EP0654564B1 - Procédé pour installer le pont d'une plate-forme marine sur une structure support en mer - Google Patents

Procédé pour installer le pont d'une plate-forme marine sur une structure support en mer Download PDF

Info

Publication number
EP0654564B1
EP0654564B1 EP94402388A EP94402388A EP0654564B1 EP 0654564 B1 EP0654564 B1 EP 0654564B1 EP 94402388 A EP94402388 A EP 94402388A EP 94402388 A EP94402388 A EP 94402388A EP 0654564 B1 EP0654564 B1 EP 0654564B1
Authority
EP
European Patent Office
Prior art keywords
deck
support structure
plunger
hydraulic cylinder
plunger piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94402388A
Other languages
German (de)
English (en)
Other versions
EP0654564A1 (fr
Inventor
Jean-Louis Hoss
Jean-Paul Labbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETPM SA
Original Assignee
ETPM SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETPM SA filed Critical ETPM SA
Priority to SG1995000246A priority Critical patent/SG34968A1/en
Publication of EP0654564A1 publication Critical patent/EP0654564A1/fr
Application granted granted Critical
Publication of EP0654564B1 publication Critical patent/EP0654564B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/021Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto with relative movement between supporting construction and platform
    • E02B17/024Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto with relative movement between supporting construction and platform shock absorbing means for the supporting construction
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0039Methods for placing the offshore structure
    • E02B2017/0047Methods for placing the offshore structure using a barge

Definitions

  • the present invention relates to a method for installing the bridge of a marine platform on a support structure at sea, as well as a bridge equipped with means allowing its installation on the support structure (see eg FR-A- 2,516,112).
  • a “bridge” is any type of superstructure of a platform installed at sea.
  • the bridge usually comprises several vertical tubular legs, of steel or concrete or partly of steel and partly of concrete, which are laid and fixed on a support structure.
  • the expression "support structure” designates any type of infrastructure sometimes called a "jacket” in this field of technology and intended to support the deck of the marine platform. In service, the support structure may be fully or partially submerged and it may or may not rest on a seabed.
  • the support structure usually comprises a number of vertical or substantially vertical piers and / or tubular members which corresponds to the number of legs of the bridge.
  • tubular members of the support structure also called “legs”
  • vertical members Said tubular members of the support structure, also called “legs”
  • the piers and / or vertical members may be made of metal or concrete or partly of metal and partly of concrete.
  • barge is any type of ballastable floating machine capable of transporting the deck of a marine platform.
  • the deck and support structure of a marine platform are usually prefabricated separately ashore or in a dry dock or in a form of refit, and they are then conveyed or towed separately to a site at sea where they are then assembled together.
  • the assembly site can be the site of use of the platform or any other site chosen to have sufficient water depth and relatively calm sea conditions.
  • Operations f) and g) can be carried out in the above order, in reverse order or simultaneously.
  • the receiving part provided at the upper end of each stack or vertical member of the support structure comprises a guide tube whose upper end is flared to receive and center the plunger associated with the leg correspondent of the bridge.
  • the horizontal movement components of the bridge (cavally) induced by the swell generate horizontal forces.
  • the present invention therefore aims to provide a method and means for avoiding the impacts that occur when using the known technique described above.
  • Another object of the present invention is to provide means making it possible to reduce the stresses which result from the interactions between the vertical piers or members of the support structure and the legs of the bridge, and which are generated by the components of horizontal movement of the bridge due in swell.
  • the method according to the invention is characterized in that it consists, for operation c) in letting the plungers descend under the effect of their own weight, while establishing a two-way communication and at large flow between a low pressure hydraulic fluid accumulator and a chamber in the upper part of each hydraulic cylinder above the plunger, in order to bring each plunger into contact with the receiving part of the pile or corresponding vertical member of the support structure, to then be allowed to oscillate vertically with the swell, during an observation phase, the barge, the bridge and the hydraulic cylinders relative to the plungers bearing on said corresponding receiving parts while leaving said bi communication open -directional, to then establish only unidirectional and high-speed communication from said low pressure accumulator to said ch amber in each hydraulic cylinder, in order to prevent any downward movement of the deck and of the hydraulic cylinders, but without preventing an upward movement of these and without preventing the chamber from being able to fill with hydraulic fluid if it passes under the barge of the waves whose crest has a level higher
  • the bridge can only rise to a higher level under the action of the larger waves, without driving the plungers with it, thanks to said one-way communication between the low pressure accumulators and said chambers of the hydraulic cylinders. Again, no impact can occur between the plungers and the corresponding receiving parts of the support structure, on the one hand, and between the lower end of the bridge legs and the upper ends of the piers or vertical members of the structure support. Then, at the end of the barge ballasting operation, once the weight of the bridge has been transferred to the support structure and the barge has been evacuated, the bridge is no longer subjected to the action of the swell.
  • the bridge when low flow communication is established between the chamber of each of the hydraulic cylinders and the hydraulic fluid reservoir, the bridge can be lowered slowly and smoothly until its legs come into contact with the upper part of the stacks or vertical members of the support structure, and this without the swell can produce uncontrolled impacts between the legs of the bridge and the support structure.
  • the present invention also provides a marine platform bridge comprising several vertical tubular legs intended to be assembled vertically to piers or vertical members of a support structure previously submerged, each leg of the bridge containing a hydraulic cylinder and plunger piston assembly, the cylinder of which is fixed to the leg and the plunger of which can be moved vertically with respect to the cylinder and the leg in order to be brought into abutment with a corresponding receiving part provided at the top of each stack or vertical member of the support structure, and a control and command unit for controlling the operation of the hydraulic cylinder and plunger piston assemblies contained in the legs of the bridge, characterized in that in each hydraulic cylinder, above the plunger, is formed a chamber which is filled with hydraulic fluid, and that each leg contains t furthermore a low pressure hydraulic fluid accumulator, first means that can be controlled to establish a high-speed bidirectional communication between the low pressure accumulator and said chamber of the hydraulic cylinder, second means that can be controlled to establish a one-way communication with high flow from the low pressure accumulator to said chamber and
  • the invention also provides a support structure for a marine platform, comprising several stacks or vertical members intended to be assembled and to support respectively the legs of a deck of the platform, each stack or vertical member having at its upper part a receiving part intended to receive and serve as a support for a plunger mounted movable vertically in a corresponding leg of the deck of the platform, characterized in that said receiving part has the shape of a cavity which is open towards the high and whose internal diameter is substantially larger than the external diameter of the plunger, and in that the bottom of the cavity is provided with a laminated damper assembly composed of a lower layer of an elastomeric material forming a buffer, a metal reinforcing plate and an anti-friction layer made of a material chosen to have a low coefficient of friction with l a material of the plunger, to allow limited horizontal movements of sliding between the plunger and the bottom of the cavity without contact with the side wall thereof.
  • Figures 1 and 2 are front and side elevational views showing a loaded bridge on a barge anchored between the piles of a support structure (jacket).
  • Figures 3 to 12 are schematic views showing the relative positions of a leg of the bridge and a stack or vertical member of the support structure during the successive phases of the process of the present invention.
  • Figures 13 to 15 are sectional views schematically showing, on a still larger scale, a detail of one of the hydraulic cylinder and plunger piston assemblies used in the process of the invention, these figures showing in particular a check valve pilot return and pilot valve, which are shown in their different states during the process of the invention.
  • Figure 16 is a vertical sectional view of one of the legs of the deck of the marine platform.
  • Figure 17 is a half-sectional view along line XVII-XVII of Figure 16, this figure showing a method of fixing a hydraulic cylinder to the bridge leg.
  • Figure 18 is a vertical sectional view of the upper part of a leg of the bridge, this figure showing another possible mode of attachment of the hydraulic cylinder to said leg.
  • Figure 19 is a vertical sectional view showing, on a larger scale, a receiving portion at the upper end of a stack of the support structure.
  • Figure 20 is a sectional view of the lower leg of the bridge, showing a detail.
  • FIG. 21 is a view in vertical section showing a mode of connection of the lower part of a leg of the bridge to the upper part of a stack of the support structure.
  • FIG. 22 is a view in vertical section showing another mode of connection of the lower part of a leg of the bridge to the upper part of a stack of the support structure.
  • Figure 23 is a vertical sectional view showing an embodiment of a hydraulic cylinder, plunger, low accumulator assembly pressure and auxiliary cylinder, which is housed in one leg of the bridge.
  • FIG. 24 is a half-view in vertical section of another embodiment of the hydraulic cylinder, plunger and low pressure accumulator assembly.
  • FIG. 25 is a partial view in vertical section showing a high pressure accumulator associated with the assembly of FIG. 23.
  • FIG. 26 is a diagram of the hydraulic circuits of the hydraulic assembly housed in one leg of the bridge.
  • FIGS. 1 and 2 we can see the deck 1 of a marine platform, loaded on a barge 2 which has been brought into position inside a support structure 3 (jacket) in order to install the bridge 1.
  • the support structure 3 is fixed to the seabed 4 by piles 5, for example eight piles in the case shown here.
  • the method of the invention can also be implemented with a floating support structure suitably anchored to the seabed 4, for example by several lines of anchors.
  • the bridge 1 has several legs 6, for example eight legs intended to be placed on receiving parts 7 of the support structure 3.
  • the receiving parts 7, which will be described in detail below, can be formed at the upper end outside of water from the piers 5, as shown here, or at the upper end of the vertical tubular members 8 of the support structure 3 through which the piers 5 have been engaged to be driven into the seabed 4.
  • the receiving parts 7 could be formed on any other part of the support structure 3 studied to support the vertical, static and dynamic forces, brought into play during the laying operations of the bridge 1 and while the platform is in service.
  • the bridge 1 rests on the barge 2 by means of several retractable supports 9, for example eight supports.
  • These supports 9 are shown here schematically insofar as they are elements well known in this field of technology, such as sand boxes, hydraulic cylinders or retractable mechanical devices.
  • the barge 2 is oriented facing the dominant swell thanks to a judicious prior orientation of the support structure 3 and it is held in position relative to this support structure by means also well known in this field of the art.
  • the barge's swerving movements are for example limited by four flexible defenses 11.
  • the jumps are limited for example by front anchor lines 12 and by rear anchor lines 13.
  • said closable orifices comprise several piloted non-return valves 24, for example three or four valves 24, and at least one piloted valve 25 (for reasons of simplification of the drawing, a single piloted non-return valve has simply been shown. 24 and a single pilot-operated valve 25 in FIGS. 13 to 15).
  • the valves 24 receive a piloting signal controlling their opening, they establish a bidirectional communication at high flow rate between the internal cavity of the accumulator 17 and the chamber 16 of the hydraulic cylinder 15 (FIG. 14). In the absence of a pilot signal, the valves 24 establish a high-speed unidirectional communication from the interior cavity of the accumulator 17 to said chamber 16.
  • the pilot valve 25 When opened by a pilot signal, the pilot valve 25 establishes a low flow communication between chamber 16 and a hydraulic fluid tank.
  • the hydraulic fluid reservoir is shown in FIGS. 13 to 15 as being constituted by the interior cavity of the pressure accumulator 17, this hydraulic fluid reservoir is preferably constituted by a reservoir separated from said pressure accumulator and arranged by example on deck 1 of the platform as schematically indicated at 26 in figure 26.
  • the piloted non-return valves 24 and the piloted valve 25 allow the plunger 14 to work in three different modes at the will of an operator 27 acting on a control desk 28, or under control a programmable controller replacing said operator.
  • a hydraulic control is provided to control the opening of the piloted non-return valves 24 and of the piloted valve 25, although they could be electromagnetically controlled.
  • a very low power of the order of a few tens of kW, is enough to switch from one operating mode to another and to control the entire operation of laying the bridge 1 on the support structure 3.
  • the power hydraulic necessary for this purpose can come from a hydraulic unit 29 installed on deck 1.
  • a single control panel 28 and a single hydraulic unit 29 may be sufficient for all the hydraulic cylinder and plunger 14, 15 installed in the legs 6 from deck 1.
  • auxiliary cylinder 31 (FIG. 23) can be provided above the chamber 16.
  • the auxiliary cylinder 31 which is not essential for the implementation of the method of the invention , has several functions.
  • a first function of this auxiliary cylinder 31 is to allow the plunger 14 to be held in the high position during transport of the deck 1 (this function could also be fulfilled by a fusible mechanical connection, for example with fusible bolts or by a retractable stop) .
  • a second function of the auxiliary cylinder 31 is to allow braking of the plunger 14 during its descent (this function could also be fulfilled by a mechanical friction braking system).
  • a third function of the auxiliary cylinder 31 is to allow the plunger 14 to be raised if necessary (for example in the event of reversal of the bridge fitting process or to allow the plunger 14 to re-enter the hydraulic cylinder 15 at the end installation process).
  • the three working modes of the plunger 14 are as follows. In the description which follows, the words “descent” and “rise” of the plunger 14 are understood to be in relative movement with respect to the cylinder 15.
  • the plunger 14 In the first mode (mode 1), the plunger 14 is free to descend into the cylinder 15 under the effect of its own weight, the weight of the oil in the chamber 16 and the low pressure of the oil in the accumulator 17. The plunger 14 is also free to go up when an upward vertical external force, greater than the sum of the above-mentioned forces, is applied to it.
  • This operating mode is obtained by controlling the non-return valves 24 so as to keep them open (high-speed bidirectional communication between the accumulator 17 and the chamber 16) and by keeping the pilot-operated valve 25 closed.
  • This operating mode corresponds in Figures 5, 6, 7 and 14.
  • the plunger 14 In the second mode (mode 2) the plunger 14 is free to descend into the cylinder 15, but it cannot rise. In this mode also, if the plunger 14 is fixed, for example because it is in abutment on the receiving part 7 of the corresponding stack 5 of the support structure 3, the cylinder 15 and the leg 6 to which it is fixed are free to mount relative to the plunger 14, but they can not descend.
  • This operating mode is obtained by allowing the valves 24 to function as non-return valves allowing the entry of oil into the chamber 16 coming from the accumulator 17, but preventing the oil from leaving said chamber 16 (unidirectional high flow communication from the pressure accumulator 17 to the chamber 16) and keeping the piloted valve 25 closed.
  • This operating mode corresponds to Figures 8 to 11 and 13.
  • the plunger In the third mode (mode 3), the plunger is assumed to be fixed, being supported on the receiving part 7 of the corresponding stack 5 of the support structure 3.
  • the cylinder 15 and the leg 6 to which it is fixed can descend from slow and controlled manner by sliding on the plunger 14. This lowering movement is allowed by opening the piloted valve 25.
  • the valves 24 In this operating mode, the valves 24 are kept closed by the oil pressure which prevails in the chamber 16 and which is higher than that prevailing in the accumulator 17.
  • This operating mode corresponds to FIGS. 12 and 15.
  • the plunger 14 In addition to these three operating modes, the plunger 14 must be able to be kept in the high retracted position during the transport of the deck 1 and at the start of the fitting process. As indicated above, this can for example be obtained using the auxiliary jack 31.
  • FIGS. 13 to 15 also show a pressure sensor 32, which is mounted in the wall 21 and which makes it possible to measure and monitor the pressure prevailing in the chamber 16 of the hydraulic cylinder 15.
  • the output signal from the pressure sensor 32 is sent by an appropriate line to a command control unit contained in console 28.
  • the barge 2 is kept in the position for laying the bridge inside the support structure 3. All the plungers 14 are kept in the high position inside the cylinders 15. The barge 2 is then ballasted to reduce the height of fall of the plungers 14.
  • the barge 2 is subjected to the action of the swell represented schematically by the arrows F1 and F2 in FIGS. 3 and 4. The movements of the barge 2 due to the swell are limited by the damping devices 11 and the anchor lines 12 and 13 mentioned above.
  • Swell measurement buoys (not shown), placed in known manner at a certain distance from the support structure 3, give the operator 27 information on the nature of the swell trains arriving on the support structure 3, namely the wave height and their period.
  • Measuring devices placed on each assembly 14, 15, 17 provide the operator 27, in real time, all the data relating to the movements of the bridge 1.
  • Proximity detectors can also be used for the same purpose.
  • the operator 27 then triggers the descent of the eight plungers 14 by operating them in mode 1 and by freely letting the piston rod out of the auxiliary cylinders 31.
  • the plungers 14 remain in this position.
  • the cylinders 15 fixed to the legs 6 of the bridge 1 perform a vertical back-and-forth movement by sliding on the plungers 14.
  • the horizontal movements of the barge 2 create horizontal movements of the lower ends of the plungers 14, which slide on the receiving parts 7 of the support structure 3.
  • This sliding can be facilitated by suitable materials, with a low coefficient of friction, covering the receiving parts 7 of the support structure 3 and / or the lower end of the plungers 14, as will be described later.
  • suitable materials can for example be stainless steel sliding on "Teflon” (registered trademark).
  • Teflon registered trademark
  • the outside diameter of the lower end of the plungers 14 and the inside diameter of the receiving parts 7 of the support structure 3 must be compatible with these horizontal sliding movements, so that the aforementioned elements 7 and 14 never come into abutment in the horizontal direction.
  • the pitching of the barge 2 causes a variable inclination of the bridge 1 and, consequently, of the legs 6 of the bridge and of the pistons 14 which are inside.
  • This inclination of the pistons 14 could be the cause of poor support of their lower end on the receiving parts 7 of the support structure 3.
  • This problem can be solved by providing a hinged support head at the lower end of each plunger 14, as will be described later.
  • the plungers 14 can be raised by means of the auxiliary cylinders 31, and the barge 2 can therefore still be evacuated if this is made necessary by poor sea conditions.
  • This phase consists in immobilizing the deck 1 relative to the support structure 3 by acting simultaneously on all the hydraulic cylinder and plunger 14 assemblies. This is done by switching the operating mode of the plungers 14 from mode 1 to mode 2 by deactivating the control of the valves 24 so that they function only as non-return valves.
  • the operator 27 will trigger this operation at the most favorable moment, that is to say at the moment which will induce on the one hand the least inertia forces in the entire deck 1 - barge 2 - support structure 3 system. and, on the other hand, when the deck 1 is as high as possible so that the valves 24 have the least possible to operate. It is however important to note that if the two conditions above allow the hydraulic system to operate under ideal conditions, it is not essential that they are scrupulously respected. In other words, the system can be studied so that the blocking of the cylinder and piston assemblies 14, 15 can be done at any time or at least within a range of acceptable limit conditions.
  • the operator 27 To trigger the blocking of the cylinder and piston assemblies 14, 15 at the right time, the operator 27 must take into account the reaction time of the valves 24 and their orders.
  • the triggering of the blocking of the cylinder and piston assemblies 14, 15 can also be controlled directly by a programmable controller which can be provided to manage all the data of the system.
  • FIG. 8 represents the cylinder and piston assembly 14, 15 blocked during the passage of a crest of swell.
  • a wave swell passes under the barge 2 (FIG. 9), it does not move any more, because it remains pressed under the deck 1 which has become fixed relative to the support structure 3. Part of the weight of the deck 1 is then supported by the support structure 3.
  • Figure 13 shows that if a ridge of swell higher than the previous ones passes under the barge 2, this lifts the bridge 1, but the latter cannot descend again.
  • the valves 24 open and the chamber 16 is filled with an additional quantity of oil from the accumulator 17.
  • the plungers 14 remain in support on the receiving parts 7 of the support structure 3.
  • the valves 24 close automatically and the additional quantity of oil which entered chamber 16 remains trapped in the latter. Consequently, the cylinder 15 cannot descend and the barge 2 - deck 1 - assembly remains in the raised position when the next wave cavity arrives under the barge 2.
  • each plunger piston 14 After the passage of some exceptionally high swell peaks, each plunger piston 14 will therefore be in a position of maximum extension almost identical for all the pistons 14. Consequently, the bridge 1 will itself be in the maximum high position and almost horizontal. Bridge 1 will therefore no longer move under the effect of the swell, with the exception of movements due to the elasticity of the deck 1 - barge 2 - support structure 3 assembly.
  • shock absorbers can be arranged. As required, one or more of the above mentioned shock absorbers will be used.
  • the flexibility of the deck 1 and the barge 2 will also contribute to reducing the vertical forces mentioned above.
  • the vertical forces in each cylinder and piston assembly 14, 15 can reach, during of this third phase, values between 1,000 and 2,000 tonnes.
  • the oil pressure in chamber 16 can reach values of the order of 400 bar.
  • the junctions between the supports 9 and the bridge 1, on the one hand, and between the plungers 14 and the receiving parts 7, on the other hand, are solicited in turn.
  • These stresses are dynamic and can therefore be reduced by shock absorbers made of elastomeric material arranged judiciously.
  • the junction between the plungers 14 and the receiving parts 7 of the support structure 3 is preferably made so that their surfaces in contact with each other have a low coefficient of friction.
  • this phase it involves transferring the entire weight of the deck 1 from the barge 2 to the support structure 3, and then removing the barge 2. This operation is carried out by ballasting the barge 2, as is known in this field of the art.
  • Ballasting can be checked by measuring the forces in the cylinder and piston assemblies 14, 15, either using strain gauges or by measuring the oil pressure in the chambers 16, for example by means of the pressure sensors 32.
  • a centering cone 37 fixed to the lower end of each leg 6 will allow the legs 6 of the bridge to automatically refocus relative to the receiving parts 7 of the support structure 3.
  • the lower part of each leg 6 of the bridge can then be rigidly fixed to the corresponding receiving part 7 of the support structure 3, for example by a welded joint 38 as shown in FIG. 21.
  • a steel washer 39 can be arranged between the contact surfaces between each leg 6 of the bridge and the corresponding receiving part 7 of the support structure as shown in Figure 22. This allows to accept an eccentricity between the elements 6 and 7.
  • the washer 39 can be fixed to the receiving part 7 by a welded joint 41, while the leg 6 can be fixed to the washer 39 by another welded joint 42.
  • the assemblies formed by the elements 14, 15 and 17 can be removed from the legs 6 of the deck 1 as we will see it later.
  • the life of the platform has ended, it must be dismantled. If the bridge has been installed using the device of the present invention, it can also be removed from the support structure 3 using the same device. The different phases of the bridge removal process are the same as those used for the bridge installation, except that they take place in reverse order and in reverse.
  • Figure 16 shows, in vertical section, a first embodiment of said assembly.
  • a cylindrical body 43 the length of which is approximately equal to that of the leg 6 of the deck 1 and which comprises three parts: a lower part, which forms the hydraulic cylinder 15 and which contains the plunger 14, a middle part, which forms the envelope of the accumulator 17, and an upper part 44 which is used mainly for handling the body 43.
  • a lifting lug 45 is fixed to the top of the body 43. This lug 45 makes it possible to attach the body 43 to the hook of a machine lifting, such as a crane, to allow the installation of the body 43 inside the leg 6 before the operations of laying the bridge 1, but also to allow the removal of the body 43 once the installation of the bridge finished.
  • the body 43 and the functional elements it contains are thus reusable for a new bridge-laying operation similar to that described above.
  • a cavity 46 can be provided at the top of the body 43. This cavity 46 is the ideal place to place a gyro-accelerator 47 which will give the operator 27 all the necessary information concerning the movements of the bridge 1. This gyro-accelerator 47 is directly connected to the control and command unit contained in the control console 28.
  • a protective plate 48 which can bear on the top of the leg 6 in order to take up part of the weight of the body 43 and of the elements it contains.
  • the body 43 is detachably fixed to the leg 6 by a link 49 (also shown in horizontal section in FIG. 17), of the type with blocking by thirds of a turn around the vertical axis of the body 43.
  • a blocking with a different angle of rotation is of course also conceivable.
  • This type of connection makes it possible to absorb significant vertical forces upwards and downwards.
  • FIG. 18 shows another possible method of fixing the body 43 to the leg 6 of the bridge.
  • the leg 6 is extended upwards by a part 6a, which projects above the bridge 1 and in which several openings 51 are formed.
  • the body 43 has an enlarged cylindrical part 52 which fits sliding inside the extension 6a of the leg 6.
  • the enlarged cylindrical part 52 of the body 43 is fixed to the extension 6a of the leg 6 by weld seams 53 formed in each of the openings 51.
  • the total section of the weld seams must of course be sufficient to absorb the vertical forces generated during the laying of the bridge 1.
  • centering shims 54 at least three in number, which are integral with the leg 6 and which maintain the lower part of the body 43 (hydraulic cylinder 15) in the centered position inside the leg 6.
  • the centering shims 54 can of course be replaced by a centering ring.
  • the body 43 comprises two internal horizontal partitions, namely the partition 21, already mentioned, and the partition 55.
  • the partitions 21 and 55 respectively delimit downward and upward the interior cavity of the low pressure accumulator 17.
  • the partition 21 delimits upwards the chamber 16 of the hydraulic cylinder 15, which contains the plunger 14 and, above the latter, a certain volume of oil.
  • the partition 21 must have a sufficient thickness to be able to withstand the high oil pressures which are established in the chamber 16, as indicated above, during the process of laying the deck 1.
  • the piloted non-return valves 24, the piloted valve 25 and the pressure 32 are mounted in the partition 21 ( Figures 13 to 15).
  • the oil supply lines under pressure for controlling the non-return valves 24 and the valve 25 and the conductors transmitting the output signal from the pressure sensor 32 are arranged in a sheath or conduit 56 which passes into the cavity interior of the accumulator 17, passes through the partition 55, passes into the chamber 57 situated above the partition 55 in the upper part 44 of the body 43, and passes through the top of the body 43 to reach the hydraulic unit 29 and the control panel 28.
  • centering cone 37 which is fixed to the lower end of the leg 6 and which serves to center the latter relative to the corresponding receiving part 7 of the support structure 3 at time of docking at the end of the lowering operation of deck 1 (fifth phase described above).
  • a part or support head 58 the lower face of which is flat and the upper face of which has the shape of a spherical, concave or convex cap, matching the complementary shape, convex or concave, from the lower end of the plunger 14.
  • This support head 58 makes it possible to maintain good support between the plunger 14 and the receiving part 7 of the support structure when, during the operations of laying the bridge 1, the leg 6 inclines relative to the vertical because of the movements due to the swell.
  • the spherical surfaces, concave and convex, mutually in contact can slide one on the other, but cannot separate as will be seen in an exemplary embodiment described below.
  • the receiving part 7 at the upper end of each stack 5 or of each vertical member 8 of the support structure 3 is in the form of a cavity which is open upwards and whose internal diameter is substantially larger than the external diameter of the plunger 14.
  • the bottom of the cavity is consisting of a support plate 59 which forms an axial stop for the plunger 14.
  • the support plate 59 is stiffened below by gussets 61 arranged in a cross. The support plate 59 and the gussets 61 are welded to each other and to the tube 62 constituting the stack 5 or the vertical tubular member 8 of the support structure.
  • the support plate 59 forming the bottom of the cavity of the receiving part 7 is provided, on its upper face, with a laminated damper assembly 63 composed of a lower layer 64 of an elastomeric material, which forms a pad capable of working in compression and in shear, of a metal reinforcing plate 65 and of an anti-friction layer 66 of a material chosen to have a low coefficient of friction with the material of the plunger 14 or of the head d 'support 58.
  • the layer 66 may for example be "Teflon".
  • the internal diameter of the tube 62 and the material constituting the layer 66 are chosen taking into account the horizontal forces generated during the process of fitting the bridge 1, so as to allow limited horizontal sliding movements between the plunger 14 and the plate d support 59, without, however, the plunger 14 being able to come into contact with the wall of the tube 62.
  • FIG. 20 shows a device intended to protect the hydraulic cylinder and plunger 14 assembly, 15 during the transport of the deck 1 at sea.
  • This device consists of a cover 67 fixed to the centering cone 37 by bolts. This cover 67 can also serve as a safety stop for the piston plunger 14 during transport. It is removed once barge 2 has arrived at the installation site of deck 1.
  • the lower end of the tube 68 is fixed to the upper end of the hydraulic cylinder 15 by bolts and the upper end of the tube 68 is closed by a cover 69.
  • the tube 71 is intended to transmit the forces exerted to the leg 6 on the hydraulic cylinder 15 during the operations of laying the bridge 1.
  • the tube 71 has a length substantially equal to that of the leg 6. It is held in a centered position inside the leg 6 by the shims 54.
  • the connection between the tube 71 and the leg 6 may be of the same type as the connection 49 shown in FIGS. 16 and 17 or of the same type as the connection shown in FIG. 18.
  • FIG 23 there is also shown the auxiliary cylinder 31 which allows the handling of the piston plunger 14.
  • the cylinder 72 of the auxiliary cylinder 31 is disposed inside the low pressure accumulator 17, coaxially with the tube 68, and it is fixed in leaktight manner to the wall 21 forming the bottom of the hydraulic cylinder 15.
  • the rod piston 73 of the auxiliary cylinder 31 passes through a hole 74 formed in the center of the wall 21 and it enters the chamber 16 of the hydraulic cylinder 15 where it is fixed to the upper end of the plunger 14 by a clamping device 75 ensuring an axial connection between the elements 14 and 73, but allowing the other degrees of freedom necessary for the proper functioning of the plunger 14 and the auxiliary cylinder 31.
  • the clamping device 75 can also be located at the lower end of the plunger 14, in the case where a hollow plunger without bottom is used at its upper part.
  • the auxiliary cylinder 31 is shown here in the form of a double-acting cylinder, but this is not an absolute necessity, because the essential functions of the auxiliary cylinder 31 are, as we have already seen above, to allow successively maintaining the plunger 14 in the high position, braking the plunger 14 during its descent and possibly the ascent of the plunger 14 if necessary.
  • the auxiliary cylinder 31 could therefore be constituted by a single-acting cylinder.
  • the auxiliary cylinder 31 can be controlled by the hydraulic unit 29 via an appropriate hydraulic fluid distributor and / or controllable calibrated valves (not shown) allowing the auxiliary cylinder 31 to fulfill the above functions and in particular allowing the piston rod 73 to follow the movement of the plunger 14 when the latter is driven downwards by its own weight and by the pressure of the oil coming from the accumulator low pressure 17, or upwards by the reaction of the support structure.
  • the set of lines 76 groups together the oil supply pipes 77 for the auxiliary cylinder 31, the conductors 78 transmitting the output signal from the pressure sensor 32 to the control console 28 and the pipe (s) d oil supply 79 for controlling the non-return valves 24.
  • the pressure sensor 32 could be placed at a distance from the partition 21, for example on the cover 69 or in the control console 28.
  • the conductors 78 are replaced by an oil pressure measurement pipe which is connected to the orifice 81 of the partition 21.
  • the pipe 82 is connected to the piloted valve or valves 25 and it serves to evacuate the oil under pressure from the chamber 16 towards the reservoir 26 provided in the hydraulic unit 29.
  • the two pipes 83 are oil supply pipes allowing the piloting of the piloted valve or valves 25.
  • the pipe 84 serves for the return of the oil in the low accumulator pressure 17.
  • the hose 85 is used for inflating the low pressure accumulator 17 with a gas or a gaseous mixture such as air or nitrogen.
  • the hydraulic unit 29 which supplies the hydraulic power necessary for the operation of the elements described above, can be arranged just above the cover 69.
  • FIG. 23 also shows the support head 58 by which the plunger 14 can rest, in an articulated manner, on the support plate 59 (FIGS. 16 and 19) of the corresponding receiving part 7 of the support structure 3.
  • the support head 58 comprises an upper support plate 86, which is fixed for example by bolts to the lower end of the plunger 14 and which has a concave lower face in the form of a spherical cap; a lower support plate 87, the lower face of which is flat and the upper face of which is concave, in the form of a spherical cap; and an intermediate part 88, in the form of a bi-convex lens, the upper and lower faces of which conform to the concave faces of the plates 86 and 87.
  • the plate 87 is linked to the plate 86 by a system of bolts allowing relative sliding between the plate 86 and the intermediate part 88 and between the latter and the plate 87.
  • a sleeve 89 made of an elastomeric material is fixed to the plates 86 and 87 in their peripheral region. This sleeve 89 provides protection against the ingress of dirt or moisture between the plates 86 and 87.
  • the concave faces of the plates 86 and 87 or the convex faces of the intermediate piece 88 may be coated with a layer of anti-friction material, for example "Teflon".
  • the support plate 87 can be made of stainless steel if the damper device 63 (FIG. 19) is provided on the support plate 59.
  • the support plate 59 does not include any damping device such as the device 63, the underside of the plate 87 can be filled with a layer of "Teflon".
  • FIG. 24 shows another embodiment, which is similar to that of FIG. 23, but which differs from it by the fact that the auxiliary jack 31 is omitted.
  • the functions of the jack 31 can be filled by the hydraulic cylinder and plunger 14 assembly itself, which is produced in a slightly different manner from that described above. More precisely, the plunger 14 is produced in the form of a stepped piston in order to create a chamber 91 below its wide part 14a, between this part 14a and an end wall 15a of the hydraulic cylinder 15 which is crossed by the narrow part 14b of the piston 14. In this case, at least one suitable gasket 92 must be provided to prevent oil leaks between the end wall 15a and the narrow part 14b of the piston 14.
  • a pipe 93 connected to the cylinder 15 and communicating with the chamber 91 makes it possible either to evacuate the oil contained in the chamber 91 towards the hydraulic fluid reservoir 26 (FIG. 16) or to supply the chamber 91 with pressurized oil to raise the piston 14 in cylinder 15.
  • FIG. 25 a high pressure accumulator 34 is shown, which is disposed inside the low pressure accumulator 17 and which communicates with the chamber 16 of the cylinder 15 through an orifice 94.
  • FIG. 25 does not show than a single accumulator 34, there may be a larger number, arranged in a similar manner to that shown here.
  • the pressure accumulator or accumulators 34 make it possible to absorb the overpressures liable to be generated during the process of fitting the bridge 1, in particular during the third phase described above.
  • FIG. 26 represents a diagram of the hydraulic circuits of the system of the present invention. We find in this diagram all the elements which have already been described with reference to FIGS. 13 to 15, 23 and 25. It is therefore not considered useful to describe these elements again.
  • the pilot operated non-return valves 24 are shown in number of four for information only.
  • the high pressure accumulators 34 are three represented also for information.
  • the piloted valve 25 is represented in the form of a distributor with two orifices and two positions, which can be piloted on both sides by a piloting pressure applied by one or the other of the two pipes 83. It is quite obvious that the distributor 25 can be controlled by pressure on one side and returned by spring on the other side. For example, the distributor 25 can be held in its closed position by a spring, and it can be switched into its open position by pressure control.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Ship Loading And Unloading (AREA)
  • Vibration Prevention Devices (AREA)
  • Revetment (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

  • La présente invention concerne un procédé pour installer le pont d'une plate-forme marine sur une structure support en mer, ainsi qu'un pont équipé de moyens permettant son installation sur la structure support (voir p.ex. le FR-A-2 516 112).
  • Dans le cadre de la présente description, on appelle "pont" tout type de superstructure d'une plate-forme installée en mer. Le pont comporte habituellement plusieurs jambes tubulaires verticales, en acier ou en béton ou en partie en acier et en partie en béton, qui sont posées et fixées sur une structure support. L'expression "structure support" désigne tout type d'infrastructure parfois appelée "jacket" dans ce domaine de la technique et destinée à supporter le pont de la plate-forme marine. En service, la structure support peut être entièrement ou partiellement immergée et elle peut ou non reposer sur un fond marin. La structure support comporte habituellement un nombre de piles et/ou de membrures tubulaires verticales ou sensiblement verticales qui correspond au nombre de jambes du pont. Lesdites membrures tubulaires de la structure support, encore appelées "jambes", seront appelées "membrures verticales" dans le présent mémoire descriptif par souci de simplification, étant entendu que ces membrures peuvent être réellement verticales ou légèrement inclinées par rapport à la verticale ou encore en partie verticales et en partie inclinées par rapport à la verticale. Les piles et/ou membrures verticales peuvent être en métal ou en béton ou en partie en métal et en partie en béton. En outre, dans le cadre de la présente description, on appelle "barge" tout type d'engin flottant ballastable susceptible de transporter le pont d'une plate-forme marine.
  • Le pont et la structure support d'une plate-forme marine sont habituellement préfabriqués séparément à terre ou dans une cale sèche ou dans une forme de radoub, et ils sont ensuite convoyés ou remorqués séparément jusqu'à un site en mer où ils sont ensuite assemblés l'un à l'autre. Le site d'assemblage peut être le site d'utilisation de la plate-forme ou tout autre site choisi pour avoir une profondeur d'eau suffisante et des conditions de mer relativement calme.
  • Plusieurs techniques ont déjà été proposées pour installer le pont d'une plate-forme marine sur une structure support en mer. Une technique connue est par exemple décrite dans l'article intitulé "Offshore Installation of an Integrated Deck Onto a Preinstalled Jacket", par G.J. White, et al, OTC 5 260, Offshore Technology Conference, 18ème conférence annuelle à Houston, Texas, 5-8 Mai 1986. Dans cette technique connue, chaque jambe du pont contient un ensemble cylindre hydraulique et piston plongeur et chaque pile ou membrure verticale de la structure support comporte, à sa partie supérieure, une partie réceptrice apte à recevoir l'extrémité inférieure du piston plongeur associé à la jambe correspondante du pont. Ce procédé connu d'installation du pont comprend les opérations consistant:
    • a) à amener entre les piles ou les membures verticales de la structure support une barge sur laquelle le pont repose par l'intermédiaire de plusieurs supports escamotables;
    • b) à positionner et à maintenir la barge de telle sorte que les jambes du pont soient et restent sensiblement alignées avec les piles ou les membrures verticales correspondantes de la structure support;
    • c) à abaisser les pistons plongeurs jusqu'à ce que leur partie inférieure vienne en butée avec la partie réceptrice de la pile ou de la membrure correspondante de la structure support;
    • d) à ballaster la barge pour l'abaisser et transférer la charge du pont à la structure support;
    • e) à escamoter ensuite les supports situés entre le pont et la barge de telle sorte que le pont ne soit plus supporté que par la structure support;
    • f) à effectuer une liaison rigide entre les jambes du pont et les piles ou les membrures verticales de la structure support; et
    • g) à évacuer la barge d'entre lesdites piles ou membrures verticales.
  • Les opérations f) et g) peuvent être effectuées dans l'ordre sus-indiqué, dans l'ordre inverse ou simultanément.
  • En mer ouverte, cette technique connue présente actuellement des limites dues en particulier aux mouvements relatifs entre le pont et la structure support, qui sont provoqués par la houle et qui peuvent être la cause d'impacts ou de contraintes inadmissibles dans l'ensemble constitué par le pont, la barge et la structure support. En particulier, pendant l'opération de ballastage de la barge, alors que le poids du pont est encore au moins en partie supporté par ladite barge, malgré la présence de dispositifs amortisseurs il peut se produire des impacts entre les pistons plongeurs et les parties réceptrices correspondantes de la structure support, d'une part, et entre l'extrémité inférieure des jambes du pont et l'extrémité supérieure des piles ou des membrures verticales de la structure support, d'autre part, à cause des mouvements relatifs susmensionnés. Dans cette technique connue, les impacts entre les extrémités supérieures des jambes du pont et les extrémités supérieures des piles ou membrures verticales de la structure support sont pratiquement inévitables lorsque l'opération de ballastage approche de sa fin et que les extrémités inférieures des jambes du pont arrivent à faible distance des extrémités supérieures des piles ou membrures verticales de la structure support. Etant donné les masses très importantes en cause (le poids du pont peut être de plusieurs milliers ou plusieurs dizaines de milliers de tonnes), les impacts susmentionnés provoquent un matage ou une déformation des éléments qui s'entrechoquent. Ce matage ou cette déformation peut rendre ensuite très difficile, voire impossible la liaison des jambes du pont à la structure support.
  • En outre, dans cette technique connue, la partie réceptrice prévue à l'extrémité supérieure de chaque pile ou membrure verticale de la structure support comprend un tube de guidage dont l'extrémité supérieure est évasée pour recevoir et centrer le piston plongeur associé à la jambe correspondante du pont. Dès que le piston plongeur a pénétré dans le tube de guidage, les composantes horizontales de mouvement du pont (cavalement) induites par la houle engendrent des efforts horizontaux. Ceux-ci obligent à prévoir des dispositifs amortisseurs travaillant en compression entre le tube de guidage et la paroi cylindrique extérieure de la pile ou membrure verticale de la structure support. Malgré la présence de ces amortisseurs, la structure support et, par réaction, la structure du pont peuvent être soumises à des contraintes inadmissibles et susceptibles de nuire à l'intégrité de ces structures.
  • La présente invention a donc pour but de fournir un procédé et des moyens permettant d'éviter les impacts qui se produisent lorsque l'on utilise la technique connue décrite plus haut.
  • Un autre but de la présente invention est de fournir des moyens permettant de réduire les contraintes qui résultent des interactions entre les piles ou membrures verticales de la structure support et les jambes du pont, et qui sont engendrées par les composantes de mouvement horizontales du pont dues à la houle.
  • A cet effet, le procédé selon l'invention est caractérisé en ce qu'il consiste, pour l'opération c) à laisser les pistons plongeurs descendre sous l'effet de leur propre poids, tout en établissant une communication bi-directionnelle et à grand débit entre un accumulateur de fluide hydraulique basse pression et une chambre dans la partie haute de chaque cylindre hydraulique au-dessus du piston plongeur, en vue d'amener chaque piston plongeur en contact avec la partie réceptrice de la pile ou membrure verticale correspondante de la structure support, à laisser ensuite osciller verticalement au gré de la houle, pendant une phase d'observation, la barge, le pont et les cylindres hydrauliques par rapport aux pistons plongeurs en appui sur lesdites parties réceptrices correspondantes tout en laissant ouverte ladite communication bi-directionnelle, à établir ensuite une communication seulement unidirectionnelle et à grand débit dudit accumulateur basse pression vers ladite chambre dans chaque cylindre hydraulique, afin d'empêcher tout mouvement descendant du pont et des cylindres hydrauliques, mais sans empêcher un mouvement ascendant de ceux-ci et sans empêcher que la chambre puisse se remplir de fluide hydraulique s'il passe sous la barge des vagues dont la crête a un niveau plus haut que le niveau de l'eau au moment où la communication unidirectionnelle a été établie, à effectuer ensuite les opérations d) et e), à établir ensuite une communication à faible débit depuis ladite chambre de chaque cylindre hydraulique vers un réservoir de fluide hydraulique, de façon à permettre l'abaissement du pont et de ses jambes jusqu'à ce que celles-ci viennent en contact et en appui sur la partie supérieure des piles ou des membrures verticales de la structure support, et à effectuer ensuite l'opération f).
  • Grâce au procédé de la présente invention, dès que les pistons plongeurs sont arrivés en contact avec les parties réceptrices correspondantes des piles ou membrures verticales de la structure support, aucun impact ne peut ensuite se produire entre ces éléments étant donné que le pont est libre d'osciller verticalement, sans entraîner avec lui dans son mouvement vertical les pistons plongeurs, grâce aux communications bi-directionnelles établies entre les accumulateurs basse pression et les chambres des cylindres hydrauliques. On notera qu'à ce moment la distance verticale entre la partie inférieure des jambes du pont et la partie supérieure des piles ou membrures verticales de la structure support est encore importante et qu'aucun choc ne peut se produire entre elles à ce moment. Ensuite, pendant toute l'opération de ballastage de la barge, le pont et ses jambes ne peuvent effectuer aucun mouvement descendant et sont maintenus à distance de la partie supérieure des piles ou membrures verticales de la structure support. Le pont peut seulement s'élever à un niveau plus haut sous l'action des plus grosses vagues, sans entraîner avec lui les pistons plongeurs, grâce à ladite communication unidirectionnelle entre les accumulateurs basse pression et lesdites chambres des cylindres hydrauliques. Là encore, aucun impact ne peut se produire entre les pistons plongeurs et les parties réceptrices correspondantes de la structure support, d'une part, et entre l'extrémité inférieure des jambes du pont et les extrémités supérieures des piles ou membrures verticales de la structure support. Ensuite, à la fin de l'opération de ballastage de la barge, une fois que le poids du pont a été transféré à la structure support et que la barge a été évacuée, le pont n'est plus soumis à l'action de la houle. En conséquence, lorsque la communication à faible débit est établie entre la chambre de chacun des cylindres hydrauliques et le réservoir de fluide hydraulique, le pont peut être abaissé lentement et sans à-coup jusqu'à ce que ses jambes viennent en contact avec la partie supérieure des piles ou membrures verticales de la structure support, et celà sans que la houle puisse produire des impacts non contrôlés entre les jambes du pont et la structure support.
  • La présente invention fournit également un pont de plate-forme marine comprenant plusieurs jambes tubulaires verticales destinées à être assemblées verticalement à des piles ou des membrures verticales d'une structure support préalablement immergée, chaque jambe du pont contenant un ensemble cylindre hydraulique et piston plongeur, dont le cylindre est fixé à la jambe et dont le piston plongeur peut être déplacé verticalement par rapport au cylindre et à la jambe en vue d'être amené en butée avec une partie réceptrice correspondante prévue à la partie supérieure de chaque pile ou membrure verticale de la structure support, et une unité de contrôle et de commande pour commander le fonctionnement des ensembles cylindre hydraulique et piston plongeur contenus dans les jambes du pont, caractérisé en ce que dans chaque cylindre hydraulique, au-dessus du piston plongeur, est formée une chambre qui est remplie de fluide hydraulique, et en ce que chaque jambe contient en outre un accumulateur de fluide hydraulique basse pression, des premiers moyens pouvant être commandés pour établir une communication bidirectionnelle à grand débit entre l'accumulateur basse pression et ladite chambre du cylindre hydraulique, des seconds moyens pouvant être commandés pour établir une communication unidirectionnelle à grand débit depuis l'accumulateur basse pression vers ladite chambre et des troisièmes moyens pouvant être commandés pour établir une communication à faible débit entre ladite chambre et un réservoir de fluide hydraulique, lesdits premiers, seconds et troisièmes moyens étant commandés en séquence par ladite unité de contrôle et de commande.
  • L'invention fournit également une structure support pour plate-forme marine, comprenant plusieurs piles ou membrures verticales destinées à être assemblées et à supporter respectivement les jambes d'un pont de la plate-forme, chaque pile ou membrure verticale comportant à sa partie supérieure une partie réceptrice destinée à recevoir et à servir d'appui pour un piston plongeur monté mobile verticalement dans une jambe correspondante du pont de la plate-forme, caractérisée en ce que ladite partie réceptrice a la forme d'une cavité qui est ouverte vers le haut et dont le diamètre intérieur est sensiblement plus grand que le diamètre extérieur du piston plongeur, et en ce que le fond de la cavité est pourvu d'un ensemble amortisseur stratifié composé d'une couche inférieure en une matière élastomère formant tampon, d'une plaque métallique de renfort et d'une couche anti-friction en une matière choisie pour présenter un faible coefficient de frottement avec la matière du piston plongeur, afin de permettre des mouvements horizontaux limités de glissement entre le piston plongeur et le fond de la cavité sans contact avec la paroi latérale de celle-ci.
  • D'autres caractéristiques et avantages de la présente invention ressortiront mieux au cours de la description qui va suivre et qui est donnée en référence aux dessins annexés sur lesquels :
  • les figures 1 et 2 sont des vues en élévation de face et de côté représentant un pont chargé sur une barge ancrée entre les piles d'une structure support (jacket).
  • Les figures 3 à 12 sont des vues schématiques montrant les positions relatives d'une jambe du pont et d'une pile ou membrure verticale de la structure support au cours des phases successives du procédé de la présente invention.
  • Les figures 13 à 15 sont des vues en coupe montrant schématiquement, à plus grande échelle encore, un détail de l'un des ensembles cylindre hydraulique et piston plongeur utilisés dans le procédé de l'invention, ces figures montrant en particulier un clapet anti-retour piloté et une soupape pilotée, qui sont représentés dans leurs différents états au cours du procédé de l'invention.
  • La figure 16 est une vue en coupe verticale de l'une des jambes du pont de la plate-forme marine.
  • La figure 17 est une demi-vue en coupe suivant la ligne XVII-XVII de la figure 16, cette figure montrant un mode de fixation d'un cylindre hydraulique à la jambe du pont.
  • La figure 18 est une vue en coupe verticale de la partie supérieure d'une jambe du pont, cette figure montrant un autre mode possible de la fixation du cylindre hydraulique à ladite jambe.
  • La figure 19 est une vue en coupe verticale montrant, à plus grande échelle, une partie réceptrice à l'extrémité supérieure d'une pile de la structure support.
  • La figure 20 est une vue en coupe de la partie inférieure de la jambe du pont, montrant un détail.
  • La figure 21 est une vue en coupe verticale montrant un mode de liaison de la partie inférieure d'une jambe du pont à la partie supérieure d'une pile de la structure support.
  • La figure 22 est une vue en coupe verticale montrant un autre mode de liaison de la partie inférieure d'une jambe du pont à la partie supérieure d'une pile de la structure support.
  • La figure 23 est une vue en coupe verticale montrant un mode de réalisation d'un ensemble cylindre hydraulique, piston plongeur, accumulateur basse pression et vérin auxiliaire, qui est logé dans une jambe du pont.
  • La figure 24 est une demi-vue en coupe verticale d'un autre mode de réalisation de l'ensemble cylindre hydraulique, piston plongeur et accumulateur basse pression.
  • La figure 25 est une vue partielle en coupe verticale montrant un accumulateur haute pression associé à l'ensemble de la figure 23.
  • La figure 26 est un schéma des circuits hydrauliques de l'ensemble hydraulique logé dans une jambe du pont.
  • Sur les figures 1 et 2, on peut voir le pont 1 d'une plate-forme marine, chargé sur une barge 2 qui a été amenée en position à l'intérieur d'une structure support 3 (jacket) en vue d'y installer le pont 1. Dans les figures 1 et 2, la structure support 3 est fixée sur le fond marin 4 par des piles 5, par exemple huit piles dans le cas représenté ici. Toutefois, le procédé de l'invention peut être également mis en oeuvre avec une structure support flottante convenablement ancrée au fond marin 4, par exemple par plusieurs lignes d'ancres.
  • Le pont 1 comporte plusieurs jambes 6, par exemple huit jambes destinées à être posées sur des parties réceptrices 7 de la structure support 3. Les parties réceptrices 7, qui seront décrites en détail plus loin, peuvent être formées à l'extrémité supérieure hors d'eau des piles 5, comme représenté ici, ou à l'extrémité supérieure des membrures tubulaires verticales 8 de la structure support 3 à travers lesquelles les piles 5 ont été engagées pour être enfoncées dans le fond marin 4. Toutefois, il est à noter que les parties réceptrices 7 pourraient être formées sur toute autre partie de la structure support 3 étudiées pour supporter les forces verticales, statiques et dynamiques, mises en jeu pendant les opérations de pose du pont 1 et pendant que la plate-forme est en service.
  • Comme montré dans les figures 1 et 2, le pont 1 repose sur la barge 2 par l'intermédiaire de plusieurs supports escamotables 9, par exemple huit supports. Ces supports 9 sont représentés ici de manière schématique dans la mesure où il s'agit d'éléments bien connus dans ce domaine de la technique, tels que des boîtes à sable, des vérins hydrauliques ou des dispositifs mécaniques escamotables.
  • La barge 2 est orientée face à la houle dominante grâce à une orientation préalable judicieuse de la structure support 3 et elle est maintenue en position par rapport à cette structure support par des moyens également bien connus dans ce domaine de la technique. Les mouvements d'embardée de la barge sont par exemple limités par quatre défenses souples 11. Les mouvements de cavalement sont limités par exemple par des lignes d'ancre avant 12 et par des lignes d'ancre arrière 13.
  • Comme montré par exemple dans la figure 3, chaque jambe 6 du pont 1 est creuse et constituée par exemple par un tube en acier de section circulaire. A l'intérieur de chaque jambe 6 se trouve un ensemble d'éléments comprenant :
    • a) un piston plongeur 14 monté coulissant dans un cylindre hydraulique 15 lui-même fixé à la jambe 6 d'une manière qui sera décrite en détail plus loin. La chambre 16 formée dans le cylindre hydraulique 15 au-dessus du piston plongeur 14 est remplie d'un fluide hydraulique tel que le l'huile;
    • b) un accumulateur basse pression 17 situé au-dessus de l'ensemble cylindre et piston plongeur 14, 15. L'enveloppe extérieure de l'accumulateur 17 peut être par exemple réalisée d'un seul tenant avec le cylindre hydraulique 14 comme montré dans la figure 3 (voir également la figure 16). L'accumulateur 17 contient de l'huile 18 et un gaz ou un mélange gazeux 19 sous une faible pression de l'ordre de quelques bar. Ce gaz, qui peut être par exemple de l'azote, a tendance à chasser l'huile 18 vers la chambre 16 et, par conséquent, à pousser le piston plongeur 14 vers le bas. La quantité d'huile 18 contenue dans l'accumulateur 17 est plus grande que le volume nécessaire pour que le piston plongeur 14 puisse effectuer sa course maximale;
    • c) plusieurs orifices obturables, qui sont prévus dans une paroi 21 (voir les figures 13 à 15) séparant la chambre 16 du cylindre hydraulique 15 et la cavité intérieure de l'accumulateur 17. Dans les figures 3 à 12, ces orifices obturables sont représentés schématiquement et de manière globale par un unique orifice 22 et par un unique pointeau 23.
  • En réalité, lesdits orifices obturables comprennent plusieurs clapets anti-retour pilotés 24, par exemple trois ou quatre clapets 24, et au moins une soupape pilotée 25 (pour des raisons de simplification du dessin, on a simplement représenté un seul clapet anti-retour piloté 24 et une seule soupape pilotée 25 dans les figures 13 à 15). Lorsque les clapets 24 reçoivent un signal de pilotage commandant leur ouverture, ils établissent une communication bidirectionnelle à grand débit entre la cavité intérieure de l'accumulateur 17 et la chambre 16 du cylindre hydraulique 15 (figure 14). En l'absence de signal de pilotage, les clapets 24 établissent une communication unidirectionnelle à grand débit depuis la cavité intérieure de l'accumulateur 17 vers ladite chambre 16. Lorsqu'elle est ouverte par un signal de pilotage, la soupape pilotée 25 établit une communication à faible débit entre la chambre 16 et un réservoir de fluide hydraulique. Bien que le réservoir de fluide hydraulique soit représenté dans les figures 13 à 15 comme étant constitué par la cavité intérieure de l'accumulateur de pression 17, ce réservoir de fluide hydraulique est de préférence constitué par un réservoir séparé dudit accumulateur de pression et disposé par exemple sur le pont 1 de la plate-forme comme cela est schématiquement indiqué en 26 dans la figure 26.
  • Comme cela sera décrit plus loin, les clapets anti-retour pilotés 24 et la soupape pilotée 25 permettent au piston plongeur 14 de travailler dans trois modes différents à la volonté d'un opérateur 27 agissant sur un pupitre de commande 28, ou sous le contrôle d'un automate programmable remplaçant ledit opérateur. De préférence, un pilotage hydraulique est prévu pour commander l'ouverture des clapets anti-retour pilotés 24 et de la soupape pilotée 25, bien qu'ils pourraient être commandés électromagnétiquement. Il suffit d'une puissance très faible, de l'ordre de quelques dizaines de kW, pour passer d'un mode de fonctionnement à un autre et pour contrôler toute l'opération de pose du pont 1 sur la structure support 3. La puissance hydraulique nécessaire à cet effet peut provenir d'une centrale hydraulique 29 installée sur le pont 1. Un seul pupitre de commande 28 et une seule centrale hydraulique 29 peuvent suffir pour tous les ensembles cylindre hydraulique et piston plongeur 14, 15 installés dans les jambes 6 du pont 1.
  • A l'intérieur de chaque jambe 6, un vérin auxiliaire 31 (figure 23) peut être prévu au-dessus de la chambre 16. Le vérin auxiliaire 31, qui n'est pas indispensable pour la mise en oeuvre du procédé de l'invention, a plusieurs fonctions. Une première fonction de ce vérin auxiliaire 31 est de permettre le maintien du piston plongeur 14 en position haute pendant le transport du pont 1 (cette fonction pourrait être également remplie par une liaison mécanique fusible, par exemple à boulons fusibles ou par une butée escamotable). Une deuxième fonction du vérin auxiliaire 31 est de permettre le freinage du piston plongeur 14 au cours de sa descente (cette fonction pourrait également remplie par un système mécanique de freinage par frottement). Une troisième fonction du vérin auxiliaire 31 est de permettre le relevage du piston plongeur 14 en cas de nécessité (par exemple en cas d'inversion du processus de pose du pont ou pour permettre la rentrée du piston plongeur 14 dans le cylindre hydraulique 15 à la fin du processus de pose).
  • Les trois modes de travail du piston plongeur 14 sont les suivants. Dans la description qui va suivre, les mots "descente" et "montée" du piston plongeur 14 s'entendent en mouvement relatif par rapport au cylindre 15.
  • Dans le premier mode (mode 1), le piston plongeur 14 est libre de descendre dans le cylindre 15 sous l'effet de son propre poids, du poids de l'huile dans la chambre 16 et de la basse pression de l'huile dans l'accumulateur 17. Le piston plongeur 14 est également libre de remonter lorsqu'une force extérieure verticale vers le haut, supérieure à la somme des forces susmentionnées, lui est appliquée. Ce mode de fonctionnement est obtenu en pilotant les clapets anti-retour 24 de manière à les maintenir ouverts (communication bidirectionnelle à grand débit entre l'accumulateur 17 et la chambre 16) et en maintenant fermée la soupape pilotée 25. Ce mode de fonctionnement correspond aux figures 5, 6, 7 et 14.
  • Dans le second mode (mode 2) le piston plongeur 14 est libre de descendre dans le cylindre 15, mais il ne peut pas remonter. Dans ce mode également, si le piston plongeur 14 est fixe, par exemple du fait qu'il est en appui sur la partie réceptrice 7 de la pile correspondante 5 de la structure support 3, le cylindre 15 et la jambe 6 à laquelle il est fixé sont libres de monter par rapport au piston plongeur 14, mais ils ne peuvent pas redescendre. Ce mode de fonctionnement est obtenu en laissant les clapets 24 fonctionner comme des clapets anti-retour permettant l'entrée de l'huile dans la chambre 16 en provenance de l'accumulateur 17, mais empêchant l'huile de sortir de ladite chambre 16 (communication unidirectionnelle à grand débit de l'accumulateur de pression 17 vers la chambre 16) et en maintenant fermée la soupape pilotée 25. Ce mode de fonctionnement correspond aux figures 8 à 11 et 13.
  • Dans le troisième mode (mode 3), le piston plongeur est supposé fixe, étant en appui sur la partie réceptrice 7 de la pile correspondante 5 de la structure support 3. Le cylindre 15 et la jambe 6 à laquelle il est fixé peuvent descendre de manière lente et contrôlée en glissant sur le piston plongeur 14. Ce mouvement de descente est permis en ouvrant la soupape pilotée 25. Dans ce mode de fonctionnement, les clapets 24 sont maintenus fermés par la pression d'huile qui règne dans la chambre 16 et qui est plus élevée que celle règnant dans l'accumulateur 17. Ce mode de fonctionnement correspond aux figures 12 et 15.
  • En plus de ces trois modes de fonctionnement, le piston plongeur 14 doit pouvoir être maintenu en position rentrée haute pendant le transport du pont 1 et au début du processus de pose. Comme indiqué plus haut, ceci peut être par exemple obtenu à l'aide du vérin auxiliaire 31.
  • Sur les figures 13 à 15, on a également représenté un capteur de pression 32, qui est monté dans la paroi 21 et qui permet de mesurer et de surveiller la pression qui règne dans la chambre 16 du cylindre hydraulique 15. Le signal de sortie du capteur de pression 32 est envoyé par une ligne appropriée à une unité de contrôle de commande contenue dans le pupitre 28.
  • On va maintenant décrire le procéde de l'invention pour poser ou installer le pont 1 sur la structure support 3 en faisant référence aux figures 3 à 12.
  • Première phase ou phase d'observation I (figures 3 et 4)
  • Dans cette phase, la barge 2 est maintenue en position de pose du pont à l'intérieur de la structure support 3. Tous les pistons plongeurs 14 sont maintenus en position haute à l'intérieur des cylindres 15. La barge 2 est alors ballastée pour réduire la hauteur de chute des pistons plongeurs 14. Pendant cette phase, la barge 2 est soumise à l'action de la houle représentée schématiquement par les flèches F1 et F2 dans les figures 3 et 4. Les mouvements de la barge 2 dus à la houle sont limités grâce aux dispositifs amortisseurs 11 et aux lignes d'ancrages 12 et 13 mentionnés plus haut.
  • Dans le cas où une houle de direction préférentielle (indiquée par la flèche H dans la figure 2), dite houle dominante, a été constatée sur le site d'installation, il y a tout intérêt à ce que la barge 2 soit orientée dans cette direction et, par conséquent, que la structure support 3 ait été préalablement installée avec cette même direction. Dans ces conditions, le mouvement de roulis est réduit au minimum, réduisant ainsi de manière très importante les mouvements verticaux de la barge 2 et du pont 1. Ces mouvements ont été estimés au préalable de manière connue par calcul. Les amplitudes et les périodes de ces mouvements sont maintenant mesurées de manière connue sur le site avant de passer à la phase suivante du processus de pose du pont. Les conditions normales d'opération concernant ces mouvements sont de l'ordre du décimètre pour les mouvements horizontaux et de l'ordre du mètre ou davantage pour les mouvements verticaux.
  • A ce stade, le processus de pose est encore réversible, la barge 2 et le pont 1 pouvant être enlevés à tout moment de leur position à l'intérieur de la structure support 3.
  • Deuxième phase ou phase de descente des pistons plongeurs 14 et phase d'observation II (figures 5 à 7)
  • Des bouées de mesure de houle (non représentées), placées de manière connue à une certaine distance de la structure support 3, donnent à l'opérateur 27 des informations sur la nature des trains de houle arrivant sur la structure support 3, à savoir la hauteur des vagues et leur période.
  • Des dispositifs de mesure (gyro-accélérateurs, non représentés) placés sur chaque ensemble 14, 15, 17 procurent à l'opérateur 27, en temps réel, toutes les données relatives aux mouvements du pont 1. Des détecteurs de proximité peuvent être également utilisés dans le même but.
  • L'opérateur 27 déclenche alors la descente des huit pistons plongeurs 14 en les faisant fonctionner en mode 1 et en laissant librement sortir la tige de piston des vérins auxiliaires 31.
  • Il est à noter qu'un débit élevé d'huile est nécessaire pour que les pistons plongeurs 14 puissent atteindre les parties réceptrices 7 de la structure 3 sans en redécoller. En effet, la descente des pistons plongeurs 14 doit pouvoir se faire en une demi-période de houle, soit 3 à 6 secondes environ. Ce débit élevé, de l'ordre de plusieurs centaines de litres par seconde, est assuré par les clapets 24, dont le nombre et/ou la section de passage sont choisis en conséquence.
  • Pendant cette phase, la barge 2 et le pont 1 sont soumis aux effets de la houle. Dans les figures 5 à 7, les mouvements du pont 1 en fonction de la houle ont été indiqués schématiquement par les flèches P1 et P2.
  • Il n'y a pas de moment privilégié pour déclencher la descente des pistons plongeurs 14. Cependant, étant donné que la descente des pistons plongeurs 14 ne prend que quelques secondes, il est tout de même préférable de déclencher cette descente alors que l'on est prêt à passer à la phase suivante. L'observation de la houle et des mouvements du pont 1 donne à l'opérateur 27 toutes les indications nécessaires pour passer à la troisième phase.
  • Pendant la deuxième phase, après la descente des pistons plongeurs 14, les mouvements de la barge 2 sont pratiquement les mêmes que pendant la première phase.
  • Une fois sortis et en contact avec les parties réceptrices 7 de la structure support 3, les pistons plongeurs 14 restent dans cette position. Les cylindres 15 fixés aux jambes 6 du pont 1 effectuent un mouvement de va-et-vient vertical en coulissant sur les pistons plongeurs 14.
  • Les mouvements horizontaux de la barge 2 créent des mouvements horizontaux des extrémités inférieures des pistons plongeurs 14, qui glissent sur les parties réceptrices 7 de la structure support 3. Ce glissement peut être facilité par des matériaux appropriés, à faible coefficient de frottement, recouvrant les parties réceptrices 7 de la structure support 3 et/ou l'extrémité inférieure des pistons plongeurs 14, comme cela sera décrit plus loin. Ces matériaux peuvent être par exemple de l'acier inoxydable glissant sur du "Téflon" (marque déposée). Le diamètre extérieur de l'extrémité inférieure des pistons plongeurs 14 et le diamètre intérieur des parties réceptrices 7 de la structure support 3 doivent être compatibles avec ces mouvements de glissement horizontaux, afin que les éléments précités 7 et 14 ne viennent jamais en butée dans le sens horizontal.
  • Le tangage de la barge 2 provoque une inclinaison variable du pont 1 et, par suite, des jambes 6 du pont et des pistons 14 qui se trouvent à l'intérieur. Cette inclinaison des pistons 14 pourraient être la cause d'un mauvais appui de leur extrémité inférieure sur les parties réceptrices 7 de la structure support 3. Ce problème peut être résolu en prévoyant une tête d'appui articulée à l'extrémité inférieure de chaque piston plongeur 14, comme cela sera décrit plus loin.
  • A ce stade, le processus de pose est encore réversible, les pistons plongeurs 14 pouvant être remontés au moyens des vérins auxiliaires 31, et la barge 2 peut donc encore être évacuée si cela est rendu nécessaire par des mauvaises conditions de mer.
  • Troisième phase ou phase de blocage des cylindres hydrauliques 15 (figures 8 à 10)
  • Cette phase consiste à immobiliser le pont 1 par rapport à la structure support 3 en agissant simultanément sur tous les ensembles cylindre hydraulique et piston plongeur 14, 15. Ceci est effectué en commutant le mode de fonctionnement des pistons plongeurs 14 du mode 1 au mode 2 en désactivant le pilotage des clapets 24 de telle sorte qu'ils fonctionnent uniquement comme des clapets anti-retour.
  • L'opérateur 27 va déclencher cette opération au moment le plus propice, c'est-à-dire au moment qui induira d'une part le moins d'efforts d'inertie dans tout le système pont 1 - barge 2 - structure support 3 et, d'autre part, lorsque le pont 1 se trouvera le plus haut possible pour que les clapets 24 aient le moins possible à fonctionner. Il est toutefois important de noter que si les deux conditions ci-dessus permettent au système hydraulique de fonctionner dans des conditions idéales, il n'est pas pour autant indispensable qu'elles soient scrupuleusement respectées. Autrement dit, le système peut être étudié pour que le blocage des ensembles cylindre et piston 14, 15 puissent se faire à n'importe quel moment ou tout au moins dans une fourchette de conditions limites acceptables.
  • Pour déclencher le blocage des ensembles cylindre et piston 14, 15 au bon moment, l'opérateur 27 doit tenir compte du temps de réaction des clapets 24 et de leurs commandes. Le déclenchement du blocage des ensembles cylindre et piston 14, 15 peut être également commandé directement par un automate programmable qui peut être prévu pour gérer toutes les données du système.
  • La figure 8 représente l'ensemble cylindre et piston 14, 15 bloqué lors du passage d'une crête de houle. Lorsqu'un creux de houle passe sous la barge 2 (figure 9), celle-ci ne bouge plus, car elle reste plaquée sous le pont 1 qui est devenu fixe par rapport à la structure support 3. Une partie du poids du pont 1 est alors supportée par la structure support 3.
  • La figure 13 montre que si une crête de houle plus haute que les précédentes passe sous la barge 2, celle-ci soulève le pont 1, mais ce dernier ne peut pas redescendre ensuite. En effet, pendant ce mouvement ascendant du pont 1, les clapets 24 s'ouvrent et la chambre 16 se remplit d'une quantité additionnelle d'huile en provenance de l'accumulateur 17. Pendant ce temps, les pistons plongeurs 14 restent en appui sur les parties réceptrices 7 de la structure support 3. Une fois que la crête de la vague plus haute est passée sous la barge 2 et que celle-ci commence à redescendre, les clapets 24 se referment automatiquement et la quantité additionnelle d'huile qui a pénétré dans la chambre 16 reste emprisonnée dans cette dernière. En conséquence, le cylindre 15 ne peut pas redescendre et l'ensemble barge 2 - pont 1 - reste en position surélevée lorsque le creux de houle suivant arrive sous la barge 2.
  • Après le passage de quelques crêtes de houle exceptionnellement hautes, chaque piston plongeur 14 sera donc dans une position d'extension maximale quasi identique pour tous les pistons 14. Par conséquent, le pont 1 sera lui-même en position haute maximale et quasiment horizontal. Le pont 1 ne bougera donc plus sous l'effet de la houle, à l'exception des mouvements dus à l'élasticité de l'ensemble pont 1 - barge 2 - structure support 3.
  • Une fois que les ensembles cylindre et piston 14, 15 sont bloqués, on voit donc que la barge 2 reste soumise aux efforts de la houle. De plus, au moment du blocage, des forces d'inertie dues aux masses en mouvement viennent s'ajouter aux efforts de la houle. La composante verticale de tous ces efforts peut être amortie en plusieurs endroits, au choix ou en combinaison :
    • a) par des blocs 33 en matière élastomère ou par tout autre dispositif équivalent bien connus dans ce domaine de la technique, disposés entre les supports 9 et le pont 1;
    • b) par des éléments en matière élastomère ou par tout autre dispositif équivalent, disposés entre la partie inférieure de chaque piston plongeur 14 et la partie réceptrice 7 correspondante de la structure support 3, comme cela sera décrit plus loin;
    • c) par au moins un accumulateur haute pression communiquant avec la chambre 16 de chaque ensemble cylindre et piston plongeur 14, 15.
  • On verra plus loin dans la description d'un exemple de réalisation comment ces amortisseurs peuvent être disposés. Selon les besoins, on utilisera un ou plusieurs des amortisseurs mentionnés ci-dessus.
  • D'autre part, la souplesse du pont 1 et de la barge 2 contribuera elle-aussi à réduire les efforts verticaux susmentionnés. Dans le cas d'un pont de 10 000 tonnes, avec une houle ayant une hauteur maximale de 1, 8 m et une période d'environ 8 secondes, les efforts verticaux dans chaque ensemble cylindre et piston 14, 15 peuvent atteindre, au cours de cette troisième phase, des valeurs comprises entre 1 000 et 2 000 tonnes. La pression de l'huile dans la chambre 16 peut atteindre des valeurs de l'ordre de 400 bar.
  • Sous l'effet des efforts horizontaux appliqués par la houle sur la barge 2, les jonctions entre les supports 9 et le pont 1, d'une part, et entre les pistons plongeurs 14 et les parties réceptrices 7, d'autre part, sont sollicitées à leur tour. Ces sollicitations sont dynamiques et peuvent donc être diminuées par des amortisseurs en matière élastomère disposés judicieusement. C'est ainsi que la jonction entre les pistons plongeurs 14 et les parties réceptrices 7 de la structure support 3 est de préférence réalisée de telle sorte que leurs surfaces mutuellement en contact aient un faible coefficient de frottement.
  • Ici encore, lorsque le piston plongeur 14 est soumis à une force verticale importante, il est souhaitable qu'un glissement puisse se produire entre le piston plongeur 14 et la surface réceptrice 7 correspondante de la structure support 3. Le glissement ne se produira que lorsque les forces de frottement entre les deux surfaces mutuellement en contact seront dépassées. Dans ces conditions, l'effort horizontal maximal appliqué sur la partie inférieure des pistons plongeurs 14 sera limité par le coefficient de frottement, garantissant ainsi à tout moment un bon fonctionnement des ensembles cylindre et piston 14, 15. L'effort horizontal dans les jambes 6 du pont 1 sera limité pour la même raison.
  • A ce stade, le processus de pose est encore réversible. Il suffit de piloter les clapets 24 pour les ouvrir, et de remonter les pistons plongeurs 14 à l'aide des vérins auxiliaires 31.
  • Quatrième phase ou phase de ballastage de la barge 2 - effacement des supports 9 - enlèvement de la barge 2 (figure 11)
  • Dans cette phase, il s'agit de transférer tout le poids du pont 1 depuis la barge 2 à la structure support 3, et ensuite d'enlever la barge 2. Cette opération est effectuée par ballastage de la barge 2, comme cela est connu dans ce domaine de la technique.
  • Le contrôle du ballastage peut se faire en mesurant les efforts dans les ensembles cylindre et piston 14, 15, soit à l'aide de jauges de contrainte, soit en mesurant la pression de l'huile dans les chambres 16, par exemple au moyen des capteurs de pression 32.
  • La barge s'alourdit tout en restant plaquée sous le pont 1 jusqu'au moment où la réaction entre les supports 9 et le pont 1 devient suffisamment faible, c'est-à-dire lorsqu'elle atteint quelques pourcents du poids du pont 1, l'autre partie du poids étant déja transférée à la structure support 3. Quelques heures suffisent pour effectuer ce ballastage. Dans cette configuration, lorsque la barge 2 ne supporte plus qu'une petite fraction du poids du pont 1, les supports 9 sont effacés simultanément et rapidement, c'est-à-dire plus rapidement que le mouvement de pilonnement de la barge 2 sous l'effet de la houle, afin d'éviter tout choc entre les supports 9 et le pont 1 (figure 11). Ceci est possible en utilisant comme support 9, soit des boîtes à sable, soit des vérins hydrauliques, soit des supports comportant un mécanisme permettant leur escamotage, tous ces éléments étant bien connus dans ce domaine de la technique.
  • Ce moment constitue le point de non retour du processus de pose. Lors de l'effacement des supports 9, la barge 2 est allégée du poids du pont 1 qu'elle portait encore. Son tirant d'eau diminue donc en proportion de cet allègement et la barge 2 remonte d'autant. Etant libre de bouger à nouveau, la barge 2 se remet donc en mouvement sous l'effet de la houle. La distance verticale d'effacement des supports 9 est choisie de manière connue pour qu'à aucun moment, dans cette configuration et sous l'effet de la houle, la barge 2 ne puisse venir à nouveau en contact avec le pont 1 et provoquer des impacts peu souhaitables. Ainsi la barge 2 peut être ensuite évacuée sans difficulté d'entre les membrures verticales 8 de la structure support 3.
  • Cinquième phase ou phase de descente et de pose du pont 1 sur la structure support 3 (figure 12)
  • Il s'agit maintenant de descendre le pont 1 jusqu'à ce que ses jambes 6 viennent en contact avec les parties réceptrices correspondantes 7 de la structure support 3. Ceci est obtenu en commutant le mode de fonctionnement des pistons plongeurs 14 du mode 2 au mode 3 en ouvrant les soupapes pilotées 25. Ces dernières, en combinaison avec des limiteurs de débit 35 (figure 26), permettent une descente contrôlée du pont 1. Comme indiqué précédemment, les soupapes 25 mettent les chambres 16 des cylindres 15 en communication avec un réservoir de fluide hydraulique 26, par exemple à travers un tuyau 36 (figure 26). Les tuyaux 36 associés à certains des cylindres hydrauliques 15 peuvent être reliés entre eux pour assurer un supportage isostatique (en trois points) du pont 1 sur la structure support 3 et pour éviter ainsi des surcharges dans les cylindres hydrauliques 15 lors de la descente du pont 1. La descente se fait à vitesse très lente et, par conséquent, sans choc.
  • A la fin de la descente du pont 1, un cône de centrage 37 fixé à l'extrémité inférieure de chaque jambe 6 va permettre aux jambes 6 du pont de se recentrer automatiquement par rapport aux parties réceptrices 7 de la structure support 3. Après enlèvement du cône de centrage 37, la partie inférieure de chaque jambe 6 du pont peut être alors fixée rigidement à la partie réceptrice correspondante 7 de la structure support 3, par exemple par un joint soudé 38 comme montré dans la figure 21.
  • Toutefois, on peut se passer du cône de centrage 37 si l'on adopte un autre mode d'assemblage entre les jambes 6 du pont et les parties réceptrices correspondantes 7 de la structure support 3. Par exemple, une rondelle 39 en acier, de forte épaisseur, peut être disposée entre les surfaces de contact entre chaque jambe 6 du pont et la partie réceptrice 7 correspondante de la structure support comme montré dans la figure 22. Cela permet d'accepter un excentrement entre les éléments 6 et 7. La rondelle 39 peut être fixée à la partie réceptrice 7 par un joint soudé 41, tandis que la jambe 6 peut être fixée à la rondelle 39 par un autre joint soudé 42.
  • Une fois que la descente du pont 1 est terminée et que les jambes 6 ont été fixées aux parties réceptrices correspondantes 7 de la structure support 3, les ensembles formés par les éléments 14, 15 et 17 peuvent être enlevés des jambes 6 du pont 1 comme on le verra plus loin.
  • Il est par ailleurs à noter qu'une fois la durée de vie de la plate-forme terminée, celle-ci doit être démontée. Si le pont a été installé à l'aide du dispositif de la présente invention, il peut être également enlevé de la structure support 3 à l'aide du même dispositif. Les différentes phases du processus d'enlèvement du pont sont les mêmes que celles employées pour la mise en place du pont, à ceci près qu'elles se déroulent en ordre inverse et en sens inverse.
  • On va maintenant décrire diverses formes de réalisation de l'ensemble piston 14 - cylindre hydraulique 15 - accumulateur 17.
  • La figure 16 montre, en coupe verticale, une première forme de réalisation dudit ensemble. Dans la figure 16, on peut voir un corps cylindrique 43, dont la longueur est à peu près égale à celle de la jambe 6 du pont 1 et qui comprend trois parties : une partie basse, qui forme le cylindre hydraulique 15 et qui contient le piston plongeur 14, une partie médiane, qui forme l'enveloppe de l'accumulateur 17, et une partie haute 44 qui sert principalement à la manutention du corps 43. Une oreille de levage 45 est fixée au sommet du corps 43. Cette oreille 45 permet d'attacher le corps 43 au crochet d'un engin de levage, telle qu'une grue, pour permettre la mise en place du corps 43 à l'intérieur de la jambe 6 avant les opérations de pose du pont 1, mais aussi pour permettre l'enlèvement du corps 43 une fois l'installation du pont terminée. Le corps 43 et les éléments fonctionnels qu'il contient sont ainsi réutilisables pour une nouvelle opération de pose de pont semblable à celle décrite plus haut.
  • Une cavité 46 peut être prévue au sommet du corps 43. Cette cavité 46 est l'endroit idéal pour y placer un gyro-accélérateur 47 qui donnera à l'opérateur 27 toutes les informations nécessaires concernant les mouvements du pont 1. Ce gyro-accélérateur 47 est directement relié à l'unité de contrôle et de commande contenue dans le pupitre de commande 28.
  • Au sommet du corps 43 est également fixée une plaque de protection 48 qui peut prendre appui sur le sommet de la jambe 6 afin de reprendre une partie du poids du corps 43 et des éléments qu'il contient.
  • Le corps 43 est fixé de manière détachable à la jambe 6 par une liaison 49 (également représentée en coupe horizontale dans la figure 17), du type à blocage par tiers de tour autour de l'axe vertical du corps 43. Un blocage avec un angle de rotation différent est bien entendu aussi concevable. Ce type de liaison permet d'encaisser des efforts verticaux importants vers le haut et vers le bas.
  • La figure 18 représente un autre mode possible de fixation du corps 43 à la jambe 6 du pont. Dans ce mode de fixation, la jambe 6 est prolongée vers le haut par une partie 6a, qui fait saillie au-dessus du pont 1 et dans laquelle sont formées plusieurs ouvertures 51. A son sommet, le corps 43 comporte une partie cylindrique élargie 52 qui s'emboîte à glissement à l'intérieur de l'extension 6a de la jambe 6. La partie cylindrique élargie 52 du corps 43 est fixée à l'extension 6a de la jambe 6 par des cordons de soudure 53 formés dans chacune des ouvertures 51. La section totale des cordons de soudure doit bien entendu être suffisante pour encaisser les efforts verticaux engendrés lors de la pose du pont 1. Une fois l'opération de pose du pont terminée, le corps 43 peut être enlevé avec les éléments fonctionnels qu'il contient, en découpant l'extension 6a de la jambe 6 au-dessous des ouvertures 51, au ras du pont 1, et en utilisant un engin de levage attaché à l'oreille de levage 45.
  • En faisant à nouveau référence à la figure 16, on peut voir des cales de centrage 54, au nombre de trois au minimum, qui sont solidaires de la jambe 6 et qui assurent le maintien de la partie inférieure du corps 43 (cylindre hydraulique 15) en position centrée à l'intérieur de la jambe 6. Les cales de centrage 54 peuvent bien entendu être remplacées par un anneau de centrage.
  • Le corps 43 comporte deux cloisons horizontales intérieures, à savoir la cloison 21, déjà mentionnée, et la cloison 55. Les cloisons 21 et 55 délimitent respectivement vers le bas et vers le haut la cavité intérieure de l'accumulateur basse pression 17. La cloison 21 délimite vers le haut la chambre 16 du cylindre hydraulique 15, qui contient le piston plongeur 14 et, au-dessus de celui-ci, un certain volume d'huile. La cloison 21 doit avoir une épaisseur suffisante pour pouvoir résister aux hautes pressions d'huile qui s'établissent dans la chambre 16, comme indiqué plus haut, au cours du processus de pose du pont 1. Comme on l'a également vu plus haut, les clapets anti-retour pilotés 24, la soupape pilotée 25 et le capteur de pression 32 sont montés dans la cloison 21 (figures 13 à 15).
  • Les conduits d'amenée d'huile sous pression pour le pilotage des clapets anti-retour 24 et de la soupape 25 et les conducteurs transmettant le signal de sortie du capteur de pression 32 sont disposés dans une gaine ou conduit 56 qui passe dans la cavité intérieure de l'accumulateur 17, traverse la cloison 55, passe dans la chambre 57 située au-dessus de la cloison 55 dans la partie supérieure 44 du corps 43, et traverse le sommet du corps 43 pour aboutir à la centrale hydraulique 29 et au pupitre de commande 28.
  • Dans la partie inférieure de la figure 16, on peut voir le cône de centrage 37 qui est fixé à l'extrémité inférieure de la jambe 6 et qui sert à centrer cette dernière par rapport à la partie réceptrice correspondante 7 de la structure support 3 au moment de leur accostage à la fin de l'opération de descente du pont 1 (cinquième phase décrite plus haut).
  • On peut également voir dans la partie inférieure de la figure 16 une pièce ou tête d'appui 58, dont la face inférieure est plane et dont la face supérieure a la forme d'une calotte sphérique, concave ou convexe, épousant la forme complémentaire, convexe ou concave, de l'extrémité inférieure du piston plongeur 14. Cette tête d'appui 58 permet de conserver un bon appui entre le piston plongeur 14 et la partie réceptrice 7 de la structure support lorsque, au cours des opérations de pose du pont 1, la jambe 6 s'incline par rapport à la verticale à cause des mouvements dus à la houle. Les surfaces sphériques, concave et convexe, mutuellement en contact peuvent glisser l'une sur l'autre, mais ne peuvent pas se séparer comme on le verra dans un exemple de réalisation décrit plus loin.
  • Comme montré dans les figures 16 et 19, la partie réceptrice 7 à l'extrémité supérieure de chaque pile 5 ou de chaque membrure verticale 8 de la structure support 3 se présente sous la forme d'une cavité qui est ouverte vers le haut et dont le diamètre intérieur est substantiellement plus grand que le diamètre extérieur du piston plongeur 14. Le fond de la cavité est constitué par une plaque d'appui 59 qui forme une butée axiale pour le piston plongeur 14. La plaque d'appui 59 est raidie en-dessous par des goussets 61 disposés en croix. La plaque d'appui 59 et les goussets 61 sont soudés les uns aux autres et au tube 62 constituant la pile 5 ou la membrure tubulaire verticale 8 de la structure support.
  • De préférence, la plaque d'appui 59 formant le fond de la cavité de la partie réceptrice 7 est pourvue, sur sa face supérieure, d'un ensemble amortisseur stratifié 63 composé d'une couche inférieure 64 en une matière élastomère, qui forme un tampon capable de travailler en compression et en cisaillement, d'une plaque métallique de renfort 65 et d'une couche anti-friction 66 en une matière choisie pour présenter un faible coefficient de frottement avec la matière du piston plongeur 14 ou de la tête d'appui 58. La couche 66 peut être par exemple en "Teflon" . Le diamètre intérieur du tube 62 et la matière constituant la couche 66 sont choisis en tenant compte des efforts horizontaux engendrés pendant le processus de pose du pont 1, de manière à permettre des mouvements horizontaux limités de glissement entre le piston plongeur 14 et la plaque d'appui 59, sans toutefois que le piston plongeur 14 puisse entrer en contact avec la paroi du tube 62.
  • La figure 20 montre un dispositif destiné à protéger l'ensemble cylindre hydraulique et piston plongeur 14, 15 pendant le transport du pont 1 en mer. Ce dispositif est constitué par un couvercle 67 fixé au cône de centrage 37 par des boulons. Ce couvercle 67 peut également servir de butée de sécurité pour le piston plongeur 14 pendant le transport. Il est enlevé une fois que la barge 2 est arrivée sur le site d'installation du pont 1.
  • La figure 23 montre une autre forme de réalisation de l'ensemble cylindre hydraulique et accumulateur basse pression. Dans la figure 23, les éléments qui sont identiques ou qui jouent le même rôle que ceux décrits précédemment, sont désignés par les mêmes numéros de référence et ne seront pas décrits à nouveau en détail. On ne décrira donc que les principales différences par rapport au mode de réalisation décrit précédemment. Dans le mode de réalisation de la figure 23, le corps 43 n'est pas réalisé d'une seule pièce, mais en trois parties distinctes liées entre elles par boulonnage. Ces trois parties sont :
    • a) le cylindre hydraulique 15;
    • b) un tube 68 qui forme la paroi cylindrique de l'accumulateur basse pression 17;
    • c) un tube 71 dont l'extrémité inférieure est fixée à l'extrémité inférieure du cylindre hydraulique 1 par des boulons.
  • L'extrémité inférieure du tube 68 est fixée à l'extrémité supérieure du cylindre hydraulique 15 par des boulons et l'extrémité supérieure du tube 68 est obturée par un couvercle 69. Le tube 71 est destiné à transmettre à la jambe 6 les efforts exercés sur le cylindre hydraulique 15 au cours des opérations de pose du pont 1. Le tube 71 a une longueur sensiblement égale à celle de la jambe 6. Il est maintenu en position centrée à l'intérieur de la jambe 6 par les cales 54. La liaison entre le tube 71 et la jambe 6 peut être du même type que la liaison 49 représentée sur les figures 16 et 17 ou du même type que la liaison représentée dans la figure 18.
  • Dans la figure 23, on a également représenté le vérin auxiliaire 31 qui permet la manutention du piston plongueur 14. Le cylindre 72 du vérin auxiliaire 31 est disposé à l'intérieur de l'accumulateur basse pression 17, coaxialement au tube 68, et il est fixé de manière étanche à la paroi 21 formant le fond du cylindre hydraulique 15. La tige de piston 73 du vérin auxiliaire 31 passe à travers un trou 74 formé au centre de la paroi 21 et elle pénètre dans la chambre 16 du cylindre hydraulique 15 où elle est fixée à l'extrémité supérieure du piston plongeur 14 par un dispositif de bridage 75 assurant une liaison axiale entre les éléments 14 et 73, mais permettant les autres degrés de liberté nécessaires au bon fonctionnement du piston plongeur 14 et du vérin auxiliaire 31.
  • Le dispositif de bridage 75 peut également se situer au niveau de l'extrémité inférieure du piston plongeur 14, dans le cas où on utilise un piston plongeur creux sans fond à sa partie supérieure.
  • Le vérin auxiliaire 31 est représenté ici sous la forme d'un vérin à double effet, mais cela n'est pas une nécessité absolue, car les fonctions essentielles du vérin auxiliaire 31 sont, comme on l'a déjà vu plus haut, de permettre successivement le maintien du piston plongeur 14 en position haute, le freinage du piston plongeur 14 au cours de sa descente et éventuellement la remontée du piston plongeur 14 en cas de nécessité. Le vérin auxiliaire 31 pourrait donc être constitué par un vérin à simple effet.
  • Le vérin auxiliaire 31 peut être commandé par la centrale hydraulique 29 par l'intermédiaire d'un distributeur de fluide hydraulique approprié et/ou de soupapes tarées pilotables (non montrées) permettant au vérin auxiliaire 31 de remplir les fonctions précitées et permettant en particulier à la tige de piston 73 de suivre le mouvement du piston plongeur 14 lorsque ce dernier est entraîné vers le bas par son propre poids et par la pression de l'huile provenant de l'accumulateur basse pression 17, ou vers le haut par la réaction de la structure support.
  • Dans la figure 23, l'ensemble des lignes 76 regroupe les tuyaux d'alimentation en huile 77 pour le vérin auxiliaire 31, les conducteurs 78 transmettant le signal de sortie du capteur de pression 32 au pupitre de commande 28 et le ou les tuyaux d'alimentation en huile 79 pour le pilotage des clapets anti-retour 24. On notera que le capteur de pression 32 pourrait être placé à distance de la cloison 21, par exemple sur le couvercle 69 ou dans le pupitre de commande 28. Dans ce cas, les conducteurs 78 sont remplacés par un tuyau de mesure de pression d'huile qui est raccordé à l'orifice 81 de la cloison 21. Le tuyau 82 est raccordé à la ou aux soupapes pilotées 25 et il sert à évacuer l'huile sous pression en provenance de la chambre 16 vers le réservoir 26 prévu dans la centrale hydraulique 29. Les deux tuyaux 83 sont des tuyaux d'alimentation en huile permettant le pilotage de la ou des soupapes pilotées 25. Le tuyau 84 sert au retour de l'huile dans l'accumulateur basse pression 17.
  • Le tuyau 85 sert au gonflage de l'accumulateur basse pression 17 avec un gaz ou un mélange gazeux tel que de l'air ou de l'azote.
  • Dans le cas du dispositif décrit sur la figure 23, la centrale hydraulique 29 qui fournit la puissance hydraulique nécessaire au fonctionnement des éléments décrits plus haut, peut être disposée juste au-dessus du couvercle 69. Toutefois, dans ce cas, il faudra prévoir une centrale hydraulique distincte pour chaque jambe 6 du pont.
  • Sur la figure 23, on a également représenté la tête d'appui 58 par laquelle le piston plongeur 14 peut s'appuyer, de manière articulée, sur la plaque d'appui 59 (figures 16 et 19) de la partie réceptrice correspondante 7 de la structure support 3. Comme montré, la tête d'appui 58 comporte une plaque supérieure d'appui 86, qui est fixée par exemple par des boulons à l'extrémité inférieure du piston plongeur 14 et qui possède une face inférieure concave en forme de calotte sphérique; une plaque inférieure d'appui 87, dont la face inférieure est plane et dont la face supérieure est concave, en forme de calotte sphérique; et une pièce intermédiaire 88, en forme de lentille bi-convexe, dont les faces supérieures et inférieures épousent les faces concaves des plaques 86 et 87. La plaque 87 est liée à la plaque 86 par un système de boulons autorisant un glissement relatif entre la plaque 86 et la pièce intermédiaire 88 et entre cette dernière et la plaque 87. Un manchon 89 en une matière élastomère est fixé aux plaques 86 et 87 dans leur région périphérique. Ce manchon 89 assure une protection contre la pénétration de saletés ou d'humidité entre les plaques 86 et 87. Pour faciliter le glissement des plaques 86 et 87 et de la pièce intermédiaire 88 les unes par rapport aux autres, les faces concaves des plaques 86 et 87 ou les faces convexes de la pièce intermédiaire 88 peuvent être revêtues d'une couche de matière anti-friction, par exemple du "Téflon". Dans le cas où il est prévu un glissement acier inoxydable sur "Téflon" entre le piston plongeur 14 et la plaque d'appui 59, la plaque d'appui 87 peut être réalisée en acier inoxydable si le dispositif amortisseur 63 (figure 19) est prévu sur la plaque d'appui 59. Par contre, si la plaque d'appui 59 ne comporte aucun dispositif amortisseur tel que le dispositif 63, la face inférieure de la plaque 87 peut être garnie d'une couche de "Teflon".
  • La figure 24 montre une autre forme de réalisation, qui est semblable à celle de la figure 23, mais qui en diffère par le fait que le vérin auxiliaire 31 est supprimé. Les fonctions du vérin 31 peuvent être remplies par l'ensemble cylindre hydraulique et piston plongeur 14, 15 lui-même, qui est réalisé d'une manière un peu différente de celle décrite précédemment. Plus précisément, le piston plongeur 14 est réalisé sous la forme d'un piston étagé afin de créer une chambre 91 au-dessous de sa partie large 14a, entre cette partie 14a et une paroi d'extrémité 15a du cylindre hydraulique 15 qui est traversée par la partie étroite 14b du piston 14. Dans ce cas, au moins un joint d'étanchéité approprié 92 doit être prévu pour empêcher les fuites d'huile entre la paroi d'extrémité 15a et la partie étroite 14b du piston 14. Un tuyau 93 raccordé au cylindre 15 et communiquant avec la chambre 91 permet soit d'évacuer l'huile contenue dans la chambre 91 vers le réservoir de fluide hydraulique 26 (figure 16) soit d'alimenter la chambre 91 en huile sous pression pour faire remonter le piston 14 dans le cylindre 15.
  • Dans la figure 25, on a représenté un accumulateur haute pression 34, qui est disposé à l'intérieur de l'accumulateur basse pression 17 et qui communique avec la chambre 16 du cylindre 15 par un orifice 94. Bien que la figure 25 ne montre qu'un seul accumulateur 34, il peut y en avoir un plus grand nombre, disposés de manière similaire à celle montrée ici. Le ou les accumulateurs de pression 34 permettent d'amortir les surpressions susceptibles d'être engendrées pendant le processus de pose du pont 1, en particulier pendant la troisième phase décrite plus haut.
  • La figure 26 représente un schéma des circuits hydrauliques du système de la présente invention. On retrouve dans ce schéma tous les éléments qui ont déjà été décrits en référence aux figures 13 à 15, 23 et 25. Il n'est donc pas jugé utile de décrire à nouveau ces éléments. Les clapets anti-retour pilotés 24 sont représentés au nombre de quatre à titre indicatif uniquement. Les accumulateurs haute pression 34 sont représentés au nombre de trois également à titre indicatif. La soupape pilotée 25 est représentée sous la forme d'un distributeur à deux orifices et deux positions, qui peut être piloté des deux côtés par une pression de pilotage appliquée par l'un ou l'autre des deux tuyaux 83. Il est bien évident que le distributeur 25 peut être piloté par pression d'un seul côté et rappelé par ressort de l'autre côté. Par exemple, le distributeur 25 peut être maintenu dans sa position fermée par un ressort, et il peut être commuté dans sa position ouverte par pilotage par pression.
  • Par rapport aux systèmes existants permettant d'installer un pont de plate-forme marine au moyen d'une barge ballastable, tel que le système décrit dans la publication mentionnée dans le préambule du présent mémoire, le système de la présente invention a entre autres les avantages suivants :
    • a) Aucun choc métal sur métal ne se produit entre le pont 1 et la structure support 3 pendant l'opération de pose. Des efforts dynamiques importants et le matage des surfaces de contact sont donc ainsi évités.
    • b) Grâce au blocage des ensembles cylindre hydraulique et piston plongeur 14, 15 pendant la troisième phase décrite plus haut, les amortisseurs ne sont soumis qu'à de faibles efforts.
    • c) Le système est simple et peut utiliser des composants déjà éprouvés dans l'industrie. Il est donc très fiable.
    • d) La puissance nécessaire au fonctionnement du système est très faible. Le système est donc économique.
    • e) En utilisant un nombre plus ou moins grand d'ensembles cylindre hydraulique et piston plongeur 14, 15 on peut installer des ponts ayant des poids très différents.
  • Il va de soi que les formes d'exécution de l'invention qui ont été décrites ci-dessus ont été données à titre d'exemple purement indicatif et nullement limitatif, et que de nombreuses modifications peuvent être facilement apportées par l'homme de l'art sans pour autant sortir du cadre de l'invention. C'est ainsi notamment que les cônes de centrage 37 pourraient être fixés aux parties réceptrices 7 au lieu d'être fixés à l'extrémité inférieure des jambes 6 du pont 1.

Claims (13)

  1. Procédé pour installer un pont (1) d'une plate-forme marine sur une structure support (3) en mer, ledit pont comportant plusieurs jambes tubulaires verticales (6) contenant chacune un ensemble cylindre hydraulique et piston plongeur (14,15), ladite structure support (3) comportant un nombre de piles (5) et/ou de membrures tubulaires verticales (8) qui correspond au nombre de jambes (6) du pont (1), chaque pile ou membrure verticale comportant à sa partie supérieure une partie réceptrice (7) apte à recevoir l'extrémité inférieure du piston plongeur (14) associe à une jambe (6) du pont, ce procédé comprenant les opérations consistant :
    a) à amener entre les piles (5) ou les membrures verticales (8) de la structure support (3) une barge (2) sur laquelle le pont (1) repose par l'intermédiaire de plusieurs supports escamotables (9);
    b) à positionner et à maintenir la barge (2) de telle sorte que les jambes (6) du pont (1) soient et restent sensiblement alignées avec les piles (5) ou les membrures verticales (8) correspondantes de la structure support (3);
    c) à abaisser les pistons plongeurs (14) jusqu'à ce que leur partie inférieure vienne en butée avec la partie réceptrice (7) de la pile (5) ou de la membrure (8) correspondante de la structure support (3);
    d) à ballaster la barge (2) pour l'abaisser et transférer la charge du pont (1) à la structure support (3);
    e) à escamoter ensuite les supports (9) situés entre le pont (1) et la barge (2) de telle sorte que le pont ne soit plus supporté que par la structure support (3);
    f) à effectuer une liaison rigide entre les jambes (6) du pont (1) et les piles (5) ou les membrures verticales (8) de la structure support (3); et
    g) à évacuer la barge (2) d'entre lesdites piles (5) ou les membrures verticales (8);
       caractérisé en ce qu'il consiste, pour l'opération c), à laisser les pistons plongeurs (14) descendre sous l'effet de leur propre poids, tout en établissant une communication bidirectionnelle et à grand débit entre un accumulateur de fluide hydraulique basse pression (17) et une chambre (16) dans la partie haute de chaque cylindre hydraulique (15) au-dessus du piston plongeur (14), en vue d'amener chaque piston plongeur en contact avec la partie réceptrice (7) de la pile (5) ou membrure verticale (8) corresponante de la structure support (3);
    h) à laisser ensuite osciller verticalement au gré de la houle, pendant une phase d'observation, la barge (2), le pont (1) et les cylindres hydrauliques (15) par rapport aux pistons plongeurs (14) en appui sur lesdites parties réceptrices correspondantes (7), tout en laissant ouverte ladite communication bidirectionnelle;
    i) a établir ensuite une communication seulement unidirectionnelle et à grand débit dudit accumulateur basse pression (17) vers ladite chambre (16) dans chaque cylindre hydraulique (15), afin d'empêcher tout mouvement descendant du pont (1) et des cylindres hydrauliques (15), mais sans empêcher un mouvement ascendant de ceux-ci et sans empêcher que la chambre (16) puisse se remplir de fluide hydraulique s'il passe sous la barge (2) des vagues dont la crête a un niveau plus haut que le niveau de l'eau au moment où la communication unidirectionnelle a été établie;
    j) à effectuer ensuite les opérations d) et e);
    k) à établir ensuite une communication à faible débit depuis ladite chambre (16) de chaque cylindre hydraulique (15) vers un réservoir de fluide hydraulique (26), de façon à permettre l'abaissement du pont (1) et de ses jambes (6) jusqu'à ce que celles-ci viennent en contact et en appui sur la partie supérieure (7) des piles (5) ou des membrures verticales (8) de la structure support (3); et
    l) à effectuer ensuite l'opération f).
  2. Procédé selon la revendication 1, caractérisé en ce que les pistons plongeurs (14) sont freinés pendant leur mouvement de descente [opération c].
  3. Pont de plate-forme marine destiné à être utilisé dans le procédé selon la revendication 1 comprenant plusieurs jambes tubulaires verticales (6) destinées à être assemblées verticalement à des piles (5) ou des membrures verticales (8) d'une structure support (3) préalablement immergée, chaque jambe (6) du pont (1) contenant un ensemble cylindre hydraulique et piston plongeur (14, 15) dont le cylindre (15) est fixé à la jambe (6) et dont le piston plongeur (14) peut être déplacé verticalement par rapport au cylindre et à la jambe en vue d'être amené en butée avec une partie réceptrice correspondante (7) prévue à la partie supérieure de chaque pile (5) ou membrure verticale (8) de la structure support (3), et une unité de contrôle et de commande (28,29) pour commander le fonctionnement des ensembles cylindre hydraulique et piston plongeur (14, 15) contenus dans les jambes (6) du pont (1), caractérisé en ce que dans chaque cylindre hydraulique (15), au-dessus du piston plongeur (14), est formée une chambre (16) qui est remplie de fluide hydraulique, et en ce que chaque jambe (6) contient en outre un accumulateur de fluide hydraulique basse pression (17), des premiers moyens (24) pouvant être commandés pour établir une communication bidirectionnelle à grand débit entre l'accumulateur basse pression (17) et ladite chambre (16) du cylindre hydraulique (15), des seconds moyens (24) pouvant être commandés pour établir une communication unidirectionnelle à grand débit depuis l'accumulateur basse pression (17) vers ladite chambre (16), et des troisièmes moyens (25, 35) pouvant être commandés pour établir une communication à faible débit entre ladite chambre (16) et un réservoir de fluide hydraulique (26), lesdits premiers, seconds et troisièmes moyens (24, 25) étant commandés en séquence par ladite unité de contrôle et de commande (28,29).
  4. Pont de plate-forme marine selon la revendication 3, caractérisé en ce qu'au moins un clapet anti-retour piloté (24) forme à la fois lesdits premiers et seconds moyens de mise en communication.
  5. Pont de plate-forme marine selon la revendication 3 ou 4, caractérisé en ce que lesdits troisièmes moyens de mise en communication (25, 35) comprennent au moins une soupape pilotée (25) ou un distributeur piloté à deux orifices et deux positions, et un réducteur de débit (35) monté en série avec la soupape ou le distributeur (25).
  6. Pont de plate-forme marine selon l'une quelconque des revendications 3 à 5, caractérisé en ce que chaque jambe (6) du pont (1) contient en outre un vérin auxiliaire (31) travaillant essentiellement en traction, dont le cylindre (72) est fixé coaxialement sur le cylindre hydraulique (15) de l'ensemble cylindre hydraulique et piston plongeur (14, 15), et dont la tige de piston (73) pénètre de manière étanche dans ledit cylindre hydraulique (15) et est reliée au piston plongeur (14).
  7. Pont de plate-forme marine selon l'une quelconque des revendications 3 à 5, caractérisé en ce que chaque ensemble cylindre hydraulique et piston plongeur (14, 15) est réalisé sous la forme d'un vérin à double effet, une seconde chambre (91), remplie de fluide hydraulique, étant formée dans le cylindre hydraulique (15) au-dessous d'une partie (14a) de plus grand diamètre du piston plongeur (14), ladite seconde chambre (91) pouvant être sélectivement raccordée à une source de fluide sous pression pour relever le piston plongeur (14) ou pour le maintenir en position haute, et raccordée à un réservoir de fluide hydraulique (26) pour autoriser la descente du piston plongeur (14).
  8. Pont de plate-forme marine selon la revendication 5 ou 6, caractérisé en ce que les premiers, seconds et troisièmes moyens de mise en communication (24, 25) sont pilotables par une pression et en ce que ladite unité de contrôle et de commande (28, 29) comporte une centrale hydraulique (29) destinée à fournir la pression hydraulique nécessaire au pilotage des premiers, seconds et troisièmes moyens de mise en communication (24, 25) et la pression nécessaire à l'alimentation du vérin auxiliaire (31) ou de la deuxième chambre (91) du vérin à double effet formant l'ensemble cylindre hydraulique et piston plongeur (14, 15).
  9. Pont de plate-forme marine selon l'une quelconque des revendications 3 à 8, caractérisé en ce que chaque jambe (6) du pont (1) contient un accumulateur haute pression (34) communiquant avec la chambre (16) du cylindre hydraulique (15) située au-dessus du piston plongeur (14).
  10. Pont de plate-forme marine selon la revendication 9, caractérisé en ce que l'accumulateur haute pression (34) est disposé à l'intérieur de l'accumulateur basse pression (17).
  11. Pont de plate-forme marine selon l'une quelconque des revendications 3 à 10, caractérisé en ce que chaque ensemble cylindre hydraulique et piston plongeur (14, 15) et l'accumulateur basse pression (17) y associé sont réalisés ou assemblés sous la forme d'un module qui est fixé de manière détachable à l'intérieur de la jambe correspondante (6) du pont (1).
  12. Pont de plate-forme marine selon l'une quelconque des revendications 3 à 11, caractérisé en ce que le piston plongeur (14) est équipé, à son extrémité inférieure, d'une tête d'appui articulée (58), composée d'au moins une pièce (87, 88) ayant une surface en forme de calotte sphérique épousant une surface de forme complémentaire prévue à l'extrémité inférieure du piston plongeur (14).
  13. Structure support pour plate-forme marine destinée à être utilisée dans le procédé selon la revendication 1, comprenant plusieurs piles (5) ou membrures verticales (8) destinées à être assemblées et à supporter respectivement les jambes (6) d'un pont (1) de la plate-forme, chaque pile (5) ou membrures verticales (8) comportant à sa partie supérieure une partie réceptrice destinée à recevoir et à servir d'appui pour un piston plongeur (14) monté mobile verticalement dans une jambe correspondante (6) du pont (1) de la plate-forme, caractérisée en ce que ladite partie réceptrice (7) a la forme d'une cavité qui est ouverte vers le haut et dont le diamètre intérieur est substantiellement plus grand que le diamètre extérieur du piston plongeur (14), et en ce que le fond (59) de la cavité est pourvu d'un ensemble amortisseur stratifié (63) composé d'une couche inférieure (64) en une matière élastomère formant tampon, d'une plaque métallique de renfort (65) et d'une couche antifriction (66) en une matière choisie pour présenter un faible coefficient de frottement avec la matière du piston plongeur (14), afin de permettre des mouvements horizontaux limités de glissement entre le piston plongeur (14) et le fond (59) de la cavité, sans contact avec la paroi latérale (62) de celle-ci.
EP94402388A 1993-10-29 1994-10-24 Procédé pour installer le pont d'une plate-forme marine sur une structure support en mer Expired - Lifetime EP0654564B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG1995000246A SG34968A1 (en) 1994-10-24 1994-10-24 A method of installing the deck of an offshore platform on a support structure at sea

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9312926 1993-10-29
FR9312926A FR2711687B1 (fr) 1993-10-29 1993-10-29 Procédé pour installer le pont d'une plate-forme marine sur une structure support en mer.

Publications (2)

Publication Number Publication Date
EP0654564A1 EP0654564A1 (fr) 1995-05-24
EP0654564B1 true EP0654564B1 (fr) 1997-10-08

Family

ID=9452351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94402388A Expired - Lifetime EP0654564B1 (fr) 1993-10-29 1994-10-24 Procédé pour installer le pont d'une plate-forme marine sur une structure support en mer

Country Status (11)

Country Link
US (1) US5522680A (fr)
EP (1) EP0654564B1 (fr)
JP (1) JPH07189236A (fr)
KR (1) KR950011773A (fr)
CN (1) CN1038864C (fr)
BR (1) BR9404274A (fr)
DE (1) DE69406087T2 (fr)
DK (1) DK0654564T3 (fr)
ES (1) ES2109638T3 (fr)
FR (1) FR2711687B1 (fr)
NO (1) NO944125L (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1001778C2 (nl) * 1995-11-03 1997-05-13 Allseas Group Sa Werkwijze en inrichting voor het verwijderen van een opbouw.
FR2744150B1 (fr) * 1996-01-30 1998-04-03 Elf Aquitaine Dispositif de montage d'un element sur un support, en particulier pour le montage d'un pont sur le support d'une installation petroliere en mer
IT1283508B1 (it) * 1996-07-26 1998-04-21 Saipem Spa Sistema e procedimento per trasferire un carico da una bettolina ad una sottostruttura
GB2330854B (en) * 1997-10-31 2002-04-17 Ove Arup Partnership Method of transporting and installing an offshore structure
US6305881B1 (en) * 1998-05-22 2001-10-23 Herman J. Schellstede & Associates, Inc. Barge stabilization method
FR2779754B1 (fr) 1998-06-12 2000-08-25 Technip Geoproduction Dispositif de transport et de pose d'un pont d'une plate-forme petroliere d'exploitation en mer
KR100465882B1 (ko) * 1999-05-27 2005-01-13 현대중공업 주식회사 잭 시스템에 의한 리그선의 육상 데크메이팅 공법
US6524032B2 (en) * 2000-10-10 2003-02-25 Cso Aker Maritime, Inc. High capacity nonconcentric structural connectors and method of use
KR100452595B1 (ko) * 2001-05-08 2004-10-14 현대중공업 주식회사 해상의 하부 구조물 위에 해상 플랫폼을 충격 및 집중하중 없이 설치하는 방법
NO317848B1 (no) * 2003-01-17 2004-12-20 Aker Marine Contractors As Fremgangsmate og arrangement for installasjon og fjerning av gjenstander til havs
JP4286019B2 (ja) * 2003-02-04 2009-06-24 株式会社根本杏林堂 薬液注入システム
WO2005009838A1 (fr) * 2003-06-25 2005-02-03 Exxonmobile Upstream Research Company Procede de fabrication de structure flottante a pilonnement reduit
US7287935B1 (en) * 2003-07-16 2007-10-30 Gehring Donald H Tendon assembly for mooring offshore structure
FR2874589B1 (fr) * 2004-09-01 2006-11-03 Technip France Sa Methode et installation de chargement et dechargement de gaz naturel comprime
GB2427890B (en) * 2005-06-30 2011-02-23 Engineering Business Ltd Mounting of offshore structures
US20090003936A1 (en) * 2007-06-27 2009-01-01 Horton Technologies, Llc System and Method for Aligning and Engaging a Topside to a Floating Substructure
GR1006016B (el) * 2007-07-13 2008-07-31 Αναστασιος Μαϊλης Συστημα ανυψωσης και μετακινησης σκαφων και συναφων πλωτων ναυπηγηματων.
CN101407251B (zh) * 2008-11-14 2012-01-11 大连船舶重工集团有限公司 一种海洋工程模块导向定位安装方法
SE0950357A1 (sv) * 2009-05-19 2010-07-06 Gva Consultants Ab Metod för att installera en toppmodul på en offshore stödstruktur
CN101850831A (zh) * 2010-05-31 2010-10-06 南通中远船务工程有限公司 一种大型远洋海工平台生活区总段吊装方法
MX368126B (es) * 2010-06-21 2019-09-19 Khachaturian Jon Metodo y aparato para elevar una plataforma marina.
CN102206938A (zh) * 2010-10-13 2011-10-05 天津市海王星海上工程技术有限公司 一种新的海上平台上部组块安装方法
CN102734617B (zh) * 2012-06-29 2014-06-11 安徽国祯环保节能科技股份有限公司 一种低速潜水推流器主机的固定装置
FR2996892B1 (fr) 2012-10-16 2015-11-06 Technip France Ensemble d'amortissement pour une installation au moins en partie immergee dans une etendue d'eau, installation et procede associes
NL2012008B1 (en) * 2012-12-21 2016-07-08 Suction Pile Tech B V Offshore installation method, e.g. by floatover, and system.
ITMI20130111A1 (it) 2013-01-24 2014-07-25 Saipem Spa Chiatta a pescaggio variabile e sistema e metodo per trasferire carichi dalla chiatta ad una struttura di appoggio in un corpo d'acqua
US8926225B2 (en) * 2013-03-18 2015-01-06 J. Ray Mcdermott, S.A. Leg mating unit
JP6329461B2 (ja) * 2014-08-11 2018-05-23 鹿島建設株式会社 洋上風車の設置方法、洋上風車設置用フローティングドック
NL2013349B1 (en) * 2014-08-21 2016-09-23 Ihc Holland Ie Bv Method of and system for installing foundation elements in an underwater ground formation.
CN104480922B (zh) * 2014-11-05 2016-01-20 广州市恒盛建设工程有限公司 空间桁架支模系统及其施工方法
JP6550128B2 (ja) * 2014-11-27 2019-07-24 グラヴィフロート アクティーゼルスカブGravifloat As 海上活動のための海底ターミナル
NL2014042B1 (en) * 2014-12-23 2016-10-12 Heerema Marine Contractors Nl Support device configured to be positioned on a lifting vessel in order to lift a topside from its support structure.
CN104594318B (zh) * 2015-01-20 2016-05-25 中国海洋石油总公司 一种快速连接海上支持平台与深水平台的装置及方法
CN109300353B (zh) * 2016-10-18 2021-07-27 浙江海洋大学 模拟海上作业工况的海洋工程试验平台装置
AR109872A1 (es) * 2016-10-27 2019-01-30 Gravifloat As Planta portuaria y método para fondear un cuerpo flotante en una planta portuaria
CN106826176B (zh) * 2017-03-23 2018-12-07 宝鸡石油机械有限责任公司 一种支持平台钻井模块导向定位安装方法
KR102009247B1 (ko) * 2017-09-21 2019-08-09 한국해양과학기술원 탑사이드 덱 설치유도장치 및 이의 운용방법과 설치방법
DE102018104329B4 (de) * 2018-02-26 2022-09-29 Overdick Gmbh & Co. Kg Verfahren zur Gründung einer Umspannplattform und Umspannplattform mit wenigstens vier Pfählen
CN110469558A (zh) * 2019-09-18 2019-11-19 三一汽车起重机械有限公司 带双向缓冲的对中油缸及起重机
CN113353202B (zh) * 2020-03-04 2022-11-29 中国电建集团华东勘测设计研究院有限公司 一种海上换流站的浮托式安装结构及方法
US20230287644A1 (en) * 2022-03-11 2023-09-14 John L. White Dampening assembly for vibratory pile drivers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2907172A (en) * 1955-09-19 1959-10-06 Shell Dev Method and apparatus for constructing offshore drilling platforms
FR2496730A1 (fr) * 1980-12-23 1982-06-25 Bretagne Atel Chantiers Dispositif pour la mise en place d'une plate-forme marine sur sa structure support
FR2516112A1 (fr) * 1981-11-12 1983-05-13 Cofitec Sa Procede et installation pour la pose d'une plate-forme d'exploitation offshore sur des piles (jacket)
JPS58181916A (ja) * 1982-04-16 1983-10-24 Nippon Kokan Kk <Nkk> 海中構造物とプラツトフオ−ムとの接合方法
DK46186A (da) * 1985-02-01 1986-08-02 Conoco Uk Ltd Fremgangsmaade og udstyr til samling af en offshoreplatforms daek og underdel
NL8701804A (nl) * 1987-07-30 1989-02-16 Hydraudyne Systems & Engineeri Bevestiging werkeiland.
US4848967A (en) * 1988-01-04 1989-07-18 Exxon Production Research Company Load-transfer system for mating an integrated deck with an offshore platform substructure
US4930938A (en) * 1989-06-02 1990-06-05 Exxon Production Research Company Offshore platform deck/jacket mating system and method
GB2239280B (en) * 1989-12-06 1993-06-23 Marathon Oil Co Motion absorbing docking assembly
US5219451A (en) * 1992-04-24 1993-06-15 Atlantic Richfield Company Offshore deck to substructure mating system and method

Also Published As

Publication number Publication date
CN1109431A (zh) 1995-10-04
DK0654564T3 (da) 1998-05-25
ES2109638T3 (es) 1998-01-16
DE69406087T2 (de) 1998-03-26
JPH07189236A (ja) 1995-07-28
FR2711687A1 (fr) 1995-05-05
NO944125D0 (no) 1994-10-28
EP0654564A1 (fr) 1995-05-24
KR950011773A (ko) 1995-05-16
CN1038864C (zh) 1998-06-24
NO944125L (no) 1995-05-02
US5522680A (en) 1996-06-04
DE69406087D1 (de) 1997-11-13
FR2711687B1 (fr) 1995-12-29
BR9404274A (pt) 1995-07-04

Similar Documents

Publication Publication Date Title
EP0654564B1 (fr) Procédé pour installer le pont d&#39;une plate-forme marine sur une structure support en mer
EP0090006B1 (fr) Dispositif flottant et procede de levage et de transport de charge
EP1581703B1 (fr) Procede d&#39;installation en mer d&#39;un eolienne
EP1606159B1 (fr) Dispositif et procede de stabilisation et de controle de la descente ou remontee d&#39;une structure entre la surface et le fond de la mer
EP0018891B1 (fr) Véhicule sous-marin de dragage et de remontée de minéraux à grande profondeur
FR2779754A1 (fr) Dispositif de transport et de pose d&#39;un pont d&#39;une plate-forme petroliere d&#39;exploitation en mer
EP0020232A1 (fr) Procédé et dispositif d&#39;ancrage de canalisations, telles que des pipe-lines sur fond sous-marin
EP0398797A1 (fr) Dispositif de réduction de la souplesse d&#39;un amortisseur oléopneumatique d&#39;atterrisseur, et amortisseur et atterrisseur le comportant
EP0030909A2 (fr) Dispositifs et procédé de transbordement entre un bateau et une structure fixe située en pleine mer
FR2536456A1 (fr) Systeme de forage a partir d&#39;un plan d&#39;eau, insensible a la houle
FR2981671A1 (fr) Installation de franchissement vertical de la denivelee d&#39;un escalier d&#39;eau entre un bief haut et un bief bas, pour bateaux
FR2913228A1 (fr) Dispositif de decoupe et ouverture/fermeture d&#39;un orifice dans une paroi au fond de la mer
EP0002991B1 (fr) Procédé pour effectuer un dépôt de matériaux sur un fond sous-marin selon un tracé donné, installation pour sa mise en oeuvre, véhicules prévus pour être utilisés dans cette installation et application de cette installation
EP1606160B1 (fr) Dispositif et procede de stabilisation et de controle de la descente ou remontee d&#39;une structure lourde entre la surface et le fond de la mer
EP0677437A1 (fr) Procédé et dispositif anticavalement pour structures marines
CA2006739C (fr) Dispositif de mesure de la radioactivite d&#39;une charge de minerai sur un engin d&#39;extraction tel qu&#39;une pelle a godet
FR2563290A1 (fr) Mecanisme d&#39;entrainement hydraulique
EP3446957B1 (fr) Barge à systèmes de piles pour l&#39;échouage et l&#39;amortissement des effets de la houle
WO2014060363A1 (fr) Ensemble d&#39;amortissement pour une installation au moins en partie immergée dans une étendue d&#39;eau, installation et procédé associés
EP1648761B1 (fr) Station sous-marine autonome
EP0275782B1 (fr) Dispositif perfectionné pour engendrer dans le sol à la fois des ondes acoustiques transversales et longitudinales suivant une pluralité de directions différentes
FR2504904A1 (fr) Procede de manutention et d&#39;installation d&#39;un materiel aux fins de sa mise en oeuvre apres transport et installation sur son site d&#39;utilisation
WO1990007049A1 (fr) Dispositif de manutention d&#39;un train de tiges equipe de moyens de limitation de flexion
CH649364A5 (en) Earthquake-proof linking device
FR2718427A1 (fr) Dispositif de compensation de charge et d&#39;amortissement d&#39;un engin de manutention et en particulier d&#39;une machine de chargement d&#39;un réacteur nucléaire.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES GB IE IT NL PT

17P Request for examination filed

Effective date: 19950617

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19970303

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES GB IE IT NL PT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971014

REF Corresponds to:

Ref document number: 69406087

Country of ref document: DE

Date of ref document: 19971113

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ETPM S.A.

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

BECA Be: change of holder's address

Free format text: 971008 S.A. *ETPM:32 AVENUE PABLO PICASSO, F-92000 NANTERRE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2109638

Country of ref document: ES

Kind code of ref document: T3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ETPM S.A.

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19971231

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19990927

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991001

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19991005

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19991007

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991020

Year of fee payment: 6

Ref country code: BE

Payment date: 19991020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991029

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991215

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001024

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001024

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

BERE Be: lapsed

Owner name: S.A. ETPM

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001024

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20011113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051024