochwirksamer Schutz gegen Korrosion und Erosion erhalten werden, insbesondere für Substrate an Schaufeln für Turbomaschinen, speziell Turboverdichter.

Description

Schutz gegen korrosive und erosive Angriffe bei Temperatu¬ ren bis etwa 500* C für ein aus Chromstahl bestehendes Substrat.
Die Erfindung betrifft den Schutz gegen korrosive und erosive Angriffe bei Temperaturen bis etwa 500* C für ein aus Chromstahl bestehendes Substrat mittels einer Schutz¬ schicht, welche Aluminium beinhaltet.
Die Erfindung bezieht sich auf Substrate an Bauteilen für alle Arten von Turbomaschinen, insbesondere Turboverdichtern unabhängig von der Art ihres Antriebes sowie auf Gas- und Dampfturbinen, wobei insbesondere Bezug genommen wird auf Bauteile solcher Turbomaschinen, welche bei Temperaturen bis etwa 500* C zu betreiben sind. Ein besonders wichtiges Anwendungsgebiet der Erfindung ist der Schutz von Verdich¬ terschaufeln und anderen wie diese belasteten Bauteilen in den Turboverdichtern von Gasturbinen.
Möglichkeiten zum Schutz eines Substrates an einem Bauteil einer Turbomaschine gegen korrosive und erosive Angriffe bei Temperaturen bis 450* C gehen aus der EP 0 379 699 AI hervor. Nach dieser Schrift werden Schaufeln für Turboma¬ schinen, die vorwiegend aus ferritischen und/oder ferri- tisch-martensitischen Grundmaterialien bestehen, mit
Schutzschichten aus Aluminiumlegierungen, insbesondere aus Aluminiumlegierungen mit 6 bis 15 Gew.% Silizium, versehen. Solche Aluminiumlegierungen sollen mit einem Hochgeschwin- digkeitsspritzverfahren auf die Schaufeln aufgebracht werden.
Das Phänomen der SchwingungsriBkorrosion an beschichteten Verdichterschaufeln für Turbomaschinen ist in dem Aufsatz "Schwingungsrißkorrosion beschichteter Verdichterschaufel- Werkstoffe" von H. Hoffmann, W. Magin, M. Schemmer und F. Schmitz, Zeitschrift für Werkstofftechnik r7 (1986) 413, eingehend erläutert. Die in diesem Aufsatz erwähnten Ver¬ dichterschaufeln weisen auf Substraten aus Chromstählen Schutzschichten aus in Chromat/Phosphat-Binde itteln dis- pergierten Aluminiumpigmenten auf. Auch sind Schutzschich¬ ten aus Nickel oder Nickel-Kadmium-Legierungen erwähnt.
Die Problematik der erosiven Angriffe, denen Verdichter¬ schaufeln und dergleichen ausgesetzt sind, wird ausführ¬ lich erläutert in dem Aufsatz "Untersuchung der Strahlver- schleißbeständigkeit von Werkstoffen und Beschichtungen mit Hilfe eines Wirbelbett-Testverfahrens" von K. G. Schmitt-Thomas, T. Happle und P. Steppe, Werkstoffe und Korrosion A (1990) 623. Dieser Aufsatz behandelt auch die Wechselwirkung von Erosion und Korrosion an Schaufeln für Turbomaschinen, da ein durch Erosion erfolgter Abtrag einer Schutzschicht schließlich das Substrat einer Schau- fei freilegt, dessen Werkstoff üblicherweise im wesentli¬ chen nur auf mechanische Eigenschaften optimiert ist und keine genügend gute Beständigkeit gegen Erosion und Korrosion hat. Die Mechanismen der Erosion, die insbeson¬ dere abhängen von den Winkeln, unter denen erodierende Partikel auf ein Bauteil einfallen, werden ausführlich erläutert; auch wird die Abhängigkeit der Wirkung der Erosion von der Art des der Erosion ausgesetzten Werk¬ stoffes erläutert. Eingehend beschrieben sind Erosions¬ und Korrosionsprobleme von Verdichterschaufeln, insbeson- dere von Verdichterschaufeln mit anorganisch gebundenen
Aluminiumpigment-Überzügen, welche evtl. mit anorganischen oder organischen Deckschichten versehen sind. Auch aus dem Buch "Praxis der Kraftwerk-Chemie", herausge¬ geben von Hans-Günter Heitmann, Vulkan-Verlag, Essen, 1986, insbesondere dem darin enthaltenen Aufsatz "Gasturbinen- Anlagen" von F. Schmitz, Seiten 57A ff., gehen wesentliche Hinweise zur Problematik der korrosiven und erosiven An¬ griffe in den Verdichtern von Gasturbinenanlagen hervor. Auch sind Einzelheiten zu den erosiven und korrosiven An¬ griffen, insbesondere zur Schwingungsrißkorrosion, und zu den Problemen, die bei der Verwendung üblicher Hoch- temperaturlack-Schutzschichten auftreten, erläutert.
Hierzu ist hinzuweisen auf Korrosionsphänomene, die aus¬ gehen von Poren in den Schutzschichten und zur Schädigung der Grundwerkstoffe unter äußerlich mehr oder weniger in¬ takt erscheinenden Schutzschichten führen können.
Der Aufsatz "Korrosionsverhalten von anodisch oxidierten Aluminium-Werkstoffen" von W. Paatsch, Metalloberfläche A5 (1991) 8, gibt Hinweise zu Korrosionsphänomenen an Aluminium-Oberflächen, die anodisch oxidiert wurden. Die anodische Oxidation von Aluminium ist auf vielen Gebieten der Technik, allerdings nicht im Zusammenhang mit Turbo¬ maschinen, bekannt zur Bildung robuster, dekorativer Oberflächen. Zur Problematik der Erosion sowie zur Be¬ lastbarkeit einer Aluminium-Oberfläche bei erhöhter Tem- peratur schweigt der Aufsatz.
In Ansehung der Probleme der bisher zur Bildung eines Schutzes gegen korrosive und erosive Angriffe bei Tempera¬ turen bis etwa 500*C für ein Bauteil einer Turbomaschine vorgesehenen Schutzschichten liegt der Erfindung die Auf¬ gabe zugrunde, einen wesentlich verbesserten Schutz für ein aus Chromstahl bestehendes Substrat zu erreichen, wobei da¬ rüber hinaus auch der kostenmäßige Aufwand zur Erzielung des Schutzes gering gehalten, womöglich sogar verringert, werden soll. Erfindungsgemäß sollen sowohl Verfahren zur Bildung eines solchen Schutzes, Schutzschichten, die einen solchen Schutz gewährleisten, Substrate, die mit einem solchen Schutz versehen sind und Verfahren zur Herstellung solcher Substrate angegeben werden.
Das erfindungsgemäße Verfahren zur Erzielung eines Schutzes gegen einen korrosiven und/oder erosiven Angriff bei einer Temperatur bis etwa 500*C für ein aus Chromstahl bestehen- des Substrat, wobei auf dem Substrat eine Schutzschicht ge¬ bildet wird, welche Aluminium beinhaltet, ist dadurch ge¬ kennzeichnet, daß auf das Substrat eine Aluminium beinhal¬ tende Metallschicht aufgebracht und zur Bildung der Schutz¬ schicht zumindest an ihrer Oberfläche gehärtet oder ausge- härtet wird.
Die Erfindung geht aus von der Erkenntnis, daß die Härtbar¬ keit oder Aushärtbarkeit des Aluminiums selbst oder der Aluminiumbasiswerkstoffe zur Bildung eines Schutzes der ge- nannten Art vorteilhaft ausgenutzt werden kann. Die Härtung der Aluminium beinhaltenden Metallschicht kann beispiels¬ weise chemisch, insbesondere durch Oxidieren, oder mecha¬ nisch, insbesondere durch Rollieren, erfolgen; unter einer Aushärtung wird beispielsweise eine durch Wärmebehandlung veranlaßte Gefügeänderung in der Metallschicht, insbesonde¬ re eine Ausscheidungshärtung, verstanden. Die Härtung oder Aushärtung muß dabei nicht notwendigerweise die gesamte Metallschicht erfassen; es kann durchaus vorteilhaft sein, die Härtung oder Aushärtung auf einen oberflächennahen Teil zu beschränken und somit eine sogenannte "Duplex-
Schicht" zu erhalten. Die erfindungsgemäß gebildete harte Schicht hat günstigerweise eine Vickers-Härte HV 0,025 von mehr als etwa 200, wesentlich mehr als HV 0,025 einer üb¬ lichen Hochtemperatur-Lackschicht, wo üblicherweise HV 0,025 höchstens 120 beträgt. Die auf das zu schützende Substrat aufzubringende Metall¬ schicht besteht günstigerweise hauptsächlich aus Aluminium und ist demgemäß insbesondere eine Aluminiumbasislegierung, beispielsweise mit einem Zusatz zumindest eines der Elemen- te Magnesium, Kupfer und Zink. Als weitere Zusätze kommen Silizium, Mangan und Titan in Frage.
Die Härtung oder Aushärtung der Metallschicht erfolgt mit besonderem Vorteil in der Weise, daß die Metallschicht zu- mindest an ihrer Oberfläche in eine harte Schicht umgewan¬ delt wird. Wie bereits angedeutet, kann die harte Schicht durch vielzählige verschiedene ggf. untereinander kombi¬ nierte Verfahren, insbesondere mechanische Verfestigung, chemische oder thermische Behandlung, erzeugt werden. Be- sonders günstig ist es, wenn unter der harten Schicht ein Teil der Metallschicht verbleibt, so daß die Schutzschicht eine Duplex-Schicht ist, welche die Metallschicht und die harte Schicht umfaßt. In Anbetracht des von der Ausrichtung der angegriffenen Bereiche des Substrats zu der Flugrich- tung erodierender Partikel abhängigen Erosionsangriffs ist eine Duplex-Schicht, welche eine eher harte Schicht einer¬ seits und eine eher duktile Metallschicht andererseits um¬ faßt, besonders günstig, da harte Schichten und duktile Schichten jeweils verschiedenen Arten der Erosion wider- stehen: harte Schichten eignen sich als Schutz gegen einen Erosionsangriff durch Partikel, die streifend bis etwa schräg auftreffen, duktile Metallschichten sind vorteil¬ haft zum Schutz gegen Erosion durch unter großen Winkeln, insbesondere schräg bis etwa senkrecht, auftreffende Par- tikel. Mithin vermag die Duplex-Schicht einen Schutz gegen erodierende Partikel unabhängig von ihrem Auftreffwinkel zu gewährleisten, wobei allerdings anfangs an Bereichen des Bauteiles, wo die Partikel etwa senkrecht auftreffen, mit einem Abtrag der harten Schicht gerechnet werden muß, bis die gegen Erosion unter großen Aufprallwinkeln resistente, duktile Metallschicht freigelegt ist.
Besonders günstig ist es in jedem Falle, eine harte Schicht durch zumindest teilweises Oxidieren der Metallschicht zu bilden; vorzugsweise ist das Oxidieren ein anodisches Oxidieren, insbesondere Eloxieren. Im Anschluß an ein anodisches Oxidieren kann die erhaltene harte Schicht zu¬ sätzlich verdichtet werden, indem sie mit kochendem Wasser oder einer kochenden, wäßrigen Salzlösung behandelt wird. Einzelheiten hierzu sind auf dem Fachgebiet der anodischen Oxidation von Aluminium bekannt und bedürfen an dieser Stelle keiner weiteren Erläuterung. Durch jedwedes Oxidie¬ ren einer aluminiumhaltigen Schicht wird eine Oberflächen¬ schicht erzeugt, die Aluminiumoxid oder Korund, eines der härtesten Minerale, als wesentlichen Bestandteil aufweist. Um eine besonders dicke, dichte und harte Schicht zu erzie¬ len, ist insbesondere die anodische Oxidation geeignet. Es sei bemerkt, daß zur anodischen Oxidation nicht nur Schich¬ ten aus im wesentlichen reinem Aluminium in Frage kommen, sondern insbesondere auch Schichten aus Aluminium Magne¬ sium-Legierungen. Insbesondere sind Aluminiumbasislegierun¬ gen mit Zusatz von Magnesium in einem Gewichtsanteil zwi¬ schen 0,5 % und 5 % , insbesondere zwischen 1 % und A % , eventuell mit weiteren geringen Anteilen von Silizium, Eisen, Kupfer, Chrom, Zink und/oder Titan im üblichen Rah¬ men, geeignet.
Ein alternatives Verfahren zur Bildung einer harten Schicht auf einer Metallschicht ist die Verwendung einer aushärtbaren Legierung zur Bildung der Metallschicht mit anschließender Aushärtung. Die Aushärtung kann dabei auf einen oberflächennahen Bereich der Metallschicht beschränkt werden, indem die Aushärtung beispielsweise durch Bestrah¬ len mit Laserlicht bewerkstelligt wird; sie kann auch die gesamte Metallschicht erfassen, wofür das mit der Metall¬ schicht versehene Bauteil in üblicher Weise in einem Ofen wärmebehandelt werden kann. Als aushärtbare Legierung kommt insbesondere eine Aluminiumbasis-Legierung mit Zu¬ sätzen von Magnesium sowie Kupfer oder Zink in Frage. Vorteilhafterweise wird eine Aluminiumbasis-Legierung verwendet mit Gewichtsanteilen von Magnesium zwischen 0,A und 2 % sowie Kupfer zwischen 3,5 und 5 %, mit übli¬ chen Verunreinigungen und evtl. weiteren Beimischungen, wie oben erwähnt. Ebenfalls in Frage kommt eine Aluminium¬ basis-Legierung mit Gewichtsanteilen von Zink zwischen 1 % und 5 %, insbesondere zwischen A % und 5 %, sowie Magnesium bis zu 2 % , insbesondere zwischen 1 % und 1,5 % , ebenfalls mit üblichen Verunreinigungen und eventuellen weiteren Beimischungen.
Generell ist es vorteilhaft, zur Bildung des Schutzes gegen korrosive und erosive Angriffe bei Temperaturen bis etwa 500* C auf das Substrat eine Metallschicht mit einer Dicke aufzubringen, welche zwischen 15 μm und 200 μ , vor¬ zugsweise zwischen AO μm und 100 μ , beträgt.
Das Aufbringen der Metallschicht erfolgt im Rahmen jedwe¬ der Ausgestaltung des Verfahrens mit besonderem Vorteil elektrochemisch, insbesondere durch Galvanisieren. Durch Galvanisieren wird eine besonders gleichmäßige und dichte Schicht mit äußerst geringer Porosität erzielt, bei der dementsprechend das Auftreten von Lochkorrosion unter¬ drückt ist. Lochkorrosion entsteht dann, wenn in eine Pore der Schutzschicht eine elektrisch leitfähige Flüssigkeit, beispielsweise ein Wassertropfen mit Salz- oder Aschenan¬ teilen, eintritt und mit der Schutzschicht und dem Substrat ein galvanisches Element bildet. Die in einem solchen Element auftretenden Zersetzungsprozesse können sich, ausgehend von der Pore, in die Grenzschicht zwischen der Schutzschicht und dem Substrat ausbreiten und das Substrat unter der äußerlich intakten Schutzschicht zer¬ stören. Aus diesem Grunde ist das elektrochemische Auf¬ bringen der Metallschicht besonders bevorzugt, da es Poren vermeidet.
Mit besonderem Vorteil wird die Schutzschicht jedweder Ausgestaltung direkt, also ohne Einfügung irgendwelcher Zwischenschichten, auf das Substrat aufgebracht. Hierdurch wird insbesondere der mit der Erzielung des Schutzes ver¬ bundene Aufwand gering gehalten.
Erfindungsgemäß wird auch eine Schutzschicht auf einem Substrat aus Chromstahl angegeben, welche Schutzschicht einen Schutz gegen korrosive und erosive Angriffe bei Tem¬ peraturen bis etwa 500* C bietet und durch zumindest ober- flächliche Härtung oder Aushärtung einer auf das Substrat aufgebrachten, Aluminium beinhaltenden Metallschicht nach dem erfindungsgemäßen Verfahren gebildet wurde.
Die Erfindung betrifft auch ein Substrat, welches als Schutz gegen einen korrosiven und/oder erosiven Angriff bei einer Temperatur bis zu etwa 500*C mit einer erfindungsgemäßen Schutzschicht versehen ist. Ein solches Substrat kann ins¬ besondere zu einer Schaufel einer Turbomaschine wie eines Turboverdichters, sei es zu einer Laufschaufel oder einer Leitschaufel, gehören. Die Schaufel kann dabei einen Fußteil zur Befestigung des Bauteils und einen Blatteil aufweisen, der im Rahmen des ther odynamischen Prozesses in der Tur¬ bomaschine der wirksame Teil ist, und wobei zumindest der einem Gas, insbesondere Luft, Gasturbinenabgas oder Dampf, ausg-rsetzte Blatteil ein erfindungsgemäß geschütztes Substrat aufweist.
Das Substrat besteht vorzugsweise aus einem Chromstahl mit folgenden Anteilen, wobei die Anteile in Gewichtspro¬ zenten angegeben sind: 0,1 bis 0,3 % Kohlenstoff 11 bis 17 % Chrom 0 bis 6 % Nickel 0 bis 1,5 X Molybdän 0 bis 1 % Vanadium 0 bis 1 % Silizium 0 bis 1 % Mangan Rest Eisen mit herstellungsbedingten Verunreinigungen.
Vorzugsweise weist das erfindungsgemäß geschützte Substrat zumindest teilweise ein ferritisches oder martensitisches Gefüge auf.
Beispiele für Chromstähle, die für erfindungsgemäß zu schützende Substrate in Frage kommen, sind die Chromstähle X20 Cr 13, X20 CrMoV 12 1, X20 CrNiMo 15 5 1, X12 CrNiMo 12. Als besonders bevorzugt wird der Chromstahl X20 Cr 13 ange¬ sehen.
Das erfindungsgemäße Verfahren zur Herstellung eines Substrates, welches einen Schutz gegen einen korrosiven und/oder erosiven Angriff bei einer Temperatur bis etwa 500* C aufweist, ist gekennzeichnet durch die Anwendung des vorstehend beschriebenen Verfahrens zur Bildung des Schutzes.
Die Erfindung betrifft die Erzielung eines Schutzes für ein Substrat, insbesondere ein Substrat an einer Turbinen¬ oder Verdichterschaufel einer Turbomaschine, gegen einen korrosiven und/oder erosiven Angriff bei einer Temperatur bis etwa 500' C. Auf dem Substrat wird eine Schutzschicht gebildet, welche Aluminium beinhaltet. Erfindungsgemäß wird zunächst eine Aluminium beinhaltende Metallschicht aufgebracht und zur Bildung der Schutzschicht zumindest an ihrer Oberfläche gehärtet oder ausgehärtet. Im Rahmen der Erfindung kann mit einfachen Mitteln ein hochwirksamer Schutz gegen Korrosion und Erosion erhalten werden.

Claims

Patentansprüche
1. Verfahren zur Erzielung eines Schutzes gegen einen korrosiven und/oder erosiven Angriff bei einer Temperatur bis etwa 500* C für ein aus Chromstahl bestehendes Sub¬ strat, wobei auf dem Substrat eine Schutzschicht gebildet wird, welche Aluminium beinhaltet, d a d u r c h g e ¬ k e n n z e i c h n e t, daß auf das Substrat eine Aluminium beinhaltende Metallschicht aufgebracht und zur Bildung der Schutzschicht zumindest an ihrer Oberfläche gehärtet oder ausgehärtet wird.
2. Verfahren nach Anspruch 1, bei dem eine Metallschicht aufgebracht wird, welche hauptsächlich aus Aluminium be- steht, insbesondere eine Aluminiumbasislegierung, insbeson¬ dere mit einem Zusatz zumindest eines der Elemente Magne¬ sium, Kupfer und Zink, ist.
3. Verfahren nach Anspruch 1 oder 2, bei dem zur Bildung der Schutzschicht die Metallschicht zumindest an ihrer
Oberfläche in eine harte Schicht umgewandelt wird.
A. Verfahren nach Anspruch 3, bei dem die Metallschicht zumindest stellenweise im wesentlichen vollständig in die harte Schicht umgewandelt wird.
5. Verfahren nach Anspruch 3 oder A, bei dem unter harten Schicht zumindest stellenweise ein Teil der Metallschicht verbleibt.
6. Verfahren nach Anspruch 3, A oder 5, bei dem die harte Schicht durch Oxidieren der Metallschicht gebildet wird. 7. Verfahren nach Anspruch 6, bei dem das Oxidieren ein anodisches Oxidieren, insbesondere Eloxieren, ist.
8. Verfahren nach Anspruch 7, bei dem die harte Schicht verdichtet wird, insbesondere durch Behandlung mit kochen¬ dem Wasser oder kochenden, wässrigen Salzlösungen.
9. Verfahren nach einem der Ansprüche 3 bis 5, bei dem die Metallschicht aus einer aushärtbaren Legierung gebildet und zur Bildung der harten Schicht ausgehärtet wird.
10. Verfahren nach Anspruch 9, bei dem die Legierung eine Aluminiumbasislegierung, insbesondere mit Zusätzen von Magnesium sowie Kupfer oder Zink, ist.
11. Verfahren nach einem der vorhergehenden Ansprüche, bei dem eine Metallschicht mit einer Dicke gebildet wird, wel¬ che zwischen 15 μm und 200 μm , vorzugsweise zwischen AO μm und 100 μm , beträgt.
12. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Aufbringen der Metallschicht elektrochemisch, ins¬ besondere durch Galvanisieren, erfolgt.
13. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Schutzschicht direkt auf das Substrat aufge¬ bracht wird.
1A. Schutzschicht auf einem Substrat aus Chromstahl, welche einen Schutz gegen korrosive und erosive Angriffe bei Temperaturen bis etwa 500* C bietet, hergestellt nach einem Verfahren gemäß einem der vorhergehenden Ansprüche. 15. Substrat, welches als Schutz gegen korrosive und erosive Angriffe bei Temperaturen bis etwa 500* C eine Schutzschicht nach Anspruch 1A aufweist.
16. Substrat nach Anspruch 15, welches zu einer Schaufel, insbesondere einer Laufschaufel oder einer Leitschaufel, für eine Turbomaschine, vorzugsweise für einen Turbover¬ dichter, gehört.
17. Substrat nach Anspruch 16, wobei die Schaufel einen
Fußteil und einen Blatteil aufweist und wobei das Substrat zu dem Blatteil gehört.
18. Substrat nach einem der Ansprüche 15 bis 17, welches aus einem Chromstahl mit folgenden Anteilen besteht
(Angaben in Gewichtsprozenten):
0,1 bis 0,3 % Kohlenstoff
11 bis 17 % Chrom
0 bis 6 % Nickel 0 bis 1,5 X Molybdän
0 bis 1 % Vanadium
0 bis 1 % Silizium
0 bis 1 % Mangan
Rest Eisen mit herstellungsbedingten Verunreinigungen.
19. Substrat nach einem der Ansprüche 15 bis 18, welches zumindest teilweise ein ferritisches oder martensitisches Gefüge aufweist.
20. Verfahren zur Herstellung eines Substrates, welches einen Schutz gegen korrosive und erosive Angriffe bei Tem¬ peraturen bis etwa 500* C aufweist, g e k e n n ¬ z e i c h n e t d u r c h die Anwendung des Verfahrens zur Bildung des Schutzes nach einem der Ansprüche 1 bis 13.
EP93920767A 1992-10-05 1993-09-17 Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat Expired - Lifetime EP0663964B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93920767A EP0663964B1 (de) 1992-10-05 1993-09-17 Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP92116998 1992-10-05
EP92116998 1992-10-05
EP93920767A EP0663964B1 (de) 1992-10-05 1993-09-17 Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat
PCT/EP1993/002534 WO1994008071A1 (de) 1992-10-05 1993-09-17 Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 °c für ein aus chromstahl bestehendes substrat

Publications (2)

Publication Number Publication Date
EP0663964A1 true EP0663964A1 (de) 1995-07-26
EP0663964B1 EP0663964B1 (de) 1996-12-27

Family

ID=8210102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93920767A Expired - Lifetime EP0663964B1 (de) 1992-10-05 1993-09-17 Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat

Country Status (9)

Country Link
US (1) US5547769A (de)
EP (1) EP0663964B1 (de)
JP (1) JPH08501831A (de)
KR (1) KR950703669A (de)
CZ (1) CZ77395A3 (de)
DE (1) DE59304920D1 (de)
ES (1) ES2096943T3 (de)
RU (1) RU95110753A (de)
WO (1) WO1994008071A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149389A (en) * 1996-03-13 2000-11-21 Forschungszentrum Karlsruhe Gmbh Protective coating for turbine blades
DE19627860C1 (de) * 1996-07-11 1998-01-08 Mtu Muenchen Gmbh Schaufel für Strömungsmaschine mit metallischer Deckschicht
SE508150C2 (sv) * 1996-08-30 1998-09-07 Sandvik Ab Förfarande för att tillverka band av ferritiskt, rostfritt FeCrAl-stål
US6129262A (en) * 1997-02-24 2000-10-10 Ford Global Technologies, Inc. Fluxless brazing of unclad aluminum using selective area plating
US6274200B1 (en) 1998-09-11 2001-08-14 Boeing North American, Inc. Method for preparing pre-coated ferrous-alloy components and components prepared thereby
DE69821942D1 (de) * 1998-10-26 2004-04-01 Techspace Aero Milmort Verfahren zum Herstellen einer dünnen Beschichtung auf einem metallischen Substrat
US6283195B1 (en) 1999-02-02 2001-09-04 Metal Casting Technology, Incorporated Passivated titanium aluminide tooling
JP4703857B2 (ja) * 1999-05-14 2011-06-15 シーメンス アクチエンゲゼルシヤフト 蒸気タービンの構造部材と構造部材上に保護被覆を形成する方法
GB0305461D0 (en) * 2003-03-10 2003-04-16 Transense Technologies Plc Improvements in the construction of saw devices
DE102004001575A1 (de) 2004-01-10 2005-08-04 Mtu Aero Engines Gmbh Verfahren zur Herstellung von Hohlschaufeln sowie eines Rotors mit Hohlschaufeln
BRPI0711907B1 (pt) * 2006-05-24 2018-10-30 Bluescope Steel Ltd métodos de tratamento e para produzir um produto revestido com liga à base de a1/zn e produto revestido resultante
DE102007008011A1 (de) * 2007-02-15 2008-08-21 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Ausbildung einer Aluminium-Diffusionsschicht zum Oxidationsschutz
IT1393140B1 (it) * 2009-03-17 2012-04-11 Nuovo Pignone Spa Metodo di produzione di un rivestimento protettivo per un componente di una turbomacchina, il componente stesso e la relativa macchina
MY179278A (en) 2009-05-28 2020-11-03 Bluescope Steel Ltd Metal-coated steel strip
GB0922308D0 (en) * 2009-12-22 2010-02-03 Rolls Royce Plc Hydrophobic surface
EP2639341B1 (de) * 2010-11-11 2020-01-22 Hitachi Metals, Ltd. Verfahren zur herstellung einer aluminiumfolie
ITTO20110257A1 (it) * 2011-03-24 2012-09-25 Avio Spa Metodo per la riparazione di un componente in lega di alluminio
US9752441B2 (en) 2012-01-31 2017-09-05 United Technologies Corporation Gas turbine rotary blade with tip insert
EP2650400A1 (de) * 2012-04-11 2013-10-16 Siemens Aktiengesellschaft Aluminiumhaltige Schutzschicht gegen Korrosion und Erosion
EP2770085A1 (de) * 2013-02-26 2014-08-27 Siemens Aktiengesellschaft Aluminiumhaltige Schutzschicht gegen Korrosion und Erosion
US10041361B2 (en) 2014-10-15 2018-08-07 General Electric Company Turbine blade coating composition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB681250A (en) * 1948-04-05 1952-10-22 American Electro Metal Corp Coated metal machine parts, particularly jet engine parts
BE514705A (de) * 1951-06-25
GB706739A (en) * 1952-02-11 1954-04-07 Glenn L Martin Co Method of producing hard, abrasion-resistant coatings on aluminum and aluminum alloys
US4275124A (en) * 1978-10-10 1981-06-23 United Technologies Corporation Carbon bearing MCrAlY coating
US4350540A (en) * 1979-11-08 1982-09-21 Bethlehem Steel Corporation Method of producing an aluminum-zinc alloy coated ferrous product to improve corrosion resistance
DE3035749A1 (de) * 1980-09-22 1982-05-06 Siemens AG, 1000 Berlin und 8000 München Waermeableitende leiterplatten
US4471033A (en) * 1981-10-15 1984-09-11 Taiho Kogyo Co., Ltd. Al-Si-Sn Bearing alloy and bearing composite
US4517229A (en) * 1983-07-07 1985-05-14 Inland Steel Company Diffusion treated hot-dip aluminum coated steel and method of treating
US4686155A (en) * 1985-06-04 1987-08-11 Armco Inc. Oxidation resistant ferrous base foil and method therefor
CH678067A5 (de) * 1989-01-26 1991-07-31 Asea Brown Boveri

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9408071A1 *

Also Published As

Publication number Publication date
DE59304920D1 (de) 1997-02-06
KR950703669A (ko) 1995-09-20
US5547769A (en) 1996-08-20
EP0663964B1 (de) 1996-12-27
JPH08501831A (ja) 1996-02-27
CZ77395A3 (en) 1995-12-13
ES2096943T3 (es) 1997-03-16
WO1994008071A1 (de) 1994-04-14
RU95110753A (ru) 1997-01-27

Similar Documents

Publication Publication Date Title
EP0663964B1 (de) Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat
DE2657288C2 (de) Überzogener Superlegierungsgegenstand und seine Verwendung
DE3535548C2 (de) Beschichteter Gegenstand und Verfahren zum Herstellen einer Beschichtung eines Gegenstandes
DE2325138C3 (de) Verfahren zur Bildung von Schutzüberzügen auf Metallsubstraten
DE69828941T2 (de) Hochtemperaturbeständiges, sprühbeschichtetes teil und verfahren zu deren herstellung
EP2398936B1 (de) Erosionsschutz-beschichtungssystem fur gasturbinenbauteile
DE60211404T2 (de) Verfahren zum Wiederherstellen einer thermisch gewachsenen Oxidhaltiger Beschichtung
DE19807636C1 (de) Verfahren zum Herstellen einer korrosions- und oxidationsbeständigen Schlickerschicht
DE2801016A1 (de) Gegenstand aus einer superlegierung, der durch flammspritzen mit einem oxidations- und korrosionsbestaendigen ueberzug versehen ist sowie verfahren zu dessen herstellung
DE3110358C2 (de) Pulverförmiges Überzugsmittel und Verfahren zum Aufbringen von Oberflächenüberzügen
DE3030961A1 (de) Bauteile aus superlegierungen mit einem oxidations- und/oder sulfidationsbestaendigigen ueberzug sowie zusammensetzung eines solchen ueberzuges.
DE2418879A1 (de) Verbessertes beschichtungssystem fuer superlegierungen
DE2740398A1 (de) Zweifachueberzug fuer den schutz gegen thermische beanspruchungen und korrosion
CH694164A5 (de) Hochtemperatur-Komponente, insbesondere für eine Gasturbine, und Verfahren zu deren Herstellung.
CH657872A5 (de) Verbunderzeugnis aus mindestens zwei superlegierungen.
CH667469A5 (de) Verfahren zum aufbringen von schutzschichten.
DE69826606T2 (de) Durch hochtemperaturspritzen beschichtetes teil und verfahren zu dessen herstellung
EP1498504B1 (de) Aluminiumbasierte multinäre Legierungen und deren Verwendung als wärme- und korrosionsschützende Beschichtungen
DE2842848A1 (de) Ueberzogener gegenstand, insbesondere superlegierungsgasturbinenschaufel
DE2830851A1 (de) Verfahren zur bildung von metalldiffusionsschutzueberzuegen
EP0341456B1 (de) Verfahren zur Erzeugung galvanisch abgeschiedener Heissgaskorrosionsschichten
EP3483303A1 (de) Schlicker für ein verfahren zur herstellung einer oxidations- und korrosionsbeständigen diffusionsschicht
CH616960A5 (en) Components resistant to high-temperature corrosion.
DE3907625C1 (de)
DE1955203A1 (de) Oberflaechenschutzverfahren fuer metallische Gegenstaende

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19950921

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59304920

Country of ref document: DE

Date of ref document: 19970206

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2096943

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: 0403;07MIFSTUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970826

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970911

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970912

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970924

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980918

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980918

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980917

EUG Se: european patent has lapsed

Ref document number: 93920767.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050917