EP0650592A1 - Dispositif d'etablissement du profil de la masse volumique apparente dans le sens de l'epaisseur d'un panneau - Google Patents

Dispositif d'etablissement du profil de la masse volumique apparente dans le sens de l'epaisseur d'un panneau

Info

Publication number
EP0650592A1
EP0650592A1 EP94916230A EP94916230A EP0650592A1 EP 0650592 A1 EP0650592 A1 EP 0650592A1 EP 94916230 A EP94916230 A EP 94916230A EP 94916230 A EP94916230 A EP 94916230A EP 0650592 A1 EP0650592 A1 EP 0650592A1
Authority
EP
European Patent Office
Prior art keywords
radiation
workpiece
bulk density
thickness
density profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94916230A
Other languages
German (de)
English (en)
Inventor
Thomas Warnecke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grecon Greten GmbH and Co KG
Fagus Grecon Greten GmbH and Co KG
Original Assignee
Grecon Greten GmbH and Co KG
Fagus Grecon Greten GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grecon Greten GmbH and Co KG, Fagus Grecon Greten GmbH and Co KG filed Critical Grecon Greten GmbH and Co KG
Publication of EP0650592A1 publication Critical patent/EP0650592A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/16Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • a sample cut from a particle board or fibreboard is moved through a gamma ray of a measuring device (p. 1367, Fig. 2).
  • the gamma ray runs at right angles to a narrow surface of the sample and penetrates the sample over its entire length.
  • This is a laboratory device.
  • the samples are taken from the ongoing plate production and measured. Disadvantages are the destruction of plates for sampling and the long time until the bulk density profile is available. The production can only be readjusted with a corresponding delay.
  • Another disadvantage is that the bulk density profile only results as an average over the entire length of the sample.
  • the object of the invention is to create the bulk density profile of the workpiece faster and more precisely.
  • Electromagnetic radiation for example X-ray or gamma radiation or microwaves, is suitable as radiation, but also corpuscular rays such as Alpha, beta or neutron radiation as well as radiation from accelerated electrons, but also ultrasonic waves. In any case, the scattering of this radiation is detected. If the bulk density of the workpiece is greater, the spread is greater and vice versa.
  • the determination of the bulk density is no longer restricted to the narrow surfaces of the plate.
  • non-destructive measurements can be carried out at any point on the plate.
  • the workpiece itself can be both the known sample cut out of a plate and the entire plate itself. In the latter case, an entire plate can be branched off from the manufacturing process and examined non-destructively to create one or more bulk density profiles.
  • the raw density profile it is also particularly advantageous for the raw density profile to be created on the plates themselves in a non-destructive manner and also at any number of locations on a plate, that is to say during the production process. In all of these cases, the density profile is comparatively quickly and reliably created. In this way, error tendencies in the manufacturing process can be located and eliminated at an early stage. This leads to a considerable improvement in the quality of the workpieces while reducing the number of rejects.
  • the radiation sources according to claim 3 preferably have increasing energy in the order in which they act on the target location. In this case, the creation of a bulk density profile is facilitated by forming the difference.
  • the radiation sources can be set relatively easily on the associated detector.
  • the radiation source can be controlled continuously or in stages. In all cases, the bulk density profile is obtained very quickly and reliably. All types of radiation are suitable for this, with the exception of gamma radiation.
  • the intensity and / or frequency of the ultrasound transmitter can be controllable.
  • FIG. 1 shows a schematic representation of a first embodiment of the device
  • Fig. 3 is a schematic view of yet another embodiment of the device.
  • Fig. 4 shows a typical bulk density profile.
  • FIG. 1 schematically shows a device 1 for creating a bulk density profile over the thickness 2 of a plate-shaped workpiece 3, e.g. a chipboard or fibreboard.
  • the workpiece 3 is moved through the device 1 in a direction of movement 4.
  • a first radiation is generated by a first radiation source 5 6 directed at a first target location 7 on the surface of the workpiece 3.
  • the first radiation 6 is of low energy so that it penetrates into the workpiece 3 essentially to a relatively small first depth 8.
  • a first backscatter 9 is collected by a first detector 10 and converted into an electrical signal, which is fed via a first line 11 to a device 12 for creating the bulk density profile.
  • the first radiation is shown as a line in FIG. 1.
  • the cross-sectional area of the first radiation 6 and the second radiation 13 and third radiation 14 to be described below can be designed in a punctiform, slit-shaped or flat manner in any way.
  • the device 1 In the direction of movement 4, the device 1 has a second radiation source 15 behind the first detector 10, which directs the second radiation 13 to a second target location 16 on the surface of the workpiece 3.
  • the second radiation 13 is of higher energy than the first radiation 6 and therefore penetrates into the workpiece 3 to a greater second depth 17.
  • a second backscatter 18 is captured by a second detector 19 and converted into an electrical signal which is fed into the device 12 via a second line 20.
  • the second target location 16 was previously located at the location at which the first target location 7 is arranged in FIG. 1.
  • the backscatter signal obtained there has been stored in the device 12 and is now available for difference formation with that from the second Backscattering 18 obtained signal available.
  • a statement about the bulk density in the second depth 17 can then be obtained from this difference formation.
  • the device 1 In the direction of movement 4 after the second detector 19, the device 1 has a third radiation source 21 which directs the third radiation 14 to a third target location 22 on the surface of the workpiece 3.
  • the third radiation 14 is again of greater energy than the second radiation 13 and therefore penetrates to an even greater third depth 23 in the workpiece 3.
  • the third target location 22 has previously been checked at the position at which the second target location 16 is located in FIG. 1.
  • the backscatter signal from the second backscatter 18 created there was again stored in the device 12 and can now be used to form the difference with the signal that results from the third backscatter 24 in FIG. 1. In this way too, the difference in density can be used to infer the bulk density value in the third depth 23.
  • the device 12 is in a known manner, not shown, with peripheral devices such as a viewing screen or a plotter, so that the desired density profile over the thickness 2 of the workpiece 3 can be determined successively point by point and made visible or printed out.
  • peripheral devices such as a viewing screen or a plotter
  • four radiation sources 27 to 30 are arranged on a turret 31, which can be pivoted about a longitudinal axis 33 in the direction of an arrow 32.
  • the radiation sources 27 to 30 send radiation of increasing energy to a target location 34 on the surface of the workpiece 3 in this order. Depending on their energy, this radiation penetrates the workpiece 3 more or less deeply to depths 35 to 38.
  • the associated backscatter is collected by assigned detectors 39 to 42 and converted into electrical signals in the manner described above and fed to the device 12 according to FIG. 1.
  • the radiation source 28 In the operating position shown in FIG. 2, the radiation source 28 is active and sends its radiation 43 down to the depth 36 of the workpiece 3.
  • the backscatter 44 is picked up by the detector 40 and converted into an electrical signal in the manner mentioned.
  • the turret 31 is pivoted further by one division until the radiation source 29, which is hidden behind the radiation source 27 in FIG. 2, is in the lower operating position and can then transmit its radiation down to the depth 37.
  • All depths 35 to 38 are measured in a similar manner and a raw density profile over the thickness 2 of the workpiece 3 is created by forming the difference in accordance with the previously described exemplary embodiment.
  • the advantage with the embodiment according to FIG. 2 is that all depth measurements can be carried out very quickly in succession in a single position of the workpiece 3, preferably when it is at a standstill.
  • the device 1 according to FIG. 3 manages with only one radiation source 45, in which, however, the level of the radiation energy can be controlled.
  • the radiation source 45 In the position of the radiation source 45, drawn with solid lines in FIG. 3, it emits the first radiation 6 with the lowest energy down to the first depth 8. This takes place at a first radiation angle 46 to the surface 47 containing the target location 34 of the workpiece 3.
  • the associated first backscatter 9 is collected by a detector 48 and converted into an electrical signal, which in turn is fed to the device 12 according to FIG. 1.
  • the radiation source 45 in FIG. 3 is moved to the right into the next dash-dotted position in which the second radiation 13 of controlled higher energy level than the first radiation 6 is directed onto the target location 34.
  • the second radiation 13 penetrates to the second depth 17 and results in the second backscatter 18, which in turn is captured by the detector 48 and subsequently evaluated.
  • the radiation source 45 is then moved once more in FIG. 3 to the right into the subsequent dash-dotted position in which it directs the third radiation 14 from the energy level, which has been increased again in a controlled manner, to the target location 34.
  • the third radiation 14 penetrates to the third depth 23 and leads to the third backscatter 24, which is again picked up by the detector 48 and subsequently evaluated.
  • Thieves- Drive positions of the radiation source 45 for measuring the depths 17, 23 are characterized by a second angle of incidence 49 and a third angle of incidence 50.
  • the detectors for the respective backscattering can be designed in any suitable manner.
  • FIG. 4 shows a typical bulk density profile 51 over the thickness 2 of the workpiece, in this case a chipboard.
  • An average value 52 of the bulk density is also drawn in with a dashed horizontal line.
  • the maxima 53 and 54 of the bulk density profile 51 are, as desired, far out, where particularly high bulk density values are sought in the area of the top layers of the workpiece 3.
  • the zones in FIG. 4 to the left of the maximum 53 and to the right of the maximum 54 are later removed in the usual manner by grinding or calibration grinding, so that the maxima 53, 54 of the bulk density are actually on the outer surfaces of the workpiece 3.
  • Fig. 4 also shows that one can get by with relatively low bulk density values in the middle layer of the chipboard arranged between the two cover layers.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

Un dispositif (1) comprend des sources de rayonnement (5, 15, 21) situées les unes après les autres dans le sens de déplacement (4) d'une pièce (3) en forme de panneau. Ces sources émettent un rayonnement (6, 13, 14) d'énergie croissante en direction d'un point cible (7, 16, 22) de la pièce (3). Le rayonnement pénètre par conséquent jusqu'à des profondeurs (8, 17, 23) de plus en plus grandes dans l'épaisseur (2) de la pièce (3). Les rayonnements rétrodiffusés correspondants (9, 18, 24) sont captés par des détecteurs (10, 19, 25) et convertis en signaux électriques qui sont tansmis à un dispositif (12) d'établissement du profil de la masse volumique apparente.
EP94916230A 1993-05-13 1994-05-13 Dispositif d'etablissement du profil de la masse volumique apparente dans le sens de l'epaisseur d'un panneau Withdrawn EP0650592A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4315988 1993-05-13
DE4315988A DE4315988C2 (de) 1993-05-13 1993-05-13 Vorrichtung zur Erstellung eines Rohdichteprofils über die Dicke eines plattenförmigen Werkstücks
PCT/EP1994/001540 WO1994027138A1 (fr) 1993-05-13 1994-05-13 Dispositif d'etablissement du profil de la masse volumique apparente dans le sens de l'epaisseur d'un panneau

Publications (1)

Publication Number Publication Date
EP0650592A1 true EP0650592A1 (fr) 1995-05-03

Family

ID=6487979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94916230A Withdrawn EP0650592A1 (fr) 1993-05-13 1994-05-13 Dispositif d'etablissement du profil de la masse volumique apparente dans le sens de l'epaisseur d'un panneau

Country Status (3)

Country Link
EP (1) EP0650592A1 (fr)
DE (1) DE4315988C2 (fr)
WO (1) WO1994027138A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29706476U1 (de) * 1997-04-11 1998-03-19 Grecon Greten Gmbh & Co Kg Vorrichtung zur Erstellung eines Rohdichteprofils über die Dicke einer Plattenprobe
NZ503953A (en) * 2000-04-12 2002-12-20 Carter Holt Harvey Ltd Apparatus and method for estimating timber stiffness profiles of a log by determining the density profile of a cant
DE10160398B4 (de) 2001-12-10 2004-11-11 Dieffenbacher Gmbh + Co. Kg Verfahren und Vorrichtung zur Prüfung einer Matte aus Biomassepartikeln
DE10211382A1 (de) * 2002-03-14 2003-10-02 Siemens Ag Verfahren und Vorrichtung zur Messung der Qualität von Papier auf einer Papierbahn
ITMO20050341A1 (it) 2005-12-23 2007-06-24 Imal Srl Apparecchiatura per la misura di densita' di manufatti, particolarmente di pannelli in materiale incoerente pressato, e metodo relativo
DK176823B1 (da) 2006-11-22 2009-11-02 Force Technology Fremgangsmåde til tilvejebringelse af densitetsprofilet af et pladeformet legeme
DE102010013765B4 (de) * 2010-03-31 2015-09-10 Fagus-Grecon Greten Gmbh & Co. Kg Verfahren zum Prüfen von in hoher Vielzahl in einem fortlaufenden Prozess hergestellten Holzwerkstücken und Vorrichtung vorzugsweise zur Durchführung dieses Verfahrens
DE102012019533B4 (de) * 2012-10-05 2014-10-30 Fagus-GreCon Greten GmbH und Co. KG Verfahren zum Kalibrieren einer Einrichtung zum Messen der Flächengewichte und Vorrichtung vorzugsweise zum Durchführen des Verfahrens
GB2571099B (en) * 2018-02-15 2022-12-21 Bae Systems Plc Radiation detector
AU2019220603A1 (en) 2018-02-15 2020-08-27 Bae Systems Plc Radiation detector
US11650338B2 (en) 2018-11-23 2023-05-16 Bae Systems Plc Scintillation detector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB846094A (en) * 1956-04-07 1960-08-24 Dunlop Rubber Co Improvements in or relating to weight or composition factor measuring apparatus for sheet materials
FR1340990A (fr) * 1962-09-14 1963-10-25 Realisations Ultrasoniques Sa Procédé et dispositif d'examen du corps humain au moyen d'ultra-sons
DE2544354A1 (de) * 1975-10-03 1977-04-14 Siemens Ag Verfahren zur bestimmung der dichte von koerpern mittels durchdingender strahlen und geraet zu seiner durchfuehrung
NL8302988A (nl) * 1983-08-26 1985-03-18 Dow Chemical Nederland Werkwijze en inrichting voor het niet-destructief keuren van vaste lichamen.
JPS60122367A (ja) * 1983-12-07 1985-06-29 Terumo Corp 超音波測定方法およびその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9427138A1 *

Also Published As

Publication number Publication date
DE4315988C2 (de) 1997-08-21
WO1994027138A1 (fr) 1994-11-24
DE4315988A1 (de) 1994-11-24

Similar Documents

Publication Publication Date Title
EP0311177B1 (fr) Système pour examiner un corps avec une source de rayonnement
EP0571017B1 (fr) Procédé de filtrage pour un système rayons X et agencement pour réaliser ledit procédé de filtrage
EP0209952B1 (fr) Procédé pour la mesure de la répartition spatiale de rayonnement X diffusé élastiquement ainsi que le dispositif pour la mise en oeuvre du procédé
EP0153786B1 (fr) Appareil à rayons X
EP1711800B1 (fr) Procede et dispositif de determination d'un materiau d'objet
DE2729901A1 (de) Dickenmessvorrichtung mit roentgen- oder gammastrahlen
DE102006023309A1 (de) Verfahren und Vorrichtung zur Erkennung von Material mittels Schnellneutronen und eines kontinuierlichen spektralen Röntgenstrahles
DE4214369A1 (de) Verfahren und vorrichtung zum bestimmen der knochenmineraldichte und der knochenstaerke
DE2358237C2 (de) Verfahren zur Bestimmung des Gehalts an mindestens einem chemischen Element in einer Substanz, insbesondere zur Bestimmung des Schwefelgehalts in Kohlenwasserstoff-Brennstoffen
DE4315988C2 (de) Vorrichtung zur Erstellung eines Rohdichteprofils über die Dicke eines plattenförmigen Werkstücks
DE3643764A1 (de) Verfahren zur selektiven fuellstoffmessung an laufenden materialbahnen, insbesondere papierbahnen
CH643359A5 (de) Verfahren zum pruefen von produktproben und anordnung zur durchfuehrung des verfahrens.
DE1220640B (de) Vorrichtung zur fortlaufenden quantitativen Bestimmung von Anteilen je Masseneinheit von Feststoffen
EP0217464B1 (fr) Procédé pour la détermination de l'atténuation photonique dans un domaine d'un corps et dispositif pour la mise en oeuvre du procédé
DE3035929C2 (de) Vorrichtung zur Ermittlung der Volumenanteile eines Mehrkomponentengemisches durch Transmission mehrerer Gammalinien
DE2912210C2 (de) Szintillatoranordnung mit einem Szintillatorkörper von trapezförmigem Querschnitt
WO2003073087A1 (fr) Diffusion de rayons x coherente (cxrs) multifocus simultanee
DE1598841A1 (de) Einrichtung zum Analysieren und/oder Trennen von Gemischen
DE19603000A1 (de) Verfahren zum Kalibrieren einer Anordnung zur Ermittlung des Impulsübertragsspektrums und Kalibriereinheit zur Durchführung des Verfahrens
DE2426794A1 (de) Einrichtung zur strahlungsfeststellung und verfahren zur feststellung des vorhandenseins eines interessierenden elementes in einer probe
DE102007051135A1 (de) Vorrichtung zur Online-Bestimmung des Gehalts einer Substanz und Verfahren unter Verwendung einer solchen Vorrichtung
EP1526376A1 (fr) Méthode et appareil pour déterminer une masse surfacique et/ou une composition chimique d'un échantillon de matériau transporté
DE102009051643B4 (de) Röntgen-Analysegerät und Verfahren zur Röntgenanalyse
DE3616520A1 (de) Verfahren zur feststellung der dichte von unterlagen
EP0627076A1 (fr) Procede et dispositif pour l'obtention d'un profil de masse volumique apparente sur l'epaisseur d"une plaque

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE DK FR GB IT

17Q First examination report despatched

Effective date: 19960808

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19961219