EP0654125B1 - Mehrstufige ejektorpumpe - Google Patents

Mehrstufige ejektorpumpe Download PDF

Info

Publication number
EP0654125B1
EP0654125B1 EP93917751A EP93917751A EP0654125B1 EP 0654125 B1 EP0654125 B1 EP 0654125B1 EP 93917751 A EP93917751 A EP 93917751A EP 93917751 A EP93917751 A EP 93917751A EP 0654125 B1 EP0654125 B1 EP 0654125B1
Authority
EP
European Patent Office
Prior art keywords
ejector
pump according
stage
flow
ejector pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93917751A
Other languages
English (en)
French (fr)
Other versions
EP0654125A1 (de
Inventor
Thilo Volkmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0654125A1 publication Critical patent/EP0654125A1/de
Application granted granted Critical
Publication of EP0654125B1 publication Critical patent/EP0654125B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • F04F5/22Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating of multi-stage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids

Definitions

  • the invention relates to a multi-stage ejector according to the preamble of claim 1.
  • Ejector pumps of this type have long been known (FR-A1-25 77 284) and are used both for the production of vacuum and for the conveyance of flowable substances.
  • FR-A1-25 77 284 In order to achieve a high degree of efficiency, in particular with high suction resistances, a successive, multi-stage embodiment is known. This has the advantage that the flow energy of the propellant, which can either be gaseous or liquid, is used until the flow speed has dropped below a value that can no longer be used with design effort.
  • Multi-stage ejector pumps generally have the problem that the size increases disproportionately with the number of stages. This fact is based, among other things, on the fact that the cross section of the flow channel has to increase from stage to stage, and thus in particular the overall height of such an ejector device with several stages is large, without the entire volume of a z. B. rectangular housing could be used.
  • the object of the invention is to improve ejector pumps of the type mentioned in such a way that the size, in particular the height, can be kept small despite the necessary expansion of the flow channel.
  • an ejector according to the invention is comparatively easy to manufacture, in particular from simple (mass) rotating or joining parts.
  • the production can be made of almost any material, such as. B. metal, plastic, glass, ceramics, etc. done.
  • the principle of a ring-shaped flow channel for an ejector is basically already known from DE-A1-34 20 652 - but only for a single-stage ejector.
  • this single-stage ejector it was essential to have a particularly high level of precision when realizing very specific angular relationships and lengths in the area of the nozzle, the mixing zone and the diffuser. This was achieved in that all essential parts such as the nozzle, the mixing zone and the diffuser were formed in only one or both end faces of one-piece blocks, which could be carried out in a single operation on a numerically controlled lathe and contributed to high accuracy and good repetition properties the manufacture of a large number of pumps.
  • a major disadvantage of this known ejector is, on the one hand, in its single stage and, on the other hand, that the suction chamber, via which the material to be conveyed or the substance mixture is fed to the annular, radially outward-acting flow channel, is an annular cross-section widening towards the flow channel Groove is designed, wherein the annular groove is acted upon by the substance or mixture of substances to be conveyed via a number of circumferentially distributed connecting bores which open into a common antechamber.
  • Another disadvantage of this known ejector is its fixation on a very specific surface contour of the flow channel, which only enables optimal pumping performance if the viscosity of the propellant and / or the substance or mixture to be conveyed is within a narrow range of values.
  • different pumps are required. At least the pump block must be replaced, in the end face of which the nozzle, the mixing zone and the diffuser are incorporated.
  • the ejector according to the invention has a number of significant advantages.
  • One advantage is that the invention makes it possible in a simple manner to make the annular geometry of the flow channel accessible, with all the advantages associated therewith, for the realization of a multi-stage ejector.
  • Another advantage is that the flow conditions at the entry of the substance or mixture to be conveyed into the flow channel are considerably evened out compared to the single-stage ejector known from DE-A1-34 20 652.
  • a further advantage consists in the fact that the ejector according to the invention can be manufactured in spite of its multiple stages, since it can be manufactured from simple turned or joined parts that can be mass-produced, the individual Ejector rings can be reworked or replaced if necessary to optimize the ejector for the respective application.
  • the flow conditions in the flow channel can be adapted to the particular conveying task - even in the case of multi-stage ejector pumps in which a passage gap for the substance to be conveyed which forms a constriction between the suction chamber and the flow channel - as in DE-A1-34 20 652 - is missing.
  • the "blowing medium” can be both liquid and gaseous, as can the flowable substance or the flowable substance mixture.
  • “ejector rings” are preferably individual components which are independent of one another and are introduced into the pump housing, which — as will be shown below — can be done in a wide variety of ways. If the cross-sectional constriction at the passage gap for the flowable substance or the mixture of substances between the respective suction chamber and the flow channel is not too great, it is also possible to manufacture the ejector rings in one piece with the wall areas forming the suction chamber.
  • the layout of the ejector rings is preferably - but not necessarily - circular.
  • the cross section of the ejector rings can vary widely and can be adapted to the application conditions, in particular cylindrical and, particularly preferably, conical (see exemplary embodiments according to FIGS. 1 to 4).
  • the side surface of the ejector rings forming part of the wall of the flow channel can, given a radial view, receive a wide variety of contours (see exemplary embodiments according to FIGS. 5 to 9).
  • the inclination angles of the mixing zone and the diffuser zone which are related to the axial direction of the flow channel, can be different.
  • the ejector rings can also have a corrugated surface that enlarges the effective suction gap, as a result of which the flow conditions in the flow channel are influenced by local cross-sectional changes (see exemplary embodiment according to FIGS. 5 and 9). It is also advantageous to arrange flow guide profiles laterally - seen in the axial direction above the ejector rings (see exemplary embodiment according to FIG. 9), by means of which, on the one hand, eddies which arise when the substance to be conveyed is mixed with the propellant can be kept relatively low. On the other hand, the flow guide profiles make it possible to reduce the residual energy of the propellant, which increases the pump efficiency. Flow control profiles of this type have not been previously published.
  • the ejector rings can in principle be attached to the ends of the partition walls separating the suction chambers, but they are particularly advantageously connected to the said partition walls before assembly, preferably in one piece, so that the structural unit consisting of ejector ring and partition wall is installed in the pump will (claim 3).
  • a particular advantage of the invention is that the axial position of the ejector rings and thus the cross-sectional shape of the flow channel can be changed (claims 4 or 6).
  • This change in position can be done in a variety of ways, e.g. B. by means of sliding guides or screw threads, the diameter of which may correspond to the respective diameter of the ejector ring concerned.
  • adjustment devices which consist of telescoping tubes that connect to one another at the ends (flow channel side) of radial and axial or conical wall parts that act as partitions for the neighboring ones Serve suction chambers and their annular end faces themselves serve as part of the wall and the flow channel or carry the respective ejector ring.
  • the four-stage ejector identified overall by 100, has a circular cylindrical housing 26 which consists of a base part 26A with a central inlet 23 for the medium to be conveyed, a cover part 26C with a common outlet 14 for the propellant medium and the medium to be conveyed and an ejector support part 268 arranged between the cover part and the base part.
  • a dividing wall 6 is inserted into the connection point between the cover part 26C and the ejector support part 26B, the cover-side surface of which, together with the cover part 26C, delimits an outflow chamber 11.
  • a pipe socket 27 provided centrally on the partition 6 and projecting from it in the direction of the cover 26C and penetrating the cover 26 forms an inlet 13 for the propellant medium, in which an orifice 19 for pre-distributing the propellant medium over the entire inlet cross section can be installed and the a solids filter 20 can be connected upstream in order to avoid erosion phenomena in the region of the inlet nozzle 22A to be explained.
  • the partition 6 is provided in its radial outer region with circumferentially distributed bores 14A, which - also directly - can serve as an outlet and which can be followed by silencers 12 in the direction of flow.
  • a wall part 22E of a flow channel 22 On the side of the partition 6 facing away from the cover part 26C, its annular surface forms a wall part 22E of a flow channel 22.
  • a wall part is opposite the wall part 22E and axially spaced from it 22F is provided, which is formed from ejector rings 2 to 5, which are arranged concentrically to one another and at a radial spacing from one another, and a central ejector disk 1.
  • the flow channel 22 is closed radially outwards by the inner surface of a circular cylindrical wall region of the ejector support part 26B. In this way, the flow channel 22 is given an annular shape.
  • the flow channel is designed for a flow directed radially from the inside to the outside, as is the case for a single-stage ejector from DE-A1-34 20 652 is basically already known.
  • the ejector support part 26B consists of the already mentioned cylindrical and a circular disk-shaped wall part, which serves as a partition wall 26D.
  • the dividing wall 26D On the side facing the bottom part 26A, the dividing wall 26D, together with the bottom part 26A, delimits a prechamber 7 in which the medium to be conveyed flowing in via the inlet 23 is pre-distributed.
  • the ejector rings are provided with partition walls 25A, 25B, 25C and 25D (in the exemplary embodiment, the ejector rings are integrally connected to the partition walls) ), wherein the partitions in the illustrated embodiment form approximately circular cylindrical tube sections of different lengths, the length of which decreases radially outwards uniformly, so that the flow cross section of the flow channel 22 becomes increasingly larger radially outward, also in the axial direction.
  • the mixture of propellant and medium to be conveyed flowing through it has an axial flow component in addition to the radial one.
  • wall part 22E runs parallel to wall part 22F according to the dash-and-dot line in FIG. 1.
  • it is also possible to completely eliminate the axial flow component by arranging the wall part 22F along the dash-dotted line in FIG. 1 and arranging the wall part 22E parallel to it. In this case, there is a pure radial flow in the flow channel 22.
  • the centrifugal force for the propellant can also be used, which can possibly increase the efficiency of the ejector.
  • FIGS. 6 and 7 Further design options of the flow channel 22 are shown in FIGS. 6 and 7.
  • the wall part 22F is inclined downwards radially outward, so that the flow comprises an axial component.
  • the convex wall part 22E aims to use centrifugal force for the propellant.
  • the flow channel shown on the right-hand side of FIG. 6 has a conical surface which is inclined radially downwards, so that the use of centrifugal force is avoided. It is therefore easily possible to adapt the geometry of the flow channel 22 to different driving media and / or fluids to be conveyed by using different wall parts 22E.
  • the wall part 22F was partly inclined, but was made flat, a curved course, as shown in FIG. 7, can also be advantageous.
  • the ejector disc 1 and the ejector rings 1-4 have a convex, curved surface.
  • the surface of the ejector rings can also be corrugated in a manner similar to that shown in FIG. 5, so that ejector rings 1 to 4 form flow troughs 41 pointing radially outwards, which exert an aligning effect on the flow prevailing in the flow channel 22. It can also be advantageous, as shown in FIG.
  • the partition walls 25A to 25D and a base element 25E carrying the ejector disk 1 and also serving as a partition wall enclose an annular suction chamber 15 to 18 between them.
  • the partition wall 26D has openings 28 to 31 as access openings of the medium to be conveyed from the pre-chamber 7 into the suction chambers 15 to 18.
  • the openings can be distributed around the circumference and at least partially provided with non-return flaps 8 to 12.
  • the radially outer edges of the ejector disk 1 or the ejector rings 2 to 4 form with the radial inner edge of the ejector ring 2 to 5, which is located radially on the outside in each case, a passage gap 22D forming a constriction for the fluid to be conveyed from the respective suction chamber into the flow channel 22.
  • the passage gaps 22D are each ring-shaped in the illustrated and in this respect preferred exemplary embodiments. They can - at least in the exemplary embodiments according to FIGS. 1 and 2 - in principle also consist of circumferentially distributed openings.
  • the passage gaps 22D have a periodically widening and narrowing structure.
  • the annular nozzle 22A which is formed by the ejector disk 1 and the central region of the partition 6 opposite the ejector disk 1, serves as the inlet nozzle of the propellant medium in the flow channel 22.
  • the radially outer area serves as diffuser 22C and the radially inner area of the ejector ring serves as mixing zone 228.
  • the two axially opposite wall parts 22E and 22F of the flow channel 22 are constructed in an approximately mirror-symmetrical manner and are provided with suction chambers.
  • the propellant and the medium to be conveyed are discharged radially outward from the flow channel 22.
  • the ejector rings and the ejector disk are axially adjustable.
  • the partition walls 25A and 25B bearing the ejector rings have at their end opposite the ejector ring an annular wall region 25D and 25E which is supported radially on the inside by a tube 32 and 33, respectively.
  • the ejector disk 1 is also carried by a tube (tube 34) and the housing 26 has a central tube socket 35.
  • the tube 34 has a screw thread on its outer circumference, which corresponds to an internal thread provided on the tube 32.
  • the pipe 32 also has an external thread, which in turn corresponds to an internal thread of the pipe 33 and the pipe 33 carries an external thread which corresponds to an internal thread of the pipe socket 35.
  • all pipes 32, 33, 34, 36 and the pipe socket 35 and with them the ejector disk or ejector rings carried by them are telescopically rotatable in the axial direction of the pump.
  • a relative position of the ejector rings and the ejector disk is shown in the left half of the image, as it corresponds to the embodiments of Figs. 1 and 2, while in the right half of Fig. 3, the ejector rings are adjusted so that the cross section of the Flow channel 22 which widens radially outward.
  • the cross section of the flow channel and thus the throughput of fluid to be pumped and the energy consumption can be set.
  • the central ejector disk is acted upon by the drive medium via the central inlet 13, which then flows radially outward and
  • different pressures - depending on the geometry of the individual ejector rings and the rings relative to one another - are generated between the individual ejector disks, with different suction effects occurring at the passage gaps 22D.
  • ejector ring segments can also be used instead of complete ejector rings within the scope of the invention.
  • FIG. 9 shows a further embodiment of an ejector, in which — as seen in the direction of flow — flow guide profiles 37, 38, 39 are arranged in the flow channel 22 at the same height as the passage gaps 22D.
  • the flow guide profiles 37 to 39 have a symmetrical, wing-like cross section and are oriented in such a way that the round head sides point in the direction of the ejector center, ie face the inflowing fluid, the pointed tail sides point in the flow direction.
  • the flow guide profiles 37 to 39 are held on vertical partition walls 40 which subdivide the radial ejector pump into circular segments.
  • the mixture of propellant and fluid to be conveyed in the flow channel 22 is partially deflected in its direction, which on the one hand causes the vortex formation - in particular in the mixing zones 228 -, on the other hand, the residual energy of the propellant can be reduced by an improved flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Manipulator (AREA)

Description

  • Die Erfindung betrifft eine mehrstufige Ejektorpumpe gemäß dem Oberbegriff des Anspruchs 1.
  • Ejektorpumpen dieser Art sind seit langem bekannt (FR-A1-25 77 284) und werden sowohl für das Herstellen von Vakuum als auch zum Fördern strömungsfähiger Stoffe verwendet. Zur Erzielung eines hohen Wirkungsgrades, insbesondere bei hohen Saugwiderständen, ist eine hintereinanderliegende, mehrstufige Ausführungsform bekannt. Diese hat den Vorteil, daß die Strömungsenergie des Treibmediums, das entweder gasförmig oder flüssig sein kann, soweit verwendet wird, bis die Strömungsgeschwindigkeit unter einen mit konstruktivem Aufwand nicht mehr nutzbaren Wert herabgesunken ist.
  • Mehrstufige Ejektorpumpen haben aber grundsätzlich das Problem, daß die Baugröße mit der Zahl der Stufen überproportional zunimmt. Diese Tatsache liegt unter anderem darin begründet, daß der Querschnitt des Strömungskanals von Stufe zu Stufe zunehmen muß und somit insbesondere die Bauhöhe einer solchen Ejektorvorrichtung mit mehreren Stufen groß ist, ohne daß das ganze Volumen eines z. B. quaderförmigen Gehäuses ausgenutzt werden könnte.
  • Aufgabe der Erfindung ist es, Ejektorpumpen der eingangs genannten Art dahingehend zu verbessern, daß die Baugröße, insbesondere die Bauhöhe, trotz der notwendigen Erweiterung des Strömungskanals kleingehalten werden kann.
  • Die Aufgabe wird gelöst durch eine Ejektorpumpe mit den Merkmalen des Anspruchs 1.
  • Eine erfindungsgemäße Ejektorpumpe ist trotz ihrer großen Kompaktheit und Wirksamkeit vergleichsweise einfach zu fertigen, insbesondere aus einfachen (Massen)dreh- oder -fügeteilen. Die Fertigung kann aus nahezu beliebigem Werkstoff, wie z. B. Metall, Kunststoff, Glas, Keramik etc. erfolgen.
  • Das Prinzip eines ringförmig ausgebildeten Strömungskanals für eine Ejektorpumpe ist aus der DE-A1-34 20 652 grundsätzlich bereits bekannt - allerdings lediglich für eine einstufige Ejektorpumpe. Bei dieser einstufigen Ejektorpumpe kam es im wesentlichen auf eine besonders hohe Präzision bei der Realisierung ganz bestimmter Winkelverhältnisse und Längen im Bereich der Düse, der Mischzone und des Diffusors an. Diese wurde dadurch erreicht, daß alle wesentlichen Teile wie die Düse, die Mischzone und der Diffusor in nur einer oder beiden Endflächen einstückiger Blöcke ausgeformt wurden, was sich in einem einzigen Arbeitsgang auf einer numerisch gesteuerten Drehmaschine durchführen ließ und zu hohen Genauigkeiten und guten Wiederholungseigenschaften bei der Herstellung einer großen Anzahl von Pumpen führte. Ein wesentlicher Nachteil dieser bekannten Ejektorpumpe liegt zum einen in ihrer Einstufigkeit und zum anderen darin, daß die Saugkammer, über welche dem ringförmigen, radial nach außen gerichtet wirksamen Strömungskanal der zu fördernde Stoff oder das Stoffgemisch zugeführt wird, als kreisringförmige, sich zum Strömungskanal hin querschnittserweiternde Nut ausgestaltet ist, wobei die Beaufschlagung dieser Ringnut mit dem zu fördernden Stoff oder Stoffgemisch über einige umfangsverteilte Verbindungsbohrungen, welche in einer gemeinsamen Vorkammer münden, erfolgt. Durch diese Bauart sowie das entsprechende Herstellungsverfahren dieser bekannten Ejektorpumpe ergeben sich ungünstige Strömungsverhältnisse für den in den ringförmigen Strömungskanal einströmenden zu fördernden Stoff oder das Stoffgemisch. Ein weiterer Nachteil dieser bekannten Ejektorpumpe ist ihre Fixierung auf eine ganz bestimmte Oberflächenkontur des Strömungskanals, welche optimale Pumpleistungen nur dann ermöglicht, wenn die Zähigkeit des Treibmediums und/oder des zu fördernden Stoffes oder Stoffgemisches in einem eng begrenzten Wertebereich liegt. Zur Lösung unterschiedlicher Förderaufgaben, insbesondere zur Förderung von Stoffen oder Stoffgemischen, deren Zähigkeit von den Idealbedingungen, für die diese Ejektorpumpe ausgelegt ist, abweichen oder für den Einsatz anderer Treibmedien sind jeweils andere Pumpen erforderlich. Zumindest muß derjenige Pumpenblock ausgetauscht werden, in dessen Stirnfläche die Düse, die Mischzone und der Diffusor eingearbeitet ist.
  • Gegenüber dieser, aus der DE-A1-34 20 652 bekannten, kreisförmig aufgebauten Ejektorpumpe hat die erfindungsgemäße Ejektorpumpe nach Anspruch 1 eine Reihe erheblicher Vorteile. Ein Vorteil besteht darin, daß es durch die Erfindung auf einfache Weise möglich ist, die ringförmige Geometrie des Strömungskanals mit sämtlichen damit verbundenen Vorteilen für die Realisierung einer mehrstufigen Ejektorpumpe zugänglich zu machen. Ein weiterer Vorteil besteht darin, daß die Strömungsverhältnisse beim Eintritt des zu fördernden Stoffes oder Stoffgemisches in den Strömungskanal im Vergleich zu der aus der DE-A1-34 20 652 bekannten einstufigen Ejektorpumpe erheblich vergleichmäßigt werden. Ein weiterer Vorteil besteht in der trotz ihrer Mehrstufigkeit einfachen Herstellbarkeit der erfindungsgemäßen Ejektorpumpe, da sie aus einfachen, in Massenproduktion herstellbaren Dreh- oder Fügeteilen gefertigt werden kann, wobei die einzelnen Ejektorringe im Bedarfsfall nachgearbeitet oder ausgetauscht werden können, um die Ejektorpumpe für den jeweiligen Anwendungszweck zu optimieren.
  • Der Grundgedanke, auf dem vorliegende Erfindung basiert, nämlich bei einer mehrstufigen Ejektorpumpe den Strömungskanal ringförmig und für eine von radial innen nach radial außen gerichtete Durchströmung auszubilden, kann auch in einer zur Lehre des Anspruchs 1 alternativen Weise praktisch genutzt werden, nämlich dadurch, daß die die Mischzone und den Diffusor einer oder mehrerer Pumpenstufen aufweisenden Wandungsbereiche des Strömungskanals bezüglich der anderen Wandungsbereiche des Strömungskanals axial verstellbar sind (Anspruch 22). Dadurch werden die Strömungsverhältnisse im Strömungskanal an die jeweilige Förderaufgabe anpaßbar - und zwar auch bei solchen mehrstufigen Ejektorpumpen, bei denen zwischen der Saugkammer und dem Strömungskanal ein eine Engstelle bildender Durchtrittsspalt für den zu fördernden Stoff - wie bei der DE-A1-34 20 652 - fehlt.
  • Das "Treibmedium" kann im Sinne der Erfindung sowohl flüssig als auch gasförmig sein, ebenso der strömungsfähige Stoff oder das strömungsfähige Stoffgemisch.
  • "Ejektorringe" sind im Sinne der Erfindung bevorzugt voneinander unabhängige Einzelbauteile, die in das Pumpengehäuse eingebracht werden, was - wie nachfolgend noch gezeigt wird - auf die verschiedenste Weise geschehen kann. Sofern die Querschnittsverengung an dem Durchtrittsspalt für den strömungsfähigen Stoff oder das Stoffgemisch zwischen der jeweiligen Saugkammer und dem Strömungskanal nicht allzu groß ist, ist es auch möglich, die Ejektorringe einstückig mit den die Saugkammer bildenden Wandungsbereichen herzustellen.
  • Die Grundrißform der Ejektorringe (Ansicht in Axialrichtung) ist bevorzugt - aber nicht zwingend - kreisringförmig. Der Querschnitt der Ejektorringe (also im Axialschnitt gesehen) kann in weitem Maße variiert und den Anwendungsbedingungen angepaßt, insbesondere zylindrisch und, besonders bevorzugt, konisch (siehe Ausführungsbeispiele gemäß Fig. 1 bis 4) sein. Die einen Teil der Wandung des Strömungskanals bildende Seitenfläche der Ejektorringe kann, vor allem nach radial außen gesehen, die verschiedensten Konturen erhalten (siehe Ausführungsbeispiele gemäß Fig. 5 bis 9). Insbesondere können die auf die Achsrichtung des Strömungskanals bezogenen Neigungswinkel der Mischzone und der Diffusorzone unterschiedlich sein. Auch können die Ejektorringe eine gewellte, den effektiven Saugspalt vergrößernde Oberfläche aufweisen, wodurch die Strömungsverhältnisse im Strömungskanal durch lokale Querschnittsveränderungen beeinflußt werden (siehe Ausführungsbeispiel gemäß Fig. 5 und 9). Es ist weiterhin vorteilhaft, seitlich - in Achsrichtung oberhalb der Ejektorringe gesehen - Strömungsleitprofile anzuordnen (siehe Ausführungsbeispiel nach Fig. 9), durch die einerseits Verwirbelungen, die bei der Mischung des zu fördernden Stoffes mit dem Treibmedium entstehen, relativ gering gehalten werden können. Andererseits ist es durch die Strömungsleitprofile möglich, die Restenergie des Treibmediums zu verringern, wodurch der Pumpenwirkungsgrad erhöht wird. Derartige Strömungsleitprofile sind nicht vorveröffentlicht.
  • Die Befestigung der Ejektorringe kann zwar grundsätzlich an den Stirnenden der die Saugkammern voneinander trennenden Trennwänden erfolgen, besonders vorteilhaft sind sie aber bereits vor der Montage, vorzugsweise einstückig, mit den besagten Trennwänden verbunden, so daß die aus Ejektorring und Trennwand bestehende Baueinheit in der Pumpe montiert wird (Anspruch 3).
  • Während in vielen Anwendungsfällen die Position der einzelnen Ejektorringe (in Axialrichtung gesehen) zueinander sowie gemeinsam in bezug auf die übrigen Pumpenteile unveränderlich bleiben kann, besteht ein besonderer Vorzug der Erfindung darin, daß die Axialposition der Ejektorringe und damit die Querschnittsform des Strömungskanals veränderbar ist (Ansprüche 4 bzw. 6). Diese Positionsveränderung kann auf die verschiedenste Weise vorgenommen werden, z. B. mittels Schiebeführungen oder Schraubengewinden, deren Durchmesser dem jeweiligen Durchmesser des betroffenen Ejektorringes entsprechen kann. Besonders einfach herzustellen, zu montieren und auch nachträglich von außen her zu verstellen, sind jedoch solche Verstelleinrichtungen, die aus teleskopähnlich ineinander verlaufenden Rohren bestehen, an deren Stirnenden (strömungskanalseitig) radial und axial bzw. konisch gerichtete Wandungsteile anschließen, die als Trennwände für die benachbarten Saugkammern dienen und deren ringförmigen Stirnflächen selbst als Teil der Wandung und des Strömungskanals dienen bzw. den jeweiligen Ejektorring tragen.
  • Die vorgenannten sowie die beanspruchten und in den Ausführungsbeispielen beschriebenen, erfindungsgemäß zu verwendenden Bauteile unterliegen in ihrer Größe, Formgestaltung, Materialauswahl und technischen Konzeption keinen besonderen Ausnahmebedingungen, so daß die in dem jeweiligen Anwendungsgebiet bekannten Auswahlkriterien uneingeschränkt Anwendung finden können.
  • Weitere Einzelheiten, Merkmale und Vorteile des Gegenstandes der Erfindung ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnung, in der eine erfindungsgemäße mehrstufige Ejektorpumpe dargestellt ist. In der Zeichnung zeigen:
  • Fig. 1
    eine erfindungsgemäße mehrstufige Ejektorpumpe in Axialschnittdarstellung;
    Fig. 2
    eine zweite Ausführungsform einer erfindungsgemäßen Ejektorpumpe in der gleichen Schnittdarstellung wie in Fig. 1 - ausschnittsweise;
    Fig. 3
    - eine dritte Ausführungsform einer erfindungsgemäßen Ejektorpumpe, wiederum im Axialschnitt (Schnitt entlang der Linie III-III gemäß Fig. 4);
    Fig. 4
    von derselben Ejektorpumpe wie in Fig. 3 eine Ansicht der Pumpe von oben (Schnitt entlang der Linie IV-IV gemäß Fig. 3);
    Fig. 5
    eine alternative Ausführungsform der Ejektorringe mit gewellter Oberfläche (perspektivische Darstellung eines kreissegmentförmigen Ausschnitts einer Ejektorringanordnung einer erfindungsgemäßen Ejektorpumpe);
    Fig. 6
    eine alternative Strömungskanalform zum Ausführungsbeispiel nach Fig. 1 in einer Axialschnittdarstellung - ausschnittsweise;
    Fig. 7
    eine weitere Strömungskanalform an demselben Ausführungsbeispiel in einer ausschnittsweisen Axialschnittdarstellung der halben Ejektorpumpe;
    Fig. 8
    eine beispielhafte Darstellung möglicher Ejektorringausführungen am Beispiel eines Ejektorringsets in einer Axialschnittdarstellung sowie
    Fig. 9
    eine perspektivische Darstellung eines Ejektorpumpensegmentes, welches zusätzlich mit Strömungsleitprofilen ausgestattet ist.
  • Bei dem in Fig. 1 dargestellten Ausführungsbeispiel weist die insgesamt mit 100 gekennzeichnete vierstufige Ejektorpumpe ein kreiszylindrisches Gehäuse 26 auf, das aus einem Bodenteil 26A mit einem zentralen Einlaß 23 für das zu fördernde Medium, einem Deckelteil 26C mit einem gemeinsamen Auslaß 14 für das Treibmedium und das zu fördernde Medium sowie einem zwischen dem Deckelteil und dem Bodenteil angeordneten Ejektortragteil 268 besteht.
  • In die Verbindungsstelle zwischen dem Deckelteil 26C und dem Ejektortragteil 26B ist eine Trennwand 6 eingefügt, deren deckelseitige Oberfläche gemeinsam mit dem Deckelteil 26C eine Abströmkammer 11 begrenzt. Ein zentral an der Trennwand 6 vorgesehener und von dieser in Richtung auf den Deckel 26C abstehender sowie den Deckel 26 durchdringender Rohrstutzen 27 bildet einen Einlaß 13 für das Treibmedium, in welchen eine Blende 19 zur Vorverteilung des Treibmediums über den gesamten Eintrittsquerschnitt eingebaut sein kann und dem ein Feststoffilter 20 vorgeschaltet sein kann, um Erosionserscheinungen im Bereich der noch zu erläuternden Eintrittsdüse 22A zu vermeiden. Im übrigen ist die Trennwand 6 in ihrem radialen Außenbereich mit umfangsverteilten Bohrungen 14A versehen, welche - auch unmittelbar - als Auslaß dienen können und denen Schalldämpfer 12 in Strömungsrichtung nachgeschaltet sein können.
  • Auf der dem Deckelteil 26C abgewandten Seite der Trennwand 6 bildet ihre kreisringförmige Oberfläche ein Wandungsteil 22E eines Strömungskanals 22. Dem Wandungsteil 22E gegenüberliegend und von ihm axial beabstandet ist ein Wandungsteil 22F vorgesehen, welches aus konzentrisch zueinander und mit radialem Abstand voneinander angeordneten, noch zu erläuternden Ejektorringen 2 bis 5 und einer zentralen Ejektorscheibe 1 gebildet wird. Nach radial außen wird der Strömungskanal 22 durch die Innenfläche eines kreiszylindrischen Wandungsbereiches des Ejektortragteils 26B verschlossen. Auf diese Weise erhält der Strömungskanal 22 eine Ringform. Dadurch, daß das Treibmedium über den zentralen Einlaß 13 zugeführt und das Treibmedium und das Fördermedium gemeinsam durch die radial außen liegenden Bohrungen 14A aus dem Strömungskanal 22 abgeführt werden, ist der Strömungskanal für eine von radial innen nach radial außen gerichtete Strömung ausgebildet, wie es für eine einstufige Ejektorpumpe aus der DE-A1-34 20 652 grundsätzlich bereits bekannt ist.
  • Das Ejektortragteil 26B besteht aus dem schon erwähnten zylindrischen und einem kreisscheibenförmigen Wandungsteil, welches als Trennwand 26D dient.
  • Auf der zum Bodenteil 26A weisenden Seite begrenzt die Trennwand 26D gemeinsam mit dem Bodenteil 26A eine Vorkammer 7, in der eine Vorverteilung des über den Einlaß 23 zuströmenden zu fördernden Mediums stattfindet.
  • Auf der der Vorkammer 7 abgewandten Seite der Trennwand 26D trägt letztere die Ejektorringe 2 bis 5 sowie die Ejektorscheibe 1. Zu diesem Zweck sind die Ejektorringe mit Trennwänden 25A, 25B, 25C und 25D versehen (in dem Ausführungsbeispiel sind die Ejektorringe mit den Trennwänden einstückig verbunden), wobei die Trennwände in dem dargestellten Ausführungsbeispiel etwa kreiszylindrische Rohrabschnitte unterschiedlicher Länge bilden, deren Länge nach radial außen gleichmäßig abnimmt, so daß der Strömungsquerschnitt des Strömungskanals 22 nach radial außen hin auch in Achsrichtung zunehmend größer wird. Bei dieser Ausführungsform des Strömungskanals 22 weist das durch diesen strömende Gemisch aus Treibmittel und zu förderndem Medium neben der radialen eine axiale Strömungskomponente auf. Dies gilt auch für eine Ausführungsform, bei der Wandungsteil 22E gemäß der strichdoppeltpunktierten Linie in Fig. 1 parallel zum Wandungsteil 22F verläuft. Es ist jedoch ebenfalls möglich, die axiale Strömungskomponente dadurch vollständig zu eliminieren, daß der Wandungsteil 22F entlang der strichpunktierten Linie in Fig. 1 verlaufend und der Wandungsteil 22E zu diesem parallel angeordnet sind. In diesem Falle herrscht in dem Strömungskanal 22 eine reine Radialströmung. Durch eine Ausgestaltung des Wandungsteils 22E gemäß der gestrichelten Linie in Fig. 1, wodurch der Strömungskanal 22 Sich in Richtung nach radial außen nach oben erweitert, kann zusätzlich die Fliehkraft für das Treibmedium ausgenutzt werden, wodurch sich gegebenenfalls der Wirkungsgrad der Ejektorpumpe erhöhen läßt.
  • Weitere Gestaltungsmöglichkeiten des Strömungskanals 22 sind in den Fig. 6 und 7 dargestellt. Bei dem in der linken Hälfte von Fig. 6 dargestellten Strömungskanal 22 ist der Wandungsteil 22F nach radial außen hin nach unten geneigt, so daß die Strömung eine axiale Komponente umfaßt. Durch den konvex gewölbten Wandungsteil 22E wird eine Fliehkraftnutzung für das Treibmedium angestrebt. Im Gegensatz hierzu weist der auf der rechten Seite von Fig. 6 dargestellte Strömungskanal eine kegelige, nach radial außen hin nach unten geneigte Oberfläche auf, so daß die Fliehkraftnutzung unterbleibt. Es ist also ohne weiteres möglich, die Geometrie des Strömungskanals 22 durch den Einsatz verschiedener Wandungsteile 22E an unterschiedliche Treibmedien und/oder zu fördernde Fluide anzupassen.
  • Während bei den bisher beschriebenen Ausführungsformen der Wandungsteil 22F zwar teils geneigt, jedoch plan ausgeführt war, kann aber auch ein gekrümmter Verlauf vorteilhaft sein, wie er in Fig. 7 dargestellt ist. In diesem Fall weisen die Ejektorscheibe 1 und die Ejektorringe 1-4 eine konvex, gekrümmte Oberfläche auf. Auch kann die Oberfläche der Ejektorringe in einer wie in Fig. 5 dargestellten oder ähnlichen Weise gewellt sein, so daß von den Ejektorringen 1 bis 4 radial nach außen weisende Strömungsmulden 41 gebildet werden, die eine ausrichtende Wirkung auf die im Strömungskanal 22 herrschende Strömung ausüben. Auch kann vorteilhaft sein, wie in Fig. 8 dargestellt, die zur Saugkammer 15 bis 18 weisende Unterseite 42 der Ejektorringe 2 bis 4 bzw. der Ejektorscheibe 1 konkav auszubilden und/oder die den Durchtrittsspalten 22D zugewandten Kanten 43 der Ejektorringe 2 bis 4 abzurunden, wodurch die Ausströmrichtung des durch dies Durchtrittsspalten strömenden zu fördernden Fluids beeinflußt werden und die Wirbelbildung in der Mischzone 228 verringert werden kann.
  • Die Trennwände 25A bis 25D und ein die Ejektorscheibe 1 tragendes, ebenfalls als Trennwand dienendes Sockelelement 25E schließen zwischeneinander ringförmige Saugkammer 15 bis 18 ein. Die Trennwand 26D weist Durchbrechungen 28 bis 31 als Zutrittsöffnungen des zu fördernden Mediums von der Vorkammer 7 in die Saugkammern 15 bis 18 auf. Die Durchbrechungen können umfangsverteilt angeordnet und zumindest teilweise mit Rückschlagklappen 8 bis 12 versehen sein. Diese Rückschlagklappen sind hinsichtlich ihrer Funktion und Anordnung bei Ejektorpumpen bekannt (z. B. FR-A1-2 577 284). - Sie dienen bei mehrstufigen Ejektorpumpen dazu, ein verbessertes Vakuum zu erhalten, indem die Saugkammern, die nur einen relativ geringen Unterdruck erzeugen können, bei Erreichen dieses ihres Unterdruckes von den anderen Stufen, die einen höheren Unterdruck erzeugen können, mechanisch getrennt werden. Dies beginnt mit der letzten und endet in der Regel mit der zweiten Saugstufe.
  • Die radial äußeren Kanten der Ejektorscheibe 1 bzw. der Ejektorringe 2 bis 4 bilden mit der Radialinnenkante des jeweils radial außen liegend benachbarten Ejektorringes 2 bis 5 einen eine Engstelle bildenden Durchtrittsspalt 22D für das zu fördernde Fluid von der jeweiligen Saugkammer in den Strömungskanal 22. Die Durchtrittsspalte 22D sind in den dargestellten und insoweit bevorzugten Ausführungsbeispielen jeweils ringförmig. Sie können - zumindest bei den Ausführungsbeispielen nach Fig. 1 und 2 - grundsätzlich aber auch aus umfangsverteilten Durchbrechungen bestehen. Bei dem in Fig. 5 dargestellten Ausführungsbeispiel, bei welchem die Ejektorringe 2 bis 4 sowie die Ejektorscheibe 1 Strömungsmulden 41 umfassen, weisen die Durchtrittsspalte 22D sich periodisch erweiternde und verengende Struktur auf.
  • Als Eintrittsdüse des Treibmediums in den Strömungskanal 22 dient die ringförmige Düse 22A, welche von der Ejektorscheibe 1 und dem der Ejektorscheibe 1 gegenüberliegenden zentralen Bereich der Trennwand 6 gebildet wird. Bei den einzelnen Ejektorringen 2 bis 5 dient jeweils der radial außen liegende Bereich als Diffusor 22C und der radial innen liegende Bereich des Ejektorringes als Mischzone 228.
  • In dem in Fig. 2 dargestellten Ausführungsbeispiel sind die beiden axial einander gegenüberliegenden Wandungsteile 22E und 22F des Strömungskanals 22 in etwa spiegelsymmetrischer Weise aufgebaut und mit Saugkammern versehen. In diesem Fall erfolgt der Auslaß des Treibmediums und des zu fördernden Mediums aus dem Strömungskanal 22 nach radial außen.
  • Bei dem Ausführungsbeispiel nach Fig. 3 und 4 sind die Ejektorringe und die Ejektorscheibe axial verstellbar. Zu diesem Zweck weisen die die Ejektorringe tragenden Trennwände 25A und 25B an ihrem dem Ejektorring gegenüberliegenden Ende einen kreisringförmigen Wandungsbereich 25D und 25E auf, welcher radial innen von je einem Rohr 32 bzw. 33 getragen wird. Auch die Ejektorscheibe 1 wird von einem Rohr (Rohr 34) getragen und das Gehäuse 26 weist einen zentralen Rohrstutzen 35 auf. Das Rohr 34 weist auf seinem Außenumfang ein Schraubengewinde auf, welches mit einem Innengewinde korrespondiert, das an dem Rohr 32 vorgesehen ist. Das Rohr 32 trägt ebenfalls ein Außengewinde, was wiederum mit einem Innengewinde des Rohres 33 korrespondiert und das Rohr 33 trägt ein Außengewinde, welches mit einem Innengewinde des Rohrstutzens 35 korrespondiert. Auf diese Weise sind alle Rohre 32, 33, 34, 36 und der Rohrstutzen 35 und mit ihnen die von ihnen getragene Ejektorscheibe bzw. die Ejektorringe teleskopähnlich in Axialrichtung der Pumpe durch Verdrehen teleskopierbar.
  • In der Fig. 3 ist in der linken Bildhälfte eine Relativposition der Ejektorringe und der Ejektorscheibe dargestellt, wie sie den Ausführungsbeispielen der Fig. 1 und 2 entspricht, während in der rechten Bildhälfte der Fig. 3 die Ejektorringe so verstellt sind, daß der Querschnitt des Strömungskanals 22 der radial außen hin sich stark erweitert.
  • Je nach Treibmedium (Gas-, Flüssigkeits-, Dampfstrahl) läßt sich der Querschnitt des Strömungskanals und damit der Durchsatz an zu förderndem Fluid und der Energieverbrauch einstellen.
  • Bei allen Ausführungsformen wird die zentral liegende Ejektorscheibe über den zentralen Einlaß 13 mit dem Treibmedium beaufschlagt, das dann nach radial außen strömt und hierbei Unterdrücke in unterschiedlicher Höhe - abhängig von der Geometrie der einzelnen Ejektorringe und der Ringe zueinander - zwischen den einzelnen Ejektorscheiben erzeugt, wobei unterschiedliche Saugwirkungen an den Durchtrittsspalten 22D entstehen.
  • Im übrigen können im Rahmen der Erfindung auch Ejektorringsegmente an Stelle vollständiger Ejektorringe verwendet werden.
  • In Fig. 9 ist eine weitere Ausführungsform einer Ejektorpumpe dargestellt, bei welcher - in Strömungsrichtung gesehen - jeweils auf gleicher Höhe mit den Durchtrittsspalten 22D Strömungsleitprofile 37, 38, 39 im Strömungskanal 22 angeordnet sind. Die Strömungsleitprofile 37 bis 39 weisen einen symmetrischen, tragflügelähnlichen Querschnitt auf und sind derart orientiert, daß die runden Kopfseiten in Richtung des Ejektorpumpenzentrums weisen, d. h. dem anströmenden Fluid zugewandt sind, die spitzen Schwanzseiten in Strömungsrichtung weisen. Die Strömungsleitprofile 37 bis 39 werden an vertikalen, die Radialejektorpumpe in Kreissegmente unterteilenden Trennwänden 40 gehalten. Durch den Einsatz derartiger Strömungsleitprofile 37 bis 39 bzw. Trennwände 40, die im übrigen auch einzeln eingesetzt werden können, wird das im Strömungskanal 22 befindliche Gemisch aus Treibmedium und zu förderndem Fluid teilweise in seiner Richtung abgelenkt, wodurch einerseits die Wirbelbildung - insbesondere in den Mischzonen 228 -, andererseits durch eine verbesserte Strömung die Restenergie des Treibmediums verringert werden kann.
  • Bezugszeichenliste:
  • 1
    Ejektorscheibe
    2
    Ejektorring
    3
    Ejektorring
    4
    Ejektorring
    5
    Ejektorring
    6
    Trennwand
    7
    Vorkammer
    8
    Rückschlagklappe
    9
    Rückschlagklappe
    10
    Rückschlagklappe
    11
    Anströmkammer
    12
    Schalldämpfer
    13
    Einlaß
    14
    Auslaß
    14
    A Bohrungen
    15
    Saugkammer
    16
    Saugkammer
    17
    Saugkammer
    18
    Saugkammer
    19
    Blende
    20
    Feststoffilter
    22
    Strömungskanal
    22A
    Düse
    22B
    Mischzone
    22C
    Diffusor
    22D
    Durchtrittsspalt
    22E
    Wandungsteil
    22F
    Wandungsteil
    23
    Einlaß
    25A
    Trennwand
    25B
    Trennwand
    25C
    Trennwand
    25D
    Trennwand
    25E
    Trennwand
    26
    Gehäuse
    26A
    Bodenteil
    26B
    Ejektortragteil
    26C
    Deckelteil
    26D
    Trennwand
    27
    Rohrstutzen
    28
    Durchbrechungen
    29
    Durchbrechungen
    30
    Durchbrechungen
    31
    Durchbrechungen
    32
    Rohr
    33
    Rohr
    34
    Rohr
    35
    Rohrstutzen
    36
    Rohr
    37
    Strömungsleitprofil
    38
    Strömungsleitprofil
    39
    Strömungsleitprofil
    40
    Trennwand
    41
    Strömungsmulde
    42
    Unterseite

Claims (24)

  1. Mehrstufige Ejektorpumpe (100) zum Saugen und/oder Fördern strömungsfähiger Stoffe oder Stoffgemische mit Hilfe eines fluiden Treibmediums mit einem Gehäuse (26),
    - mit mindestens einem Einlaß (27) für das Treibmedium,
    - mit mindestens einem Einlaß (23) für den strömungsfähigen Stoff oder das Stoffgemisch,
    - mit mindestens einem Strömungskanal (22) für die Mischung und gemeinsame Durchströmung von Treibmedium und strömungsfähigem Stoff oder Stoffgemisch mit mindestens einer Düse (22A), mehreren Mischzonen (22B) und mehreren Diffusoren (22C),
    - mit mindestens einer Saugkammer (15,16,17 oder 18) je Pumpenstufe, die, ggf. über eine gemeinsame Vorkammer (7), mit dem Einlaß (23) für den strömungsfähigen Stoff einerseits und dem Strömungskanal (22) andererseits fluidisch verbunden sind,
    wobei als fluidische Verbindung zum Strömungskanal (22) mindestens ein eine Engstelle bildender Durchtrittsspalt (22D) für den strömungsfähigen Stoff oder das Stoffgemisch vorgesehen ist, und
    - mit mindestens einem gemeinsamen Auslaß (14) für das Treibmedium und den strömungsfähigen Stoff oder das Stoffgemisch,
       dadurch gekennzeichnet,
    daß der Strömungskanal (22) ringförmig und für eine von radial innen nach radial außen gerichtete Durchströmung ausgebildet ist, wobei die Strömungskanalwandung im wesentlichen von zwei einander mit axialem Abstand gegenüberliegenden, etwa scheibenförmigen oder ringscheibenförmigen Wandungsteilen (22E und 22F) gebildet werden und
    daß zumindest eines der beiden Wandungsteile (22E, 22F) aus etwa konzentrisch zueinander angeordneten, die Durchtrittsspalte (22D) für den strömungsfähigen Stoff oder das Stoffgemisch bildenden oder aufweisenden Ejektorringen (2, 3, 4, 5) besteht, welche den Strömungskanal (22) und die Saugkammern (15 bis 18) räumlich voneinander trennen.
  2. Mehrstufige Ejektorpumpe nach Anspruch 1, dadurch gekennzeichnet, daß die Saugkammern (15 bis 18) ringförmig sind.
  3. Mehrstufige Ejektorpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Ejektorringe (2 bis 5) mit im Winkel zu ihnen orientierten, insbesondere zylindrischen und/oder konischen Trennwänden (25A bis 25E) zum Abtrennen benachbarter Saugkammern (15 bis 18) voneinander versehen sind.
  4. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Ejektorringe (2 bis 5) in axialer Richtung verstellbar am bzw. bezüglich des Gehäuses (26), befestigt sind.
  5. Mehrstufige Ejektorpumpe nach Anspruch 4, gekennzeichnet durch teleskopähnlich ineinander verlaufende Rohre (32 bis 35) zur Axialverstellung der Ejektorringe (2 bis 5).
  6. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Ejektorringe (2 bis 5) einstückig mit Trennwänden (25A bis 25E) zu Abtrennen benachbarter Saugkammern (15 bis 18) voneinander versehen sind.
  7. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Grundrißform der Ejektorringe kreisringförmig ist.
  8. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die auf die Achsrichtung des Strömungskanals (22) bezogenen Neigungswinkel der Mischzone (22B) und der Diffusoren (22C) unterschiedlich sind.
  9. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Oberfläche der Ejektorringe (2 bis 5) Mittel zur lokalen Querschnittsveränderung des Strömungskanals (22), wie eine gewellte Oberfläche, aufweisen.
  10. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß seitlich der Ejektorringe (2 bis 5) strömungsleitprofile (37 bis 39) insbesondere mit Tragflügel ähnlichem Querschnitt mit in Richtung des Ejektorpumpenzentrums weisenden runden Kopfseiten, angeordnet sind.
  11. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 10, gekennzeichnet durch eine im Einlaß (13) für das Treibmedium vorgesehene Blende (19) zur vorverteilung des Treibmediums über den gesamte Eintrittquerschnitts.
  12. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 11, gekennzeichnet durch Auslaßöffnungen (14A) in Strömungsrichtung nachgeschaltete Schalldämpfer (12).
  13. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 12, gekennzeichnet durch ein Ejektortragteil, bestehend aus einem zylindrischen Wandungsteil (26B) und einem kreisscheibenförmigen Wandungsteils (26D).
  14. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Strömungsquerschnitt des Strömungskanals (22) nach außen hin auch in Achsrichtung zunehmend größer wird.
  15. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die einander gegenüberliegenden Wandungsteile (22E und 22F) des Strömungskanals (22) einen, insbesondere konvex, gekrümmten Verlauf haben.
  16. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Geometrie des Strömungskanals (22) durch den Einsatz verschiedener Wandungsteile (22E) an unterschiedliche Treibmedien und/oder zu fördernde Fluide anpassbar ist.
  17. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die in den Saugkammern (15 bis 18) weisenden Unterseiten (42) der Ejektorringe (2 bis 4) beziehungsweise der Ejektorscheibe (1) konkav ausgebildet sind.
  18. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die den Durchtrittsspalt (22D) zugewandten Kanten (43) der Ejektorringe (2 bis 4) abgerundet sind.
  19. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Durchtrittsspalte (22D) zwischen den Saugkammer (15 bis 18) und dem Strömungskanal (22) aus umfangsverteilten Durchbrechungen bestehen oder sich eine periodisch erweiternde und verengende Struktur aufweisen.
  20. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Ejektorringe (2 bis 4) sowie die Ejktorscheibe (1) Strömungsmulden (41) aufweisen.
  21. Mehrstufige Ejektorpumpe nach einem der Ansprüche 1 bis 20, gekennzeichnet, durch Ejektorringsegmente anstelle vollständiger Ejektorringe.
  22. Mehrstufige Ejektorpumpe (100) zum Saugen und/oder Fördern strömungsfähiger Stoffe oder Stoffgemische mit Hilfe eines fluiden Treibmediums mit einem Gehäuse (26),
    - mit mindestens einem Einlaß (27) für das Treibmedium,
    - mit mindestens einem Einlaß (23) für den strömungsfähigen Stoff oder das Stoffgemisch,
    - mit mindestens einem Strömungskanal (22) für die Mischung und gemeinsame Durchströmung von Treibmedium und strömungsfähigem Stoff oder Stoffgemisch mit mindestens einer Düse (22A), mehreren Mischzonen (22B) und mehreren Diffusoren (22C),
    - mit mindestens einer Saugkammer (15,16,17 oder 18) je Pumpstufe, die, ggf. über eine gemeinsame Vorkammer (7), über den Einlaß (23) für den strömungsfähigen Stoff einerseits und mit dem Strömungskanal (22) andererseits fluidisch verbunden sind,
    - mit mindestens einem gemeinsamen Auslaß (14) für das Treibmedium und den strömungsfähigen Stoff oder das Stoffgemisch,
       dadurch gekennzeichnet,
    daß der Strömungskanal (22) ringförmig und für eine von radial innen nach radial außen gerichtete Durchströmung ausgebildet ist, wobei die Strömungskanalwandungen im wesentlichen von zwei zueinander mit axialem Abstand gegenüberliegenden, etwa scheibenförmigen oder ringscheibenförmigen Wandungsteilen (22E und 22F) gebildet werden und
    daß die die Mischzone (22B) und den Diffusor (22C) einer oder mehrerer Pumpenstufen aufweisenden Wandungsbereiche des Strömungskanals (22) bezüglich der anderen Wandungsbereiche des Strömungskanals (22) axial verstellbar sind.
  23. Mehrstufige Ejektorpumpe nach Anspruch 22, dadurch gekennzeichnet, daß die Saugkammern ringförmig sind.
  24. Mehrstufige Ejektorpumpe nach Anspruch 22 oder 23, gekennzeichnet durch teleskopähnlich ineinander verlaufende Rohre zur Axialverstellung der verschiedenen Wandungsbereiche des Strömungskanals (22) zueinander.
EP93917751A 1992-08-06 1993-08-05 Mehrstufige ejektorpumpe Expired - Lifetime EP0654125B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE9210496U DE9210496U1 (de) 1992-08-06 1992-08-06 Mehrstufige Ejektorpumpe
DE9210496U 1992-08-06
PCT/EP1993/002085 WO1994003733A1 (de) 1992-08-06 1993-08-05 Mehrstufige ejektorpumpe

Publications (2)

Publication Number Publication Date
EP0654125A1 EP0654125A1 (de) 1995-05-24
EP0654125B1 true EP0654125B1 (de) 1997-06-18

Family

ID=6882379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93917751A Expired - Lifetime EP0654125B1 (de) 1992-08-06 1993-08-05 Mehrstufige ejektorpumpe

Country Status (6)

Country Link
US (1) US5584668A (de)
EP (1) EP0654125B1 (de)
JP (1) JP2913117B2 (de)
AT (1) ATE154669T1 (de)
DE (2) DE9210496U1 (de)
WO (1) WO1994003733A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153096A1 (de) 2012-04-10 2013-10-17 J. Schmalz Gmbh Pneumatischer vakuumerzeuger mit treibdüse und empfängerdüse

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9210497U1 (de) * 1992-08-06 1993-12-09 Volkmann, Thilo, 59514 Welver Ejektorpumpe
WO2010073663A1 (ja) * 2008-12-24 2010-07-01 東保 ハイブリッド・エアー循環回路
US9328702B2 (en) 2013-10-24 2016-05-03 Ford Global Technologies, Llc Multiple tap aspirator
EP3166826A4 (de) 2014-07-10 2018-03-28 Dayco IP Holdings, LLC Doppelventurivorrichtung
US10273978B2 (en) * 2014-08-27 2019-04-30 Dayco IP, Holdings LLC Low-cost evacuator for an engine having tuned Venturi gaps
US10151283B2 (en) 2015-02-25 2018-12-11 Dayco Ip Holdings, Llc Evacuator with motive fin
PL426033A1 (pl) 2018-06-22 2020-01-02 General Electric Company Płynowe pompy strumieniowe parowe, a także układy i sposoby porywania płynu przy użyciu płynowych pomp strumieniowych parowych
RU2705695C1 (ru) * 2018-10-30 2019-11-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ангарский государственный технический университет" Способ эжектирования потока и устройство для его осуществления

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL962C (nl) * 1913-10-03 1916-01-03 Tijen Van Hendrik Wouter Compressor met hulpvloeistof voor gassen of dampen
FR639208A (fr) * 1927-01-15 1928-06-16 Anciens Ets Sautter Harle Tuyère pour compresseur-mélangeur à jet canalisé
FR639397A (fr) * 1927-01-18 1928-06-20 Anciens Ets Sautter Harle Compresseur-mélangeur pour fortes compressions
US3352348A (en) * 1966-06-03 1967-11-14 Jerome G Daviau Vacuum evaporator of the ejector pump type
US4048798A (en) * 1975-10-01 1977-09-20 Larkins Jr John S Suction power-driven air turbine
FR2397870A1 (fr) * 1977-07-18 1979-02-16 Coorens Antoine Appareils a jet pour l'aspiration, la compression et le melange de fluides
SE427955B (sv) * 1980-05-21 1983-05-24 Piab Ab Multiejektor
SE455220B (sv) * 1983-06-03 1988-06-27 Svenska Rotor Maskiner Ab Ejektorpump med ett ringformat vesentligen radiellt utat riktat munstycke
JPS614900A (ja) * 1984-06-18 1986-01-10 Shoketsu Kinzoku Kogyo Co Ltd エゼクタ装置
IL74282A0 (en) * 1985-02-08 1985-05-31 Dan Greenberg Multishaft jet suction device
FR2577254B1 (fr) * 1985-02-08 1987-04-10 Presto Robinets Sa Perfectionnement aux dispositifs de fixation de robinets sur une paroi
ATE111569T1 (de) * 1987-06-29 1994-09-15 Thilo Volkmann Strahlpumpe.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153096A1 (de) 2012-04-10 2013-10-17 J. Schmalz Gmbh Pneumatischer vakuumerzeuger mit treibdüse und empfängerdüse
DE212013000051U1 (de) 2012-04-10 2014-09-11 J. Schmalz Gmbh Pneumatischer Vakuumerzeuger mit Treibdüse und Empfängerdüse

Also Published As

Publication number Publication date
DE9210496U1 (de) 1993-12-02
JP2913117B2 (ja) 1999-06-28
US5584668A (en) 1996-12-17
WO1994003733A1 (de) 1994-02-17
EP0654125A1 (de) 1995-05-24
DE59306796D1 (de) 1997-07-24
ATE154669T1 (de) 1997-07-15
JPH08502110A (ja) 1996-03-05

Similar Documents

Publication Publication Date Title
DE69531806T2 (de) Gasturbinenbrennkammer
EP0213329B1 (de) Zerstäubungsvorrichtung
EP0673469B1 (de) Spiralgehäuse für turbomaschinen
DE2656151C2 (de) Vorrichtung zum Abtrennen von Festkörperverunreinigungen aus einem Gasstrom
DE2818791A1 (de) Wirbelrohr fuer zyklonabscheider
DE3309268C2 (de)
EP0654125B1 (de) Mehrstufige ejektorpumpe
EP1062048B1 (de) Verfahren zum verändern der drallbewegung eines fluids in der drallkammer einer düse und ein düsensystem
EP2773854B1 (de) Strömungsmaschine
DE3103842A1 (de) Wirbelkammerfilter zum ausscheiden von feststoffen aus einem gasstrom
EP1384516A2 (de) Turbinenmotor eines Rotationszerstäubers
EP0654124B1 (de) Ejektorpumpe
DE2422362B2 (de) Ringbrennkammer für ein Gasturbinentriebwerk
DE202016102385U1 (de) Zyklon und Tauchrohr zur Separation von Partikeln aus einem Gas
WO2016062610A1 (de) Strahlpumpe
DE7600607U1 (de) Schalldaempfer auf der ansaugseite eines verdichters mit mehreren daempfungselementen
DE102018124654B4 (de) Einrichtung zum Abscheiden von Partikeln aus einem Gasstrom, Partikelabscheider und Kurbelgehäuseentlüftungssystem
DE6917863U (de) Stroemungssteuervorrichtung.
DE102018124652B4 (de) Einrichtung zum Abscheiden von Partikeln aus einem Gasstrom, Partikelabscheider und Kurbelgehäuseentlüftungssystem
DE3537906A1 (de) Zyklon-abscheider
DE1279538B (de) Zentrifugalabscheider
EP0267285A1 (de) Gas-flüssigkeitstrennvorrichtung
EP1549838A1 (de) Zentrifuge, insbesondere zur abscheidung von russ aus einem abgasstrom einer brennkraftmaschine
DE968101C (de) Einrichtung an radialen Kreiselverdichtern und -pumpen zur Umsetzung von kinetischer Energie des Stroemungsmittels in Druckenergie
DE7601034U1 (de) Direkt-dampf-injektionsgeraet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19951227

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 154669

Country of ref document: AT

Date of ref document: 19970715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59306796

Country of ref document: DE

Date of ref document: 19970724

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970922

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980825

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980826

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

BERE Be: lapsed

Owner name: VOLKMANN THILO

Effective date: 19990831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030825

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040806

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070828

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070821

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080805

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121023

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59306796

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130806