EP0663964B1 - Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat - Google Patents

Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat Download PDF

Info

Publication number
EP0663964B1
EP0663964B1 EP93920767A EP93920767A EP0663964B1 EP 0663964 B1 EP0663964 B1 EP 0663964B1 EP 93920767 A EP93920767 A EP 93920767A EP 93920767 A EP93920767 A EP 93920767A EP 0663964 B1 EP0663964 B1 EP 0663964B1
Authority
EP
European Patent Office
Prior art keywords
substrate
process according
metal coating
protective coating
hard layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93920767A
Other languages
English (en)
French (fr)
Other versions
EP0663964A1 (de
Inventor
Friedhelm Schmitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP93920767A priority Critical patent/EP0663964B1/de
Publication of EP0663964A1 publication Critical patent/EP0663964A1/de
Application granted granted Critical
Publication of EP0663964B1 publication Critical patent/EP0663964B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Definitions

  • the invention relates to protection against corrosive and erosive attacks at temperatures up to approximately 500 ° C. for a substrate of a component of a turbomachine consisting of chromium steel by means of a protective layer which contains aluminum.
  • the invention relates to substrates on components for all types of turbomachinery, in particular turbocompressors regardless of the type of their drive, and to gas and steam turbines, particular reference being made to components of such turbomachinery which are to be operated at temperatures of up to approximately 500.degree .
  • a particularly important field of application of the invention is the protection of compressor blades and other components loaded in this way in the turbocompressors of gas turbines.
  • EP 0 379 699 A1 provides options for protecting a substrate on a component of a turbomachine against corrosive and erosive attacks at temperatures up to 450 ° C.
  • blades for turbomachinery which mainly consist of ferritic and / or ferritic-martensitic base materials, are provided with protective layers made of aluminum alloys, in particular of aluminum alloys with 6 to 15% by weight of silicon. Such aluminum alloys are to be applied to the blades using a high-speed spraying process.
  • the object of the invention is to provide a substantially improved protection for a substrate of a component of a turbomachine consisting of chromium steel to achieve, the cost of achieving the protection being kept low, possibly even reduced, shall be.
  • the method according to the invention for achieving protection against a corrosive and / or erosive attack at a temperature of up to about 500 ° C. for a substrate of a component of a turbomachine consisting of chromium steel, wherein a protective layer is formed on the substrate which contains aluminum that an aluminum-containing metal layer is applied to the substrate and hardened or cured to form the protective layer at least on its surface.
  • the invention is based on the knowledge that the hardenability or hardenability of the aluminum itself or of the aluminum base materials can advantageously be used to form a protection of the type mentioned.
  • the metal layer containing aluminum can be hardened, for example, chemically, in particular by oxidation, or mechanically, in particular by rolling. Curing is understood to mean, for example, a structural change in the metal layer caused by heat treatment, in particular precipitation hardening.
  • the hardening or hardening need not necessarily cover the entire metal layer; it can be advantageous to restrict the hardening or hardening to a part near the surface and thus to obtain a so-called "duplex layer".
  • the hard layer formed according to the invention advantageously has a Vickers hardness HV 0.025 of more than about 200, considerably more than HV 0.025 of a conventional high-temperature lacquer layer, where HV 0.025 is usually at most 120.
  • the metal layer to be applied to the substrate to be protected advantageously consists mainly of aluminum and is accordingly in particular an aluminum-based alloy, for example with the addition of at least one of the elements magnesium, copper and zinc. Silicon, manganese and titanium can also be used as additives.
  • the hardening or hardening of the metal layer takes place with particular advantage in such a way that the metal layer is converted into a hard layer at least on its surface.
  • the hard layer can be produced by numerous different methods that may be combined with one another, in particular mechanical strengthening, chemical or thermal treatment. It is particularly favorable if part of the metal layer remains under the hard layer, so that the protective layer is a duplex layer which comprises the metal layer and the hard layer.
  • a duplex layer which comprises a rather hard layer on the one hand and a rather ductile metal layer on the other hand, is particularly favorable since hard layers and ductile layers each have different types Resist erosion: hard layers are suitable as protection against an erosion attack by particles that strike grazing to approximately oblique, ductile metal layers are advantageous for protection against erosion by particles hitting at large angles, in particular obliquely to approximately vertically.
  • the duplex layer can therefore provide protection against eroding particles regardless of their angle of incidence, although removal of the hard layer must initially be expected in areas of the component where the particles meet approximately vertically until which is exposed to erosion resistant to large impact angles, ductile metal layer.
  • the oxidizing is preferably an anodizing, in particular anodizing.
  • the hard layer obtained can be additionally compacted by treating it with boiling water or a boiling, aqueous salt solution. Details of this are known in the field of anodic oxidation of aluminum and do not require any further explanation here. Any oxidation of an aluminum-containing layer produces a surface layer which contains aluminum oxide or corundum, one of the hardest minerals, as an essential component. In order to achieve a particularly thick, dense and hard layer, anodic oxidation is particularly suitable.
  • layers of essentially pure aluminum can be used for anodic oxidation, but in particular also layers of aluminum-magnesium alloys.
  • An alternative method of forming a hard layer on a metal layer is to use a hardenable alloy to form the metal layer followed by hardening.
  • the hardening can be limited to a region of the metal layer near the surface be achieved by curing, for example, by irradiation with laser light; it can also capture the entire metal layer, for which the component provided with the metal layer can be heat-treated in a conventional manner in an oven.
  • An aluminum-based alloy with additions of magnesium and copper or zinc is particularly suitable as the hardenable alloy.
  • an aluminum-based alloy is used with magnesium parts by weight between 0.4 and 2% and copper between 3.5 and 5%, with usual impurities and possibly further admixtures, as mentioned above.
  • an aluminum-based alloy with a weight proportion of zinc between 1% and 5%, in particular between 4% and 5%, and magnesium up to 2%, in particular between 1% and 1.5%, also with usual impurities and possible further admixtures.
  • a metal layer with a thickness of between 15 ⁇ m and 200 ⁇ m, preferably between 40 ⁇ m and 100 ⁇ m, to form protection against corrosive and erosive attacks at temperatures up to about 500 ° C.
  • the metal layer is applied with particular advantage electrochemically, in particular by electroplating, in any configuration of the method.
  • Electroplating produces a particularly uniform and dense layer with an extremely low porosity, which accordingly suppresses the occurrence of pitting corrosion.
  • Pitting corrosion occurs when an electrically conductive liquid, for example a drop of water with salt or ash content, enters the pore of the protective layer and with the protective layer and the like Substrate forms a galvanic element.
  • the decomposition processes occurring in such an element can, starting from the pore, spread into the boundary layer between the protective layer and the substrate and destroy the substrate under the externally intact protective layer. For this reason, the electrochemical application of the metal layer is particularly preferred since it avoids pores.
  • a protective layer is also specified on a substrate of a component of a turbomachine made of chromium steel, which protective layer offers protection against corrosive and erosive attacks at temperatures up to approximately 500 ° C. and by at least superficial hardening or hardening of a metal layer containing aluminum applied to the substrate was formed by the inventive method.
  • the invention accordingly also relates to a substrate which is provided with a protective layer according to the invention as protection against a corrosive and / or erosive attack at a temperature up to about 500 ° C.
  • a substrate can in particular belong to a blade of a turbomachine such as a turbocompressor, be it a rotor blade or a guide blade.
  • the blade can have a foot part for fastening the component and a blade part, which is the effective part in the thermodynamic process in the turbomachine, and at least one of which is a gas, in particular air, gas turbine exhaust gas or steam, exposed sheet part has a substrate protected according to the invention.
  • the substrate protected according to the invention preferably has, at least in part, a ferritic or martensitic structure.
  • chromium steels which are suitable for substrates to be protected according to the invention are the chromium steels X20 Cr 13, X20 CrMoV 12 1, X20 CrNiMo 15 5 1, X12 CrNiMo 12.
  • the chromium steel X20 Cr 13 is regarded as particularly preferred.
  • the invention relates to the attainment of protection for a substrate, in particular a substrate on a turbine or compressor blade of a turbomachine, against one Corrosive and / or erosive attack at a temperature up to about 500 ° C.
  • a protective layer is formed on the substrate, which contains aluminum.
  • a metal layer containing aluminum is first applied and hardened or cured at least on its surface to form the protective layer.
  • highly effective protection against corrosion and erosion can be obtained with simple means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft die Erzielung eines Schutzes gegen einen korrosiven und erosiven Angriff bei einer Temperatur bis etwa 500 °C für ein aus Chromstahl bestehendes Substrat. Auf dem Substrat wird eine Schutzschicht gebildet, welche Aluminium beinhaltet. Erfindungsgemäss wird zunächst eine Aluminium beinhaltende Metallschicht aufgebracht und zur Bildung der Schutzschicht zumindest an ihrer Oberfläche gehärtet oder ausgehärtert. Im Rahmen der Erfindung kann mit einfachen Mitteln ein hochwirksamer Schutz gegen Korrosion und Erosion erhalten werden, insbesondere für Substrate an Schaufeln für Turbomaschinen, speziell Turboverdichter.

Description

  • Schutz gegen korrosive und erosive Angriffe bei Temperaturen bis etwa 500° C für ein aus Chromstahl bestehendes Substrat.
  • Die Erfindung betrifft den Schutz gegen korrosive und erosive Angriffe bei Temperaturen bis etwa 500° C für ein aus Chromstahl bestehendes Substrat eines Bauteils einer Turbomaschine mittels einer Schutzschicht, welche Aluminium beinhaltet.
  • Die Erfindung bezieht sich auf Substrate an Bauteilen für alle Arten von Turbomaschinen, insbesondere Turboverdichtern unabhängig von der Art ihres Antriebes sowie auf Gas- und Dampfturbinen, wobei insbesondere Bezug genommen wird auf Bauteile solcher Turbomaschinen, welche bei Temperaturen bis etwa 500° C zu betreiben sind. Ein besonders wichtiges Anwendungsgebiet der Erfindung ist der Schutz von Verdichterschaufeln und anderen wie diese belasteten Bauteilen in den Turboverdichtern von Gasturbinen.
  • Möglichkeiten zum Schutz eines Substrates an einem Bauteil einer Turbomaschine gegen korrosive und erosive Angriffe bei Temperaturen bis 450° C gehen aus der EP 0 379 699 A1 hervor. Nach dieser Schrift werden Schaufeln für Turbomaschinen, die vorwiegend aus ferritischen und/oder ferritisch-martensitischen Grundmaterialien bestehen, mit Schutzschichten aus Aluminiumlegierungen, insbesondere aus Aluminiumlegierungen mit 6 bis 15 Gew.% Silizium, versehen. Solche Aluminiumlegierungen sollen mit einem Hochgeschwindigkeitsspritzverfahren auf die Schaufeln aufgebracht werden.
  • Das Phänomen der Schwingungsrißkorrosion an beschichteten Verdichterschaufeln für Turbomaschinen ist in dem Aufsatz "Schwingungsrißkorrosion beschichteter Verdichterschaufel-Werkstoffe" von H. Hoffmann, W. Magin, M. Schemmer und F. Schmitz, Zeitschrift für Werkstofftechnik 17 (1986) 413, eingehend erläutert. Die in diesem Aufsatz erwähnten Verdichterschaufeln weisen auf Substraten aus Chromstählen Schutzschichten aus in Chromat/Phosphat-Bindemitteln dispergierten Aluminiumpigmenten auf. Auch sind Schutzschichten aus Nickel oder Nickel-Kadmium-Legierungen erwähnt.
  • Die Problematik der erosiven Angriffe, denen Verdichterschaufeln und dergleichen ausgesetzt sind, wird ausführlich erläutert in dem Aufsatz "Untersuchung der Strahlverschleißbeständigkeit von Werkstoffen und Beschichtungen mit Hilfe eines Wirbelbett-Testverfahrens" von K. G. Schmitt-Thomas, T. Happle und P. Steppe, Werkstoffe und Korrosion 41 (1990) 623. Dieser Aufsatz behandelt auch die Wechselwirkung von Erosion und Korrosion an Schaufeln für Turbomaschinen, da ein durch Erosion erfolgter Abtrag einer Schutzschicht schließlich das Substrat einer Schaufel freilegt, dessen Werkstoff üblicherweise im wesentlichen nur auf mechanische Eigenschaften optimiert ist und keine genügend gute Beständigkeit gegen Erosion und Korrosion hat. Die Mechanismen der Erosion, die insbesondere abhängen von den Winkeln, unter denen erodierende Partikel auf ein Bauteil einfallen, werden ausführlich erläutert; auch wird die Abhängigkeit der Wirkung der Erosion von der Art des der Erosion ausgesetzten Werkstoffes erläutert. Eingehend beschrieben sind Erosions- und Korrosionsprobleme von Verdichterschaufeln, insbesondere von Verdichterschaufeln mit anorganisch gebundenen Aluminiumpigment-Überzügen, welche evtl. mit anorganischen oder organischen Deckschichten versehen sind.
  • Auch aus dem Buch "Praxis der Kraftwerk-Chemie", herausgegeben von Hans-Günter Heitmann, Vulkan-Verlag, Essen, 1986, insbesondere dem darin enthaltenen Aufsatz "GasturbinenAnlagen" von F. Schmitz, Seiten 574 ff., gehen wesentliche Hinweise zur Problematik der korrosiven und erosiven Angriffe in den Verdichtern von Gasturbinenanlagen hervor. Auch sind Einzelheiten zu den erosiven und korrosiven Angriffen, insbesondere zur Schwingungsrißkorrosion, und zu den Problemen, die bei der Verwendung üblicher Hochtemperaturlack-Schutzschichten auftreten, erläutert. Hierzu ist hinzuweisen auf Korrosionsphänomene, die ausgehen von Poren in den Schutzschichten und zur Schädigung der Grundwerkstoffe unter äußerlich mehr oder weniger intakt erscheinenden Schutzschichten führen können.
  • Der Aufsatz "Korrosionsverhalten von anodisch oxidierten Aluminium-Werkstoffen" von W. Paatsch, Metalloberfläche 45 (1991) 8, gibt Hinweise zu Korrosionsphänomenen an Aluminium-Oberflächen, die anodisch oxidiert wurden. Die anodische Oxidation von Aluminium ist auf vielen Gebieten der Technik, allerdings nicht im Zusammenhang mit Turbomaschinen, bekannt zur Bildung robuster, dekorativer Oberflächen. Zur Problematik der Erosion sowie zur Belastbarkeit einer Aluminium-Oberfläche bei erhöhter Temperatur schweigt der Aufsatz.
  • In Ansehung der Probleme der bisher zur Bildung eines Schutzes gegen korrosive und erosive Angriffe bei Temperaturen bis etwa 500°C für ein Bauteil einer Turbomaschine vorgesehenen Schutzschichten liegt der Erfindung die Aufgabe zugrunde, einen wesentlich verbesserten Schutz für ein aus Chromstahl bestehendes Substrat eines Bauteils einer Turbomaschine zu erreichen, wobei darüber hinaus auch der kostenmäßige Aufwand zur Erzielung des Schutzes gering gehalten, womöglich sogar verringert, werden soll.
  • Das erfindungsgemäße Verfahren zur Erzielung eines Schutzes gegen einen korrosiven und/oder erosiven Angriff bei einer Temperatur bis etwa 500°C für ein aus Chromstahl bestehendes Substrat eines Bauteils einer Turbomaschine, wobei auf dem Substrat eine Schutzschicht gebildet wird, welche Aluminium beinhaltet, ist dadurch gekennzeichnet, daß auf das Substrat eine Aluminium beinhaltende Metallschicht aufgebracht und zur Bildung der Schutzschicht zumindest an ihrer Oberfläche gehärtet oder ausgehärtet wird.
  • Die Erfindung geht aus von der Erkenntnis, daß die Härtbarkeit oder Aushärtbarkeit des Aluminiums selbst oder der Aluminiumbasiswerkstoffe zur Bildung eines Schutzes der genannten Art vorteilhaft ausgenutzt werden kann. Die Härtung der Aluminium beinhaltenden Metallschicht kann beispielsweise chemisch, insbesondere durch Oxidieren, oder mechanisch, insbesondere durch Rollieren, erfolgen; unter einer Aushärtung wird beispielsweise eine durch Wärmebehandlung veranlaßte Gefügeänderung in der Metallschicht, insbesondere eine Ausscheidungshärtung, verstanden. Die Härtung oder Aushärtung muß dabei nicht notwendigerweise die gesamte Metallschicht erfassen; es kann durchaus vorteilhaft sein, die Härtung oder Aushärtung auf einen oberflächennahen Teil zu beschränken und somit eine sogenannte "Duplex-Schicht" zu erhalten. Die erfindungsgemäß gebildete harte Schicht hat günstigerweise eine Vickers-Härte HV 0,025 von mehr als etwa 200, wesentlich mehr als HV 0,025 einer üblichen Hochtemperatur-Lackschicht, wo üblicherweise HV 0,025 höchstens 120 beträgt.
  • Die auf das zu schützende Substrat aufzubringende Metallschicht besteht günstigerweise hauptsächlich aus Aluminium und ist demgemäß insbesondere eine Aluminiumbasislegierung, beispielsweise mit einem Zusatz zumindest eines der Elemente Magnesium, Kupfer und Zink. Als weitere Zusätze kommen Silizium, Mangan und Titan in Frage.
  • Die Härtung oder Aushärtung der Metallschicht erfolgt mit besonderem Vorteil in der Weise, daß die Metallschicht zumindest an ihrer Oberfläche in eine harte Schicht umgewandelt wird. Wie bereits angedeutet, kann die harte Schicht durch vielzählige verschiedene ggf. untereinander kombinierte Verfahren, insbesondere mechanische Verfestigung, chemische oder thermische Behandlung, erzeugt werden. Besonders günstig ist es, wenn unter der harten Schicht ein Teil der Metallschicht verbleibt, so daß die Schutzschicht eine Duplex-Schicht ist, welche die Metallschicht und die harte Schicht umfaßt. In Anbetracht des von der Ausrichtung der angegriffenen Bereiche des Substrats zu der Flugrichtung erodierender Partikel abhängigen Erosionsangriffs ist eine Duplex-Schicht, welche eine eher harte Schicht einerseits und eine eher duktile Metallschicht andererseits umfaßt, besonders günstig, da harte Schichten und duktile Schichten jeweils verschiedenen Arten der Erosion widerstehen: harte Schichten eignen sich als Schutz gegen einen Erosionsangriff durch Partikel, die streifend bis etwa schräg auftreffen, duktile Metallschichten sind vorteilhaft zum Schutz gegen Erosion durch unter großen Winkeln, insbesondere schräg bis etwa senkrecht, auftreffende Partikel. Mithin vermag die Duplex-Schicht einen Schutz gegen erodierende Partikel unabhängig von ihrem Auftreffwinkel zu gewährleisten, wobei allerdings anfangs an Bereichen des Bauteiles, wo die Partikel etwa senkrecht auftreffen, mit einem Abtrag der harten Schicht gerechnet werden muß, bis die gegen Erosion unter großen Aufprallwinkeln resistente, duktile Metallschicht freigelegt ist.
  • Besonders günstig ist es in jedem Falle, eine harte Schicht durch zumindest teilweises Oxidieren der Metallschicht zu bilden; vorzugsweise ist das Oxidieren ein anodisches Oxidieren, insbesondere Eloxieren. Im Anschluß an ein anodisches Oxidieren-kann die erhaltene harte Schicht zusätzlich verdichtet werden, indem sie mit kochendem Wasser oder einer kochenden, wäßrigen Salzlösung behandelt wird. Einzelheiten hierzu sind auf dem Fachgebiet der anodischen Oxidation von Aluminium bekannt und bedürfen an dieser Stelle keiner weiteren Erläuterung. Durch jedwedes Oxidieren einer aluminiumhaltigen Schicht wird eine Oberflächenschicht erzeugt, die Aluminiumoxid oder Korund, eines der härtesten Minerale, als wesentlichen Bestandteil aufweist. Um eine besonders dicke, dichte und harte Schicht zu erzielen, ist insbesondere die anodische Oxidation geeignet. Es sei bemerkt, daß zur anodischen Oxidation nicht nur Schichten aus im wesentlichen reinem Aluminium in Frage kommen, sondern insbesondere auch Schichten aus Aluminium Magnesium-Legierungen. Insbesondere sind Aluminiumbasislegierungen mit Zusatz von Magnesium in einem Gewichtsanteil zwischen 0,5 % und 5 %, insbesondere zwischen 1 % und 4 %, eventuell mit weiteren geringen Anteilen von Silizium, Eisen, Kupfer, Chrom, Zink und/oder Titan im üblichen Rahmen, geeignet.
  • Ein alternatives Verfahren zur Bildung einer harten Schicht auf einer Metallschicht ist die Verwendung einer aushärtbaren Legierung zur Bildung der Metallschicht mit anschließender Aushärtung. Die Aushärtung kann dabei auf einen oberflächennahen Bereich der Metallschicht beschränkt werden, indem die Aushärtung beispielsweise durch Bestrahlen mit Laserlicht bewerkstelligt wird; sie kann auch die gesamte Metallschicht erfassen, wofür das mit der Metallschicht versehene Bauteil in üblicher Weise in einem Ofen wärmebehandelt werden kann. Als aushärtbare Legierung kommt insbesondere eine Aluminiumbasis-Legierung mit Zusätzen von Magnesium sowie Kupfer oder Zink in Frage. Vorteilhafterweise wird eine Aluminiumbasis-Legierung verwendet mit Gewichtsanteilen von Magnesium zwischen 0,4 und 2 % sowie Kupfer zwischen 3,5 und 5 %, mit üblichen Verunreinigungen und evtl. weiteren Beimischungen, wie oben erwähnt. Ebenfalls in Frage kommt eine Aluminiumbasis-Legierung mit Gewichtsanteilen von Zink zwischen 1 % und 5 %, insbesondere zwischen 4 % und 5 %, sowie Magnesium bis zu 2 %, insbesondere zwischen 1 % und 1,5 %, ebenfalls mit üblichen Verunreinigungen und eventuellen weiteren Beimischungen.
  • Generell ist es vorteilhaft, zur Bildung des Schutzes gegen korrosive und erosive Angriffe bei Temperaturen bis etwa 500° C auf das Substrat eine Metallschicht mit einer Dicke aufzubringen, welche zwischen 15 µm und 200 µm, vorzugsweise zwischen 40 µm und 100 µm, beträgt.
  • Das Aufbringen der Metallschicht erfolgt im Rahmen jedweder Ausgestaltung des Verfahrens mit besonderem Vorteil elektrochemisch, insbesondere durch Galvanisieren. Durch Galvanisieren wird eine besonders gleichmäßige und dichte Schicht mit äußerst geringer Porosität erzielt, bei der dementsprechend das Auftreten von Lochkorrosion unterdrückt ist. Lochkorrosion entsteht dann, wenn in eine Pore der Schutzschicht eine elektrisch leitfähige Flüssigkeit, beispielsweise ein Wassertropfen mit Salz- oder Aschenanteilen, eintritt und mit der Schutzschicht und dem Substrat ein galvanisches Element bildet. Die in einem solchen Element auftretenden Zersetzungsprozesse können sich, ausgehend von der Pore, in die Grenzschicht zwischen der Schutzschicht und dem Substrat ausbreiten und das Substrat unter der äußerlich intakten Schutzschicht zerstören. Aus diesem Grunde ist das elektrochemische Aufbringen der Metallschicht besonders bevorzugt, da es Poren vermeidet.
  • Mit besonderem Vorteil wird die Schutzschicht jedweder Ausgestaltung direkt, also ohne Einfügung irgendwelcher Zwischenschichten, auf das Substrat aufgebracht. Hierdurch wird insbesondere der mit der Erzielung des Schutzes verbundene Aufwand gering gehalten.
  • Erfindungsgemäß wird auch eine Schutzschicht auf einem aus Chromstahl bestehenden Substrat eines Bauteils einer Turbomaschine angegeben, welche Schutzschicht einen Schutz gegen korrosive und erosive Angriffe bei Temperaturen bis etwa 500° C bietet und durch zumindest oberflächliche Härtung oder Aushärtung einer auf das Substrat aufgebrachten, Aluminium beinhaltenden Metallschicht nach dem erfindungsgemäßen Verfahren gebildet wurde.
  • Die Erfindung betrifft demnach auch ein Substrat, welches als Schutz gegen einen korrosiven und/oder erosiven Angriff bei einer Temperatur bis zu etwa 500°C mit einer erfindungsgemäßen Schutzschicht versehen ist. Ein solches Substrat kann insbesondere zu einer Schaufel einer Turbomaschine wie eines Turboverdichters, sei es zu einer Laufschaufel oder einer Leitschaufel, gehören. Die Schaufel kann dabei einen Fußteil zur Befestigung des Bauteils und einen Blatteil aufweisen, der im Rahmen des thermodynamischen Prozesses in der Turbomaschine der wirksame Teil ist, und wobei zumindest der einem Gas, insbesondere Luft, Gasturbinenabgas oder Dampf, ausgesetzte Blatteil ein erfindungsgemäß geschütztes Substrat aufweist.
  • Das Substrat besteht vorzugsweise aus einem Chromstahl mit folgenden Anteilen, wobei die Anteile in Gewichtsprozenten angegeben sind:
    • 0,1 bis 0,3 % Kohlenstoff
    • 11 bis 17 % Chrom
    • 0 bis 6 % Nickel
    • 0 bis 1,5 % Molybdän
    • 0 bis 1 % Vanadium
    • 0 bis 1 % Silizium
    • 0 bis 1 % Mangan
    Rest Eisen mit herstellungsbedingten Verunreinigungen.
  • Vorzugsweise weist das erfindungsgemäß geschützte Substrat zumindest teilweise ein ferritisches oder martensitisches Gefüge auf.
  • Beispiele für Chromstähle, die für erfindungsgemäß zu schützende Substrate in Frage kommen, sind die Chromstähle X20 Cr 13, X20 CrMoV 12 1, X20 CrNiMo 15 5 1, X12 CrNiMo 12. Als besonders bevorzugt wird der Chromstahl X20 Cr 13 angesehen.
  • Die Erfindung betrifft die Erzielung eines Schutzes für ein Substrat, insbesondere ein Substrat an einer Turbinen- oder Verdichterschaufel einer Turbomaschine, gegen einen korrosiven und/oder erosiven Angriff bei einer Temperatur bis etwa 500° C. Auf dem Substrat wird eine Schutzschicht gebildet, welche Aluminium beinhaltet. Erfindungsgemäß wird zunächst eine Aluminium beinhaltende Metallschicht aufgebracht und zur Bildung der Schutzschicht zumindest an ihrer Oberfläche gehärtet oder ausgehärtet. Im Rahmen der Erfindung kann mit einfachen Mitteln ein hochwirksamer Schutz gegen Korrosion und Erosion erhalten werden.

Claims (18)

  1. Verfahren zur Erzielung eines Schutzes gegen einen korrosiven und/oder erosiven Angriff bei einer Temperatur bis etwa 500° C für ein aus Chromstahl bestehendes Substrat eines Bauteils einer Turbomaschine, wobei auf dem Substrat eine Schutzschicht gebildet wird, welche Aluminium beinhaltet, dadurch gekennzeichnet, daß auf das Substrat eine Aluminium beinhaltende Metallschicht aufgebracht und zur Bildung der Schutzschicht zumindest an ihrer Oberfläche gehärtet oder ausgehärtet wird.
  2. Verfahren nach Anspruch 1, bei dem eine Metallschicht aufgebracht wird, welche hauptsächlich aus Aluminium besteht, insbesondere eine Aluminiumbasislegierung, insbesondere mit einem Zusatz zumindest eines der Elemente Magnesium, Kupfer und Zink, ist.
  3. Verfahren nach Anspruch 1 oder 2, bei dem zur Bildung der Schutzschicht die Metallschicht zumindest an ihrer Oberfläche in eine harte Schicht umgewandelt wird.
  4. Verfahren nach Anspruch 3, bei dem die Metallschicht zumindest stellenweise im wesentlichen vollständig in die harte Schicht umgewandelt wird.
  5. Verfahren nach Anspruch 3 oder 4, bei dem unter harten Schicht zumindest stellenweise ein Teil der Metallschicht verbleibt.
  6. Verfahren nach Anspruch 3, 4 oder 5, bei dem die harte Schicht durch Oxidieren der Metallschicht gebildet wird.
  7. Verfahren nach Anspruch 6, bei dem das Oxidieren ein anodisches Oxidieren, insbesondere Eloxieren, ist.
  8. Verfahren nach Anspruch 7, bei dem die harte Schicht verdichtet wird, insbesondere durch Behandlung mit kochendem Wasser oder kochenden, wässrigen Salzlösungen.
  9. Verfahren nach einem der Ansprüche 3 bis 5, bei dem die Metallschicht aus einer aushärtbaren Legierung gebildet und zur Bildung der harten Schicht ausgehärtet wird.
  10. Verfahren nach Anspruch 9, bei dem die Legierung eine Aluminiumbasislegierung, insbesondere mit Zusätzen von Magnesium sowie Kupfer oder Zink, ist.
  11. Verfahren nach einem der vorhergehenden Ansprüche, bei dem eine Metallschicht mit einer Dicke gebildet wird, welche zwischen 15 µm und 200 µm, vorzugsweise zwischen 40 µm und 100 µm, beträgt.
  12. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Aufbringen der Metallschicht elektrochemisch, insbesondere durch Galvanisieren, erfolgt.
  13. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Schutzschicht direkt auf das Substrat aufgebracht wird.
  14. Schutzschicht auf einem aus Chromstahl bestehenden Substrat eines Bauteils einer Turbomaschine, welches einen Schutz gegen einen korrosiven und/oder erosiven Angriff bei einer Temperatur bis etwa 500°C bietet und Aluminium beinhaltet, gekennzeichnet durch eine auf das Substrat aufgebrachte, Aluminium enthaltende Metallschicht, die an ihrer Oberfläche gehärtet oder ausgehärtet ist.
  15. Schutzschicht auf einem Substrat nach Anspruch 14, welches zu einer Schaufel, insbesondere einer Laufschaufel oder einer Leitschaufel, für eine Turbomaschine, vorzugsweise für einen Turboverdichter, gehört.
  16. Schutzschicht auf einem Substrat nach Anspruch 15, wobei die Schaufel einen Fußteil und einen Blatteil aufweist und wobei das Substrat zu dem Blatteil gehört.
  17. Schutzschicht auf einem Substrat nach einem der Ansprüche 14 bis 16, welches aus einem Chromstahl mit folgenden Anteilen besteht (Angaben in Gewichtsprozenten):
    0,1 bis 0,3 % Kohlenstoff
    11 bis 17 % Chrom
    0 bis 6 % Nickel
    0 bis 1,5 % Molybdän
    0 bis 1 % Vanadium
    0 bis 1 % Silizium
    0 bis 1 % Mangan
    Rest Eisen mit herstellungsbedingten Verunreinigungen.
  18. Schutzschicht auf einem Substrat nach einem der Ansprüche 14 bis 17, welches zumindest teilweise ein ferritisches oder martensitisches Gefüge aufweist.
EP93920767A 1992-10-05 1993-09-17 Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat Expired - Lifetime EP0663964B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93920767A EP0663964B1 (de) 1992-10-05 1993-09-17 Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP92116998 1992-10-05
EP92116998 1992-10-05
PCT/EP1993/002534 WO1994008071A1 (de) 1992-10-05 1993-09-17 Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 °c für ein aus chromstahl bestehendes substrat
EP93920767A EP0663964B1 (de) 1992-10-05 1993-09-17 Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat

Publications (2)

Publication Number Publication Date
EP0663964A1 EP0663964A1 (de) 1995-07-26
EP0663964B1 true EP0663964B1 (de) 1996-12-27

Family

ID=8210102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93920767A Expired - Lifetime EP0663964B1 (de) 1992-10-05 1993-09-17 Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat

Country Status (9)

Country Link
US (1) US5547769A (de)
EP (1) EP0663964B1 (de)
JP (1) JPH08501831A (de)
KR (1) KR950703669A (de)
CZ (1) CZ77395A3 (de)
DE (1) DE59304920D1 (de)
ES (1) ES2096943T3 (de)
RU (1) RU95110753A (de)
WO (1) WO1994008071A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149389A (en) * 1996-03-13 2000-11-21 Forschungszentrum Karlsruhe Gmbh Protective coating for turbine blades
DE19627860C1 (de) * 1996-07-11 1998-01-08 Mtu Muenchen Gmbh Schaufel für Strömungsmaschine mit metallischer Deckschicht
SE508150C2 (sv) * 1996-08-30 1998-09-07 Sandvik Ab Förfarande för att tillverka band av ferritiskt, rostfritt FeCrAl-stål
US6129262A (en) * 1997-02-24 2000-10-10 Ford Global Technologies, Inc. Fluxless brazing of unclad aluminum using selective area plating
US6274200B1 (en) 1998-09-11 2001-08-14 Boeing North American, Inc. Method for preparing pre-coated ferrous-alloy components and components prepared thereby
EP0997555B1 (de) * 1998-10-26 2004-02-25 Techspace aero Verfahren zum Herstellen einer dünnen Beschichtung auf einem metallischen Substrat
US6283195B1 (en) 1999-02-02 2001-09-04 Metal Casting Technology, Incorporated Passivated titanium aluminide tooling
JP4703857B2 (ja) * 1999-05-14 2011-06-15 シーメンス アクチエンゲゼルシヤフト 蒸気タービンの構造部材と構造部材上に保護被覆を形成する方法
GB0305461D0 (en) * 2003-03-10 2003-04-16 Transense Technologies Plc Improvements in the construction of saw devices
DE102004001575A1 (de) 2004-01-10 2005-08-04 Mtu Aero Engines Gmbh Verfahren zur Herstellung von Hohlschaufeln sowie eines Rotors mit Hohlschaufeln
CN101454475B (zh) * 2006-05-24 2011-04-20 蓝野钢铁有限公司 处理Al/Zn基合金涂覆产品的方法及所得到的产品
DE102007008011A1 (de) * 2007-02-15 2008-08-21 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Ausbildung einer Aluminium-Diffusionsschicht zum Oxidationsschutz
IT1393140B1 (it) * 2009-03-17 2012-04-11 Nuovo Pignone Spa Metodo di produzione di un rivestimento protettivo per un componente di una turbomacchina, il componente stesso e la relativa macchina
WO2010135779A1 (en) 2009-05-28 2010-12-02 Bluescope Steel Limited Metal-coated steel strip
GB0922308D0 (en) * 2009-12-22 2010-02-03 Rolls Royce Plc Hydrophobic surface
US9267216B2 (en) 2010-11-11 2016-02-23 Hitachi Metals Ltd. Method for producing aluminum foil
ITTO20110257A1 (it) * 2011-03-24 2012-09-25 Avio Spa Metodo per la riparazione di un componente in lega di alluminio
US9752441B2 (en) 2012-01-31 2017-09-05 United Technologies Corporation Gas turbine rotary blade with tip insert
EP2650400A1 (de) * 2012-04-11 2013-10-16 Siemens Aktiengesellschaft Aluminiumhaltige Schutzschicht gegen Korrosion und Erosion
EP2770085A1 (de) * 2013-02-26 2014-08-27 Siemens Aktiengesellschaft Aluminiumhaltige Schutzschicht gegen Korrosion und Erosion
US10041361B2 (en) 2014-10-15 2018-08-07 General Electric Company Turbine blade coating composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB716554A (en) * 1951-06-25 1954-10-06 William John Campbell Improvements in anodising aluminium and its alloys

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB681250A (en) * 1948-04-05 1952-10-22 American Electro Metal Corp Coated metal machine parts, particularly jet engine parts
GB706739A (en) * 1952-02-11 1954-04-07 Glenn L Martin Co Method of producing hard, abrasion-resistant coatings on aluminum and aluminum alloys
US4275124A (en) * 1978-10-10 1981-06-23 United Technologies Corporation Carbon bearing MCrAlY coating
US4350540A (en) * 1979-11-08 1982-09-21 Bethlehem Steel Corporation Method of producing an aluminum-zinc alloy coated ferrous product to improve corrosion resistance
DE3035749A1 (de) * 1980-09-22 1982-05-06 Siemens AG, 1000 Berlin und 8000 München Waermeableitende leiterplatten
US4471033A (en) * 1981-10-15 1984-09-11 Taiho Kogyo Co., Ltd. Al-Si-Sn Bearing alloy and bearing composite
US4517229A (en) * 1983-07-07 1985-05-14 Inland Steel Company Diffusion treated hot-dip aluminum coated steel and method of treating
US4686155A (en) * 1985-06-04 1987-08-11 Armco Inc. Oxidation resistant ferrous base foil and method therefor
CH678067A5 (de) * 1989-01-26 1991-07-31 Asea Brown Boveri

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB716554A (en) * 1951-06-25 1954-10-06 William John Campbell Improvements in anodising aluminium and its alloys

Also Published As

Publication number Publication date
RU95110753A (ru) 1997-01-27
US5547769A (en) 1996-08-20
CZ77395A3 (en) 1995-12-13
KR950703669A (ko) 1995-09-20
ES2096943T3 (es) 1997-03-16
WO1994008071A1 (de) 1994-04-14
EP0663964A1 (de) 1995-07-26
DE59304920D1 (de) 1997-02-06
JPH08501831A (ja) 1996-02-27

Similar Documents

Publication Publication Date Title
EP0663964B1 (de) Schutz gegen korrosive und erosive angriffe bei temperaturen bis etwa 500 grad celsius für ein aus chromstahl bestehendes substrat
DE2657288C2 (de) Überzogener Superlegierungsgegenstand und seine Verwendung
DE2325138C3 (de) Verfahren zur Bildung von Schutzüberzügen auf Metallsubstraten
DE3535548C2 (de) Beschichteter Gegenstand und Verfahren zum Herstellen einer Beschichtung eines Gegenstandes
EP1306454B1 (de) Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
EP2398936B1 (de) Erosionsschutz-beschichtungssystem fur gasturbinenbauteile
DE69218061T2 (de) Instandhaltung von Werkstücken aus korrodierten Superlegierungen oder korrodiertem hitzebeständigem Stahl und so instandgesetzte Teile
DE3873798T2 (de) Beschichtung und plattierung aus einer nickelbasislegierung mit guter bestaendigkeit gegen oxidation und hochtemperaturskorrosion fuer bauteile des hochtemperaturteils einer industrie- oder schiffsgasturbine und daraus hergestellte verbundwerkstoffe.
DE69123631T2 (de) Beschichtung von Stahlkörpern
DE3010608A1 (de) Ueberzugszusammensetzung fuer nickel, kobalt und eisen enthaltende superlegierung und superlegierungskomponente
DE3030961A1 (de) Bauteile aus superlegierungen mit einem oxidations- und/oder sulfidationsbestaendigigen ueberzug sowie zusammensetzung eines solchen ueberzuges.
EP1060282B1 (de) Verfahren zum herstellen einer korrosions- und oxidationsbeständigen schlickerschicht
DE3887520T2 (de) Thermisches spritzen von rostfreiem stahl.
CH651070A5 (de) Als ueberzugsbeschichtung von stoffen auf nickelbasis verwendbare legierung.
DE2418879A1 (de) Verbessertes beschichtungssystem fuer superlegierungen
DE2842848C2 (de) Werkstoff zum Überziehen von Gegenständen
CH667469A5 (de) Verfahren zum aufbringen von schutzschichten.
EP3320127B1 (de) Konturtreue schutzschicht für verdichterbauteile von gasturbinen
DE69826606T2 (de) Durch hochtemperaturspritzen beschichtetes teil und verfahren zu dessen herstellung
DE60022300T2 (de) Gegenstände mit korrosionsbeständigen Beschichtungen
EP0341456B1 (de) Verfahren zur Erzeugung galvanisch abgeschiedener Heissgaskorrosionsschichten
EP2796588A1 (de) Verfahren zur Herstellung einer Hochtemperaturschutzbeschichtung und entsprechend hergestelltes Bauteil
EP1970461A1 (de) Turbinenbauteil mit Wärmedämmschicht
DE2353350C2 (de) Verfahren zum Schutz von chromhaltigen Eisen- oder Nickellegierungen gegen Hochtemperaturoxidation
DE4229600C1 (de) Schutzschicht für Titanbauteile und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19950921

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59304920

Country of ref document: DE

Date of ref document: 19970206

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2096943

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970826

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970911

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970912

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970924

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980918

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980918

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980917

EUG Se: european patent has lapsed

Ref document number: 93920767.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050917