EP0641386A1 - Menschlicher 5ht-1b rezeptor (serotonin rezeptor), verfahren zur herstellung und seine verwendungen - Google Patents

Menschlicher 5ht-1b rezeptor (serotonin rezeptor), verfahren zur herstellung und seine verwendungen

Info

Publication number
EP0641386A1
EP0641386A1 EP93909902A EP93909902A EP0641386A1 EP 0641386 A1 EP0641386 A1 EP 0641386A1 EP 93909902 A EP93909902 A EP 93909902A EP 93909902 A EP93909902 A EP 93909902A EP 0641386 A1 EP0641386 A1 EP 0641386A1
Authority
EP
European Patent Office
Prior art keywords
receptor
leu
ala
ser
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93909902A
Other languages
English (en)
French (fr)
Inventor
Alfred Bach
Liliane Unger
Peter H. Seeburg
Mark 8 Watson Drive Voigt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0641386A1 publication Critical patent/EP0641386A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70571Receptors; Cell surface antigens; Cell surface determinants for neuromediators, e.g. serotonin receptor, dopamine receptor

Definitions

  • the invention relates to a new serotonin receptor and its use, and to methods for finding functional ligands for this receptor.
  • the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) plays an important role in a variety Physiologist ⁇ gic functions in terms of cognitive abilities or even in the area of behavior. Serotonergic disorders
  • Stimulus transmissions are involved in numerous pathological conditions such as depression, migraines, high blood pressure or bulemia.
  • Serotonin exerts its physiological and pathophysiological effect via receptors that bind serotonin with different affinities. These receptors can
  • 5-HT ⁇ 5-HT 2
  • 5-HT 3 5-HT 4
  • 5-HT 4 This subdivision reflects both different receptor coupling and different receptor binding profiles for a number of 5-HT receptor ligands.
  • rodents at least 4 subtypes of the 5-HT ⁇ receptor
  • All 5-HT receptors have a high affinity for serotonin (Ki ⁇ 100 nm) and are coupled to adenylate cyclase or phospholipase C via G proteins.
  • 5-HT ⁇ A 5 serotonin receptors 5-HT ⁇ A , 5-HT ⁇ C have been elucidated in their primary structure.
  • 5-HT ⁇ D -iiite.
  • 5-HT 2 and 5-HT 3 5 serotonin receptors 5-HT ⁇ A , 5-HT ⁇ C have been elucidated in their primary structure.
  • 5-HT ⁇ D -iiite.
  • 5-HT 2 and 5-HT 3 The other subtypes are only described pharmacologically (binding data) or functionally (signal transduction second messenger).
  • a 5-HTi B receptor has so far only been found in rodents; in humans, 5-HT B receptors have so far not been detected pharmacologically or molecular biologically.
  • 5-HT receptor subclass are specific. All known antagonists bind with high affinity to at least one further class of neurotransmitter receptors. In particular With the 5-HT- S receptor, almost no subtype-specific substances are known, so that little has so far been able to say about the physiological importance of this receptor.
  • the task was therefore to clarify the molecular structure of a human 5-HTi B receptor and to provide methods for producing it in high purity. Another object was to provide methods for finding specific functional ligands for this receptor.
  • SEQ ID NO 3 A new human serotonin receptor of class 1 (5-HT 1 B ) has now been found (SEQ ID NO 3), as well as DNA sequences which code for such receptors.
  • SEQ ID NO 3 A cDNA coding for a protein according to the invention is shown in SEQ ID NO 2.
  • DNA sequences are those which have a different nucleotide sequence than that listed in SEQ ID NO 2, but which, due to the degeneracy of the genetic code, code for the polypeptide chain listed in SEQ ID NO 3 or parts thereof. Also suitable are those DNA sequences which code for 5-HT ⁇ B receptors and which, under standard conditions, have the nucleotide sequence shown in SEQ ID NO 2 or a nucleotide sequence which codes for the protein shown in SEQ ID ⁇ O 3, hybridize.
  • the experimental conditions for D ⁇ A hybridization are described in textbooks of genetic engineering, for example in Maniatis et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989.
  • Standard conditions are understood to mean, for example, temperatures between 42 and 58 ° C. in an aqueous buffer solution with a concentration between 0.1 and 1 x SSC (1 x SSC: 0.15M ,aCl, 15mM sodium citrate pH 7.2).
  • the invention also relates to methods for identifying functional ligands for 5-HTi B receptors, which are characterized in that cells are transfected with a DNA sequence coding for a 5-HTi 3 receptor, the membranes of these cells are isolated and standard receptor binding experiments are carried out with these membranes.
  • a further method according to the invention for identifying functional ligands for 5-HT- B receptors is characterized in that cells are transfected with a DNA sequence coding for a 5-HT- B receptor and those in these cells change in the second messenger level caused by binding of the ligand to the receptor was detected by a reporter system.
  • the new polypeptides and DNAs can be genetically engineered using known methods. In this way, one can isolate mRNA from brain tissue and translate it into double-stranded cDNA. This cDNA can be used as a template for the polymerase chain reaction. By using specific primers, the corresponding cDNA can be amplified under suitable reaction conditions. By using suitable primers, the amplified cDNA can be sequenced without prior cloning. The methods used are described, for example, in "Current Protocols in Molecular Biology” (ed. FM Ausubel et al.) 1989, ISBN 0-471 50338-x (Vol. 1 and 2 set), for the polymerase chain reaction in Saiki et al. (1985) Science 230, 1350-54 and Mullis and Faloona (1987) Meth. Enzymol. 155, 335-350.
  • the cDNA characterized in this way is easily accessible with the aid of restriction enzymes.
  • the resulting fragments possibly in conjunction with chemically synthesized oligonucleotides, adapters or gene fragments, can be used to clone the sequences coding for the protein.
  • the incorporation of the gene fragments or synthetic DNA sequences into cloning vectors for example the commercially available plasmids M13mpl8 or Bluescript, is carried out in a known manner.
  • the genes or gene fragments can also be provided with suitable chemically synthesized control regions or control regions isolated from bacteria, phages, eukaryotic cells or their viruses, which enable expression of the proteins in different host systems.
  • vectors for expression in mammalian cells, vectors can be used which control the gene to be expressed, in this case the cDNA coding for the ' 5-HT ⁇ B receptor described here, under the control of the mouse metallothionein or the viral SV40 promoter or under the control of the cytomegalovirus promoter (J. Page Martin, Gene, 37 (1985), 139 to 144).
  • the expression of the methionine start codon of the gene which codes for this 5-HT- B receptor is necessary for the expression.
  • Clones are then isolated which have copies of these vectors as episomes or integrated into the genome.
  • the integration of the foreign gene into a vector which contains the cytomegalovirus promoter is particularly advantageous.
  • cells can be transfected with a suitable vector such that the transient expression of the DNA thus introduced is sufficient for pharmacological characterization of the heterologous polypeptides expressed.
  • Control of expression by the cytomegalovirus promoter is also particularly advantageous here.
  • telomeres In connection with prokaryotic sequences which code for replication in bacterial cells and an antibiotic resistance, the use of "shuttle" vectors is very suitable.
  • the plasmid is first constructed and propagated in bacterial cells; the eukaryotic cells, for example in the embryonic human kidney line HEK 293.
  • Particularly suitable "shuttle" vectors are the commercially available plasmids vcCMV, pCDM8 and pCDNAI (INVITROGEN, San Diego, USA).
  • yeast and other fungi insect cells and animal and human cells
  • suitable expression vectors for the expression of the cloned cDNA can also be used in conjunction with suitable expression vectors for the expression of the cloned cDNA.
  • the eukaryotic expression systems have the advantage that they are able to express their products effectively and mostly in their native form. They also have the ability to modify their products post-translationally.
  • the expressed receptor proteins may be detergents, such as CHAPS (3- [(3-cholamidopropyl) dimethylammonium] -L-pro- pansulfonat) and solubilized by chromatography Affinticianschro ⁇ bodies, for example, with anti-receptor-specific be purified by known methods. After crystallization and X-ray structure analysis or other suitable physical processes such as NMR or scanning tunneling microscopy, the pure polypeptide can be used to clarify the spatial structure of the ligand binding site.
  • CHAPS 3- [(3-cholamidopropyl) dimethylammonium] -L-pro- pansulfonat)
  • solubilized by chromatography Affinticianschro ⁇ bodies for example, with anti-receptor-specific be purified by known methods. After crystallization and X-ray structure analysis or other suitable physical processes such as NMR or scanning tunneling microscopy, the pure polypeptide can be used to clarify the spatial structure of the ligand binding site.
  • the expressed receptor proteins can also serve as antigens for the generation of polyclonal or monoclonal antibodies. These antibodies in turn can optionally be used for diagnostic purposes. Another application for such antibodies is to use them as aids for rational drug design.
  • receptor-specific antibodies can be used as antigens for the generation of anti-idiotypic antibodies.
  • Such antibodies can represent an image of the receptor for defined areas and can be used for screening for specific receptor ligands or for rational drug design.
  • Receptor-expressing cell lines represent an important instrument in the screening for specific receptor ligands.
  • the membranes of these cells can be used for receptor binding tests.
  • corresponding reporter systems for example luciferase, which are coupled to a promoter system which is regulated by connecting signal transduction pathways such as Ca ++ , cAMP, IP 3 metabolite (second messenger), can directly provide information about Mode of action (agonism / antagonism) of a receptor ligand.
  • the current flow through the cell membrane can also be measured as a function of the ligand binding.
  • the cDNA library thus obtained contained 2 x 10 6 independent clones.
  • 500,000 phages were plated with C 600 Hfl cells.
  • the phages were transferred to nitrocellulose filters, lysed with 0.5 N NaOH / 1.5 M NaCl and the denatured DNA was firmly bound to the filter by baking at 80 ° C. for 2 hours.
  • Hybridization was carried out with a nick-translated cDNA sample (SEQ ID NO 1) which codes for the 5-HT- B receptor of the rat.
  • the filters were incubated in a solution containing 5 ⁇ SET, 0.1% SDS, 30% formamide, 5 ⁇ Denhardt's and 10% dextran sulfate overnight at 42 ° C. with gentle shaking. They were then washed several times in 2 x SET / 0.1% SDS at 42 ° C., dried and exposed to an X-ray film. Clones that are radioactive during "screening"
  • Phage DNA was prepared by incubating the purified phages with proteinase K (ad 60 ⁇ g / ml) at 55 ° C. for 1 h and then phenol / chloroform extraction. After adding 3 volumes of ethanol (-20 ° C.), the phage DNA precipitated and was transferred into 70% ethanol using a sterile injection needle, washed and briefly sedimented. After briefly drying the pellet in air, it was suspended in TE buffer.
  • a clone contained a cDNA which codes for the 5-HT ⁇ S receptor.
  • the DNA sequence of this clone is reproduced in sequence protocol 1.
  • the annealing temperature was 60 ° C. and was kept for 3 minutes. The primers were then extended at 72 ° C for 2 min. Was denatured at 94 ° C for 1 min. This temperature cycle was repeated 40 times.
  • 20 p ol primers A and B were used in each case. 10% of this approach was applied to 1% agarose gel after the reaction to analyze the reaction products. The dominant band migrated with a DNA band of approximately 1200 base pairs. It was eluted electrophoretically from the gel in one-phase buffer (Pharmacia) and incubated with the Klenow fragment of E. coli DNA polymerase I. The concentration of deoxynucleotide triphosphates was 50 ⁇ M (in each case for dATP, dTTP, dCTP, dGTP).
  • Single-stranded DNA was produced analogously to Example 2, with the one difference, however, that the PCR fragment was cloned into the Smal site of mpl8.
  • the DNA sequence of the human 5-HT- B receptor gene is described in Sequence Listing 2 (SEQ ID NO 2).
  • the homology to the rat's 5HT ⁇ B receptor gene is approximately 90%.
  • the amino acid sequence derived from SEQ ID NO 2 is reproduced in sequence listing 3.
  • Double-stranded mp 18 DNA which contained the receptor cDNA as an insert, was cleaved with the enzymes EcoRI and HindIII.
  • the resulting fragment coding for the receptor with overhanging ends was treated with the aid of the enzymes T 4 -DNA polymerase and Klenow fragment of the E.coli DNA polymerase according to standard conditions (see Current Protocols in Molecular Biology see above) to make them smooth Generate ends.
  • the commercially available linkers (Invitrogen) with the sequence 5'-CTTAGAGCAC-3 'and 3'-GAATCTC-5' were then ligated to this fragment.
  • the DNA fragment provided with these linkers was ligated under standard conditions into the commercially available, BstXI cut vectors pCDM8 and rcCMV (Invitrogen).
  • the resulting recombinant plasmids were propagated in a known manner.
  • HEK 293 cells were cultivated under standard conditions in a 10 cm cell culture dish up to a cell number of 7 to 8 ⁇ 10 6 cells. After trypsinization, the cells were diluted 1: 3 in MEM medium (Gibco), which contained 2.2 g / 1 NaHCO 3, and sown again in 10 cm petri dishes. The cells were then cultured at 37 ° C. for 40 to 48 h.
  • the DNA to be transfected was prepared as follows: 20 ⁇ g of the DNA solution (1 mg / ml), purified over CsCl-Graient, were mixed with 437 ⁇ l HO, then 62.5 ⁇ l 2 M CaCl2 were added and finally 500 ⁇ l BBS. Ca ++ precipitates formed within 10 min at room temperature.
  • the solution was placed on a 10 cm cell culture dish with the 293 cells cultured as described above. After thorough mixing, the cells were cultured in a 3% CO 2 incubator at 37 ° C. for 15 to 20 h. 5 ml of serum-free medium were then carefully added. After removal The entire medium and repeating the washing process with 5 ml of serum-free medium were added to the cells with 10 ml of full medium. After 48 h of incubation in a 5% CO 2 incubator, the cells could be used for pharmacological and electrophysiological studies.
  • the DNA was mediated into the cells by liposomes.
  • Lipofectin from GIBCO-BRL was used in accordance with the manufacturer's instructions.
  • the cells were used for membrane preparation.
  • the cells were homogenized using an ULTRA-TURRAX.
  • the homogenate was centrifuged at 50,000 g in a Sovall SS 34 rotor at 4 ° C for 20 min.
  • the membrane pellet was taken up in 1.5 ml of 10 mM Tris-HCl pH 7.2 and homogenized again with the aid of an ULTRA-TURRAX.
  • Zen ⁇ trifugation the pellet in 3.5 ml of BB (10 mM Tris-HCl pH 7.2, 100 mM NaCl) was added as above.
  • BB tissue homogenizer
  • 5-Carboxyamidotryptamine (No. C117) (-) Propranolol (No. P110) Methysergide (No. M137) Rauwolscin (No. R104) MDL 7222 (No. T102) 8-OH-DPAT (No. S002 )
  • GCT CCA CCG CCG CCC GCG GGC TCC GAG ACC TGG GTT CCT CAA GCC AAC 99 Ala Pro Pro Pro Pro Ala Gly Ser Glu Thr Trp Val Pro Gin Ala Asn

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Neurology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft einen neuen humanen 5-HT1B-Rezeptor und für ihn codierende DNA-Sequenzen, sowie Herstellverfahren für DNA-Sequenzen und Rezeptor. Weiterhin betrifft die Erfindung Verfahren zur Identifizierung funktionaler Liganden für diesen Rezeptor.

Description

MENSCHLICHER 5HT-1B REZEPTOR (SEROTONIN REZEPTOR) , VERFAHREN ZUR HERSTELLUNG
UND SEINE VERWENDUNGEN
5 Beschreibung
Die Erfindung betrifft einen neuen Serotonin-Rezeptor und seine Verwendung, sowie Verfahren zum Auffinden von funktionalen Liganden für diesen Rezeptor.
10
Der Neurotransmitter Serotonin (5-Hydroxytryptamin, 5-HT) spielt eine wichtige Rolle bei einer Vielzahl physiolo¬ gischer Funktionen, hinsichtlich kognitiver Fähigkeiten oder auch im Bereich des Verhaltens. Störungen der serotonergen
15 Reizübertragen sind involviert in zahlreiche pathologische Zust nde wie Depression, Migräne, Bluthochdruck oder Bulämie. Serotonin entfaltet seine physiologische und patho- physiologische Wirkung über Rezeptoren, die Serotonin mit unterschiedlicher Affinität binden. Diese Rezeptoren können
20 in 4 Klassen unterteilt werden: 5-HTχ, 5-HT2, 5-HT3, 5-HT4. Diese Unterteilung reflektiert sowohl unterschiedliche Rezeptorkopplung als auch unterschiedliche Rezeptorbindungs- profile für eine Reihe von 5-HT-Rezeptorliganden. Bei Nage¬ tieren sind mindestens 4 Subtypen der 5-HTι Rezeptor-
25 Subklasse beschrieben (5-HTιA bis 5-HTιD) . Alle 5-HT-Rezep- toren besitzen hohe Affinität zu Serotonin (Ki < 100 nm) und sind über G-Proteine an Adenylatzyklase, oder Phospho- lipase C gekoppelt.
30 In ihrer Primärstruktur aufgeklärt sind bislang 5 Serotonin- Rezeptoren 5-HTιA, 5-HTιC. 5-HTιD-iiite. 5-HT2 und 5-HT3. Die anderen Subtypen sind lediglich pharmakologisch (Bindungsda¬ ten) oder funktioneil (Signaltransduktion second messenger) beschrieben.
35
Ein 5-HTiB-Rezeptor wurde bisher nur in Nagetieren gefunden, im Menschen konnten bislang weder pharmakologisch noch mole¬ kularbiologisch 5-HT B-Rezeptoren nachgewiesen werden.
40 Bislang gibt es keine Antagonisten, die selektiv für die
5-HT-Rezeptor-Subklasse spezifisch sind. Alle bekannten An¬ tagonisten binden mit hoher Affinität an mindestens eine weitere Klasse von Neuro ransmitter-Rezeptoren. Insbesondere beim 5-HTιS-Rezeptor sind nahezu keine subtypspezifisehen Substanzen bekannt, so daß bislang auch wenig über die phy¬ siologische Bedeutung dieses Rezeptors ausgesagt werden konnte.
Es bestand daher die Aufgabe, die molekulare Struktur eines humanen 5-HTiB-Rezeptors aufzuklären und Verfahren bereitzu¬ stellen, um ihn in hoher Reinheit herzustellen. Eine weitere Aufgabe bestand darin, Verfahren zur Auffindung spezifischer funktionaler Liganden für diesen Rezeptor zur Verfügung zu stellen.
Es wurde nun ein neuer humaner Serotonin-Rezeptor der Klasse 1 (5-HTιB) gefunden (SEQ ID NO 3), sowie DNA-Sequen- zen, die für solche Rezeptoren codieren. Eine cDNA, die für ein erfindungsgemäßes Protein codiert, ist.in SEQ ID NO 2 dargestellt.
Weitere geeignete DNA-Sequenzen sind solche, die zwar eine andere Nukleotidsequenz als die in SEQ ID NO 2 aufgeführte besitzen, die aber infolge der Degeneration des genetischen Codes für die in SEQ ID NO 3 aufgeführte Polypeptidkette oder Teile davon codieren. Weiterhin sind solche DNA- Sequenzen geeignet, die für 5-HTιB-Rezeptoren codieren, und die unter Standardbedingungen mit der in SEQ ID NO 2 darge¬ stellten Nukleotidsequenz oder mit einer Nukleotidsequenz , die für das in SEQ ID ΝO 3 dargestellte Protein codiert, hybridisieren. Die experimentellen Bedingungen für DΝA- Hybridisierung sind in Lehrbüchern der Gentechnik, bei- spielsweise in Maniatis et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989, beschrieben.
Unter Standardbedingungen sind beispielsweise Temperaturen zwischen 42 und 58°C in einer wäßrigen Pufferlösung mit einer Konzentration zwischen 0,1 und 1 x SSC (1 x SSC: 0,15M ΝaCl, 15mM Νatriumcitrat pH 7,2) zu verstehen.
Weiterhin wurden gentechnische Herstellverfahren für diesen Rezeptor gefunden. Außerdem wurde gefunden, daß sich die für diesen Rezeptor codierende DΝA-Sequenzen zum Auffinden von funktionalen Liganden für diesen Rezeptor verwenden lassen. Gegenstand der Erfindung sind darüber hinaus Verfahren zur Identifizierung funktionaler Liganden für 5-HTiB-Rezeptoren, die dadurch gekennzeichnet sind, daß man mit einer für einen 5-HTi3-Rezeptor codierenden DNA-Sequenz Zellen transfiziert, die Membranen dieser Zellen isoliert und mit diesen Membra¬ nen übliche Rezeptorbindungsexperimente durchführt. Ein wei- teres erfindungsgemäßes Verfahren zur Identifizierung funk¬ tionaler Liganden für 5-HTιB-Rezeptoren ist dadurch gekenn¬ zeichnet, daß man mit einer für einen 5-HTιB-Rezeptor codie¬ renden DNA-Sequenz Zellen transfiziert und die in diesen Zellen durch Bindung des Liganden an den Rezeptor verur- sachte Veränderung des second messenger Spiegels durch ein Reportersystem detektiert.
Die neuen Polypeptide und DNAs lassen sich gentechnisch unter Verwendung bekannter Methoden herstellen. So kann man aus Hirngewebe mRNA isolieren und in doppelsträngige cDNA übersetzen. Diese cDNA kann als Matrize für die Polymerase- Kettenreaktion verwendet werden. Durch die Verwendung spezi¬ fischer Primer kann so unter geeigneten Reaktionsbedingungen die entsprechende cDNA amplifiziert werden. Durch die Ver- wendung geeigneter Primer kann die amplifizierte cDNA ohne vorherige Klonierung sequenziert werden. Die dabei verwende¬ ten Methoden sind beispielsweise in "Current Protocols in Molecular Biology" (Hrsg. F.M. Ausubel et al.) 1989, ISBN 0-471 50338-x (Vol. 1 u. 2 set) , für die Polymerase-Ketten- reaktion in Saiki et al. (1985) Science 230, 1350-54 bzw. Mullis and Faloona (1987) Meth. Enzymol. 155, 335-350 be¬ schrieben.
Die so charakterisierte cDNA ist mit Hilfe von Restriktions- enzymen leicht zugänglich. Die dabei entstehenden Fragmente, ggf. in Verbindung mit chemisch synthetisierten Oligonukleo- tiden, Adaptoren oder Genfragmenten, können benutzt werden, um die für das Protein kodierende Sequenzen zu klonieren. Der Einbau der Genfragmente bzw. synthetischen DNA-Sequenzen in Klonierungsvektoren, z.B. die handelsüblichen Plasmide M13mpl8 oder Bluescript, erfolgt in bekannter Weise. Auch können die Gene oder Genfragmente mit geeigneten chemisch synthetisierten oder aus Bakterien, Phagen, Eukaryontenzel- len oder deren Viren isolierten Kontrollregionen versehen werden, die die Expression der Proteine in unterschiedlichen WirtsSystemen ermöglichen. Die Transformation bzw. Transfektion geeigneter Wirtsorga¬ nismen mit den so erhaltenen Hybridplasmiden ist ebenfalls bekannt und eingehend beschrieben (M. Wigler et al., Cell, 16 (1979), 777 - 785; F.L. Graham and A.J. van der Eb, Virology 52, 1973), 456 - 467).
Bei der Expression in Säugerzellen kann man Vektoren verwen¬ den, die das zu exprimierende Gen, in diesem Fall die für den hier beschriebenen '5-HTιB-Rezeptor kodierende cDNA unter die Kontrolle des Maus-Metallothionein- oder des viralen SV40-Promotors oder unter die Kontrolle des Cytomegalievi- rus-Promotors setzen (J. Page Martin, Gene, 37 (1985), 139 bis 144) . Notwendig für die Expression ist das Vorliegen des Methionin-Startcodons des Gens, das für diesen 5-HTιB-Rezep- tor kodiert. Man isoliert dann Klone, die Kopien dieser Vek¬ toren als Episome oder ins Genom integriert besitzen. Beson¬ ders vorteilhaft ist die Integration des Fremdgens in einen Vektor, der den Promotor des Cytomegalievirus enthält.
Alternativ dazu kann man Zellen mit einem geeigneten Vektor derart transfizieren, daß die transiente Expression der so eingebrachten DNA für eine pharmakologische Charakterisie¬ rung der exprimierten heterologen Polypeptide ausreicht. Auch hier ist die Kontrolle der Expression durch den Promo- tor des Cytomegalievirus besonders vorteilhaft.
In Verbindung mit prokaryontischen Sequenzen, die für die Replikation in Bakterienzellen und eine Antibiotika-Resi¬ stenz kodieren, ist die Verwendung von "Shuttle'-Vektoren gut geeignet. Konstruktionen und Vermehrung des Plasmids er¬ folgen zunächst in Bakterienzellen; anschließend erfolgt die Umsetzung in die Eukaryontenzellen, z.B. in die embryonale menschlichen Nieren-Zeilinie HEK 293. Besonders geeignete "Shuttle"-Vektoren sind die kommerziell erhältlichen Plas- mide vcCMV, pCDM8 und pCDNAI (INVITROGEN, San Diego, USA) .
Auch andere Zellsysteme, z.B. Hefe und andere Pilze, Insek¬ tenzellen sowie tierische und humane Zellen wie z.B. CHO-, COS- und L-Zellen, können in Verbindung mit geeigneten Ex- pressionsvektoren zur Expression der klonierten cDNA verwen¬ det werden. Die eukaryontisehen Expressionssysteme besitzen den Vorteil, daß sie in der Lage sind, ihre Produkte effektiv und meist in nativer Form zu exprimieren. Ferner besitzen sie die Fä¬ higkeit, ihre Produkte posttranslational zu modifizieren.
Die exprimierten Rezeptorproteine können durch Detergenzien wie CHAPS (3-[ (3-Cholamidopropyl)-dimethylammonium]-l-pro- pansulfonat) solubilisiert werden und durch Affinitätschro¬ matographie, beispielsweise mit rezeptorspezifischen Anti- körpern, nach bekannten Verfahren gereinigt werden. Das reine Polypeptid kann, nach Kristallisation und Röntgen- Strukturanalyse oder anderen geeigneten physikalischen Ver¬ fahren wie NMR oder Raster-Tunnelmikroskopie, dazu benutzt werden, die räumliche Struktur der Liganden-Bindungsstelle aufzuklären.
Die exprimierten Rezeptorproteine können nach entsprechender Reinigung auch als Antigene für die Generierung polyklonaler oder monoklonaler Antikörper dienen. Diese Antikörper wie- derum können gegebenenfalls für diagnostische Zwecke verwen¬ det werden. Eine weitere Anwendungsmöglichkeit für solche Antikörper besteht in ihrer Verwendung als Hilfsmittel zum rationalen Drug Design. So können Rezeptor-spezifischen An¬ tikörper beispielsweise als Antigen für die Generierung an- tiidiotypischer Antikörper eingesetzt werden. Solche Anti¬ körper können für definierte Bereiche ein Abbild des Rezep¬ tors darstellen und für das Screening nach spezifischen Re¬ zeptorliganden oder für das rationale Drug Design verwendet werden.
Rezeptor exprimierende Zellinien stellen ein wichtiges In¬ strument im Screening nach spezifischen Rezeptorliganden dar. Dazu können die Membranen dieser Zellen für Rezeptor¬ bindungstests verwendet werden. Mit entsprechenden Reporter- Systemen versehen, z.B. Luciferase, die an ein Promotorsy¬ stem gekoppelt sind, welches reguliert wird durch Verbindun¬ gen von Signaltransduktionswegen wie Ca++, cAMP, IP3-Metabo- lite (second messenger) , können direkt Informationen über Wirkungsweise (Agonismus / Antagonismus) eines Rezeptorli- ganden gewonnen werden. (Science 252, 1424 (1991); Proc.
Natl. Acad. Sei. USA 88, 5061, (1991)). Auch ist es möglich, diese Verbindungen des Signaltransduktionsweges in den Re- zeptor-exprimierenden Zellen nach Ligandenbindung durch ge- eignete Methode (RIA, ELISA, Fluoreszenzfarbstoffe) direkt nachzuweisen.
Weiterhin kann der Stromfluß durch die Zellmembran in Abhän- gigkeit von der Ligandenbindung gemessen werden.
Aufgrund der Degeneration des genetischen Codes ist es mög¬ lich, andere DNA-Sequenzen als hier beschrieben, z.B. che¬ misch synthetisierte Gene mit unterschiedlicher DNA-Sequenz für die Expression des beschriebenen humanen 5-HTιB-Rezep- tors zu benutzen.
Mit Hilfe der Erfindung wird es möglich, Substanzen zu iden¬ tifizieren und zu charakterisieren, die an den hier be- schriebenen Rezeptor binden und dort agonistisch oder anta¬ gonistisch wirken.
weitere Ausgestaltungen der Erfindung sind in den Beispielen näher beschrieben.
Für gentechnische Methoden sei dazu z.B. auf das Handbuch von Maniatis et al. "Molecular Cloning", Cold Spring Harbor Laboratory, 1989, oder "DNA cloning", Vol. I bis III, IRI Press 1985 bis 1987, Herausgeber D.M. Glover, hingewiesen.
Beispiel 1
Isolierung einer cDNA- die für den 5-HTιB-Rezeptor der Ratte kodiert
0,5 g Großhirn einer Ratte wurden in 6 M Guanidiniumthiocya- nat, 5 mM Natriumeitrat (pH 7,0), 0,1 M 2-Mercaptoethanol, 0,5 % Sarcosyl im ULTRA-TURRAX aufgeschlossen. Grobe Zell¬ trümmer wurden bei 3 000 U/min abzentrifugiert. Die RNA wurde durch Zentrifugation durch ein 5,7 M CsCl-Kissen für 12 Stunden bei 45 000 U/min abgetrennt. Anschließend wurde die PolyA^-enthaltende RNA-Fraktion durch Affinitätschroma¬ tographie an oligo (dt)-Cellulose abgetrennt.
Mit Hilfe des Enzyms AMV-Reverse Transcriptase und oligo(dt)12-18 als Starter wurde die polyA+-RNA in einzel- strängige cDNA umgeschrieben. Die Synthese des zweiten Stranges erfolgte mit E. coli-DNA-Polymerase I. An die dop- pelsträngige cDNA wurde mit Hilfe des Enzyms -*?4-DNA-Ligase ein EcoRI Adaptor mit folgender Sequenz angesetzt: 5'AATT CCATGGATGCATGC 3'. Der kommerziell erhältliche Phagenvek- tor λ gt 10 wurde mit dem Restriktionsenzym EcoRI lineari- siert. Phagen-DNA und cDNA wurden miteinander ligiert und mit einem kommerziell erhältlichen Verpackungsextrakt zu in¬ fektiösen Phagen verpackt. Die rekombinanten Phagen wurde mit E.coli C 600 Hfl auf NZYDT-Platten ausplattiert und über Nacht bei 37°C inkubiert. Die so erhaltene cDNA-Bibliothek enthielt 2 x 106 unabhängige Klone. Nach Amplifikation der cDNA-Bibliothek entsprechend herkömmlicher Methoden wurden 500 000 Phagen mit C 600 Hfl Zellen ausplattiert. Die Phagen wurden auf Nitrocellulose-Filter übertragen, mit 0,5 N NaOH /1,5 M NaCl lysiert und die denaturierte DNA durch 2-stündi- ges Backen bei 80°C fest an das Filter gebunden. Die Filter wurden in 6 x SET-Puffer (1 x SET = 0,15 M NaCl, 15 mM Tris / HC1, pH 7,4, 1 mM EDTA) , 0,1 % SDS und 5 x Denhardt's Lö¬ sung (100 x Denhardt = 1 g Ficoll, 1 g Polyvinylpyrrolidon, 1 g BSA pro 50 ml) für 4 h bei 68°C vorhybridisiert.
Hybridisiert wurde mit einer Nick-translatierten cDNA-Probe (SEQ ID NO 1) welche für den 5-HTιB-Rezeptor der Ratte ko¬ diert.
Die Filter wurden in einer Lösung, die 5 x SET, 0,1 % SDS, 30 % Formamid, 5 x Denhardt's und 10 % Dextransulfat ent¬ hielt, über Nacht bei 42°C unter leichtem Schütteln in¬ kubiert. Danach wurden sie mehrfach in 2 x SET/0, 1 % SDS bei 42°C gewaschen, angetrocknet und einen Röntgenfilm exponiert. Klone, die beim "Screening" eine radioaktive
Antwort gaben, wurden isoliert und weitergezüchtet, um die entsprechende Phagen-DNA zu gewinnen.
Phagen-DNA wurde durch Inkubation der gereinigten Phagen mit Proteinase K (ad 60 μg/ml) bei 55°C für 1 h und an¬ schließender Phenol/Chloroformextraktion präpariert. Nach Zugabe von 3 Volumen Ethanol (-20°C) fiel die Phagen-DNA aus und wurde mit einer sterilen Injektionsnadel in 70 %iges Ethanol überführt, gewaschen und kurz sedimentiert. Nach kurzem Trocknen des Pellets an der Luft wurde es in TE- Puffer suspendiert. Beispiel 2
Herstellung von einzelsträngiger DNA, die für den 5-HTχB-Re- zeptor der Ratte kodiert
Ausgangspunkt war die in Beispiel 1 beschriebene Phagen-DNA. Sie wurden jeweils einzeln präparativ mit dem Restriktions¬ enzym Eco RI geschnitten. Die Eco RI-Fragmente, welche die cDNA-Insertionen enthielten, wurden elektrophoretisch aus dem Gel eluiert. Jeweils 30 ng dieser Fragmente wurden bei 4=C für 12 h mit 100 ng des Eco RI geschnittenen, kommerzi¬ ell erhältlichen Klonierungsvektors M13mpl8 oder M13mpl9 li- giert. Das Volumen des Ligationsansatzes betrug 10 μl. Die Ligation wurde durch 5 minütiges Erhitzen auf 80°C beendet.
1/10 Volumen eines jeden Ligationsansatzes wurde zur Trans¬ formation von 100 μl kompetenten JM 101 Zellen eingesetzt. Nach Beendigung der Transformation wurden dem Transformati¬ onsansatz 60 μl 0,2 M IPTG-Lösung und 120 μl XGal (20 mg/ml) zugesetzt. Dieser Ansatz wurde in NZYDT-Topagar auf NZYDT- Agarplatten mit 200 μl JM 101 Zellen (ODεoo = D ausplat¬ tiert. Das Medium NZYDT ist kommerziell erhältlich (GIBCO- BRL) . Klone, welche cDNA-Insertionen enthielten, konnten aufgrund fehlender Blaufärbung der Plaques identifiziert werde .
Ein Klon enthielt eine cDNA, welche für den 5-HTιS-Rezeptor kodiert. Die DNA-Sequenz dieses Klons ist im Sequenzproto¬ koll 1 wiedergegeben.
Beispiel 3
Klonierung des humanen 5-HTιB-Rezeptors
Ausgangspunkt hierfür war kommerziell erhältliche polyA+-RNA von humanem Gehirn (Clonetech; Best.-Nr. 6516-2) .
Mit Hilfe des Enzyms Reverse Transcriptase (AMV) und oligo (dt)i2_ιa als Starter wurden 5 μg dieser polyA+-RNA in ein- zelstrangige cDNA umgeschrieben. Die Synthese des zweiten Stranges erfolgte mit E.coli DNA-Polymerase. 5 ng dieser cDNA wurde als Matrize in einer Polymerasekettenreaktion eingesetzt. Dazu wurde das DNA Amplifikations-Kit GeneAmp— (Bestell-Nr. 182 414) von Perkin Eimer verwendet. Es wurde entsprechend den Herstellerangaben verfahren. Die PrimerSe¬ quenz wurde abgeleitet von der im Sequenzprotokoll 1 angege¬ benen Sequenz für den 5-HTιB-Rezeptor der Ratte. Die Primer hatten folgende Sequenz:
(5htlb Start) A: 5' CGC/TCC/GCA/GCC/AGG/ACG/AGG/GCT/ATG 3'
(5htlb Stop)
B: 5' CTT/AGG/CGA/CCC/CCA/TGC/CAT/TGA/CAA/GTC/A 3'
Die Annealingtemperatur. lag bei 60°C und wurde 3 min beibe¬ halten. Danach wurden die Primer bei 72°C für 2 min verlän- gert. Denaturiert wurde bei 94°C für 1 min. Dieser Tempera¬ turzyklus wurde 40mal wiederholt. In einer Polymerase-Ket- tenreaktion wurden jeweils 20 p ol Primer A und B einge¬ setzt. 10 % dieses Ansatzes wurden nach Ablauf der Reaktion auf 1 % Agarosegel aufgetragen, um die Reaktionsprodukte zu analysieren. Die dominante Bande komigrierte mit einer DNA- Bande von ca. 1200 Basenpaaren. Sie wurde elektrophoretisch aus dem Gel eluiert in One-Phor-all Puffer (Pharmacia) auf¬ genommen und mit dem Klenow-Fragment der E.coli DNA Polyme- rase I inkubiert. Die Konzentration an Desoxynukleotidtri- phosphaten betrug dabei 50 μM (jeweils für dATP, dTTP, dCTP, dGTP) .
Die Herstellung einzelsträngiger DNA erfolgte analog Bei¬ spiel 2 mit dem einen Unterschied jedoch, daß das PCR-Frag- ment in die Smal-Schnittstelle von mpl8 einkloniert wurde. Die DNA-Sequenz des humanen 5-HTιB-Rezeptorgens ist in Se¬ quenzprotokoll 2 (SEQ ID NO 2) beschrieben. Die Homologie zum 5HTιB-Rezeptorgen der Ratte beträgt ca. 90 %. Die aus SEQ ID NO 2 abgeleitete Aminosäuresequenz ist in Sequenzpro- tokoll 3 wiedergegeben.
Ein Klon mit der in SEQ ID NO 2 dargestellten cDNA-Sequenz wurde bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, unter der Nummer DSM 6860 hinterlegt. Beispiel 4
Transiente Expression des klonierten humanen Rezeptorgens in Human Embryonic Kidney (HEK) 293 Zellen
Wenn nicht anders beschrieben, wurden zur Zellkultur die Vorschriften von Lindl und Bauer ("Zeil- und Gewebekultur", Gustav Fischer Verlag) verwendet.
Doppelsträngige mp 18 DNA, welche die Rezeptor cDNA als In- sert enthielt, wurde mit den Enzymen EcoRI und Hindlll ge¬ spalten. Das daraus resultierende für den Rezeptor kodie¬ rende Fragment mit überhängenden Enden wurde mit Hilfe der Enzyme T4-DNA-Polymerase und Klenow-Fragment der E.coli DNA Polymerase nach Standardbedingungen (vgl. Current Protocols in Molecular Biology s.o.) behandelt, um glatte Enden zu ge¬ nerieren. Danach wurden an dieses Fragment die kommerziell erhältichen Linker (Invitrogen) mit der Sequenz 5'-CTTAGAGCAC-3' und 3'-GAATCTC-5' ligiert. Das mit diesen Linkern versehenen DNA-Fragment wurde unter Standardbedin¬ gungen in die kommerziell erhältlichen, BstXI geschnittenen Vektoren pCDM8 und rcCMV (Invitrogen) ligiert. Die daraus resultierenden rekombinanten Plasmide wurden nach bekannter Weise vermehrt. HEK 293 Zellen wurden unter Standard-Bedin- gungen in einer 10-cm-Zellkulturschale bis zu einer Zellzahl von 7 bis 8 x 106 Zellen kultiviert. Nach Trypsinierung wur¬ den die Zellen 1:3 in MEM Medium (Gibco) , das 2,2 g/1 NaHC0 enthielt, verdünnt und erneut in 10 cm Petrischalen ausge¬ sät. Danach wurden die Zellen für 40 bis 48 h bei 37°C kul- tiviert.
Die zu transfizierende DNA wurde wie folgt vorbereitet: 20 μg der DNA-Lösung (1 mg/ml) , gereinigt über CsCl-Gra- dient, wurden mit 437 μl H O versetzt, danach wurden 62,5 μl 2 M CaCl2 zugesetzt und schließlich 500 μl BBS. Innerhalb von 10 min bildeten sich bei Raumtemperatur Ca++-Präzipi- tate.
Die Lösung wurde auf 10-cm-Zellkulturschale mit den.nach obiger Vorschrift kultivierten 293 Zellen gegeben. Nach vor¬ sichtiger Durchmischung wurden die Zellen 15 bis 20 h in ei¬ nem 3 % CO2-Inkubator bei 37°C kultiviert. Danach wurden vorsichtig 5 ml serumfreies Medium zugesetzt. Nach Entfer- nung des gesamten Mediums und Wiederholung des Waschvorgangs mit 5 ml serumfreiem Medium wurden den Zellen 10 ml Vollme¬ dium zugesetzt. Nach 48 h Inkubation in einem 5 % Cθ2~Inku- bator konnten die Zellen für pharmakologische und elektro- physiologische Untersuchungen verwendet werden.
Alternativ wurde die DNA auch Liposomen-vermittelt in die Zellen eingebracht. Dabei wurde Lipofectin der Firma GIBCO- BRL den Herstellerangaben entsprechend eingesetzt.
Beispiel 5
Rezeptor-Bindungstest
Den nach Beispiel 4 transfizierten und kultivierten Zellen wurden 2,5 ml kaltes PBS zugesetzt. Nach 5 min Inkubation bei Raumtemperatur wurden weitere 5 ml PBS zugegeben und die Zellen vorsichtig von der Oberfläche der Kulturschale ent¬ fernt. Die Zellsuspension wurde in ein Zentrifugenröhrchen überführt und bei ca. 1 200 g 10 min lang zentrifugiert.
Nach sorgfältiger Entfernung des Überstandes wurden die Zel¬ len zur Membranpräparation verwendet.
Nach Resuspendierung des Zellpellets in 1,5 ml 10 mM Tris- HC1 pH 7,2 wurden die Zellen mit Hilfe eines ULTRA-TURRAX homogenisiert. Das Homogenat wurde bei 50 000 g in einem So- vall SS 34 Rotor bei 4°C 20 min zentrifugiert. Das Membran¬ pellet wurde in 1,5 ml 10 mM Tris-HCl pH 7,2 aufgenommen und erneut mit Hilfe eines ULTRA-TURRAX homogenisiert. Nach Zen^ trifugation wie oben wurde das Pellet in 3,5 ml BB (10 mM Tris-HCl pH 7,2, 100 mM NaCl) aufgenommen. Nach kurzer Homo¬ genisierung mit einem Gewebe-Homogenisator konnten die Mem¬ branen in dem eigentlichen Bindungstest eingesetzt werden.
800 μl dieser so hergestellten Membranen wurden bei 4°C mit [3H] Serotonin (Endkonzentration 2 nM) und verschiedenen Konzentrationen der zu testenden Substanz für 2 h inkubiert. Danach wurden die Membranen über Glasfaserfilter (Schlei¬ cher & Schuell No. 34) filtriert, um das nicht-gebundene ra- dioaktive markierte Serotonin abzutrennen. Die Menge an ge¬ bundenen [3H] Serotonin wurde im Flüssigkeits-Szintillati- onszähler bestimmt. Folgende Substanzen (erhältlich bei RBI, Natick, MA, USA un¬ ter der angegebenen Katalog-Nr. ) wurden beim humanen 5-HTιB-Rezeptor als Testsubstanzen eingesetzt:
5-Carboxyamidotryptamin (5-CT) (Nr. C117) (-) Propranolol (Nr. P110) Methysergid (Nr. M137) Rauwolscin (Nr. R104) MDL 7222 (Nr. T102) 8-OH-DPAT (Nr. S002)
Dabei wurden folgende Ki-Werte (nM) bestimmt:
SEQUENZPROTOKOLL
(1) ALGEMEINE INFORMATION:
(i) ANMELDER:
(A) NAME: BASF Aktiengesellschaft
(B) STRASSE: Carl-Bosch-Strasse 38
(C) ORT: Ludwigshafen
(E) LAND: Bundesrepublik Deutschland
(F) POSTLEITZAHL: D-6700
(G) TELEPHON: 0621/6048526 (H) TELEFAX: 0621/6043123 (I) TELEX: 1762175170
(ii) ANMELDETITEL: Serotonin-Rezeptor: Verfahren zu seiner Herstellun und Verwendung
(iii) ANZAHL DER SEQUENZEN: 3
(iv) COMPUTER-LESBARE FORM:
(A) DATENTRÄGER: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.25 (EPA)
(2) INFORMATION ZU SEQ ID NO: 1:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 1414 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: CDNS zu mRNS
(iii) HYPOTHETISCH: NEIN
(iii) ANTISENSE: NEIN
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
CCTGTGACCT CTCCTTTCGG CTGAGAACAC AGGCGGAGGA GTTTACTGAG GAACCCACGG 6 AACTGGCTAG CCAAAGGAGA CAAGCCTATA GTCTCCATGA TCCTCCCGTC CTCTGTTCTT 12
(2) INFORMATION ZU SEQ ID NO: 2:
(i) SEQUENZ CHARÄKTERISTIKA:
(A) LÄNGE: 1228 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS : cDNS zu iriRNS
(iii) HYPOTHETISCH: NEIN
(iii) ANTISENSE : NEIN
(ix) MERKMALE :
(A) NAME/SCHLÜSSEL : CDS
(B) LAGE : 28 . . 1197
(D) SONSTIGE ANGÄBEN: /product= "Human 5-HT 1B Rezep¬ tor"
ERSATZBLATT (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:
CGCTCCGCAG CCAGGACGAG GAGAGCT ATG GAG GAA CCG GGT GCT CAG TGC 51
Met Glu Glu Pro Gly Ala Gin Cys 1 5
GCT CCA CCG CCG CCC GCG GGC TCC GAG ACC TGG GTT CCT CAA GCC AAC 99 Ala Pro Pro Pro Pro Ala Gly Ser Glu Thr Trp Val Pro Gin Ala Asn
10 15 20
TTA TCC TCT GCT CCC TCC CGA AAC TGC AGC GCC AAG GAC TAC ATT TAC 147 Leu Ser Ser Ala Pro Ser Arg Asn Cys Ser Ala Lys Asp Tyr Ile Tyr 25 30 35 40
CAG GAC TCT ATC TCC CTA CCC TGG AAA GTA CTG CTG GTT ATG CTA TTG 195 Gin Asp Ser Ile Ser Leu Pro Trp Lys Val Leu Leu Val Met Leu Leu
45 50 55
GCG CTC ATC ACC TTG GCC ACC ACG CTC TCC AAT GCC TTT GTG ATT GCC 243 Ala Leu Ile Thr Leu Ala Thr Thr Leu Ser Asn Ala Phe Val Ile Ala
60 65 70
ACA GTG TAC CGG ACC CGG AAA CTG CAC ACC CCG GCT AAC TAC CTG ATC 291 Thr Val Tyr Arg Thr Arg Lys Leu His Thr Pro Ala Asn Tyr Leu Ile
75 80 85
GCC TCT CTG GCG GTC ACC GAC CTG CTT GTG TCC ATC CTG GTG ATG CCC 339 Ala Ser Leu Ala Val Thr Asp Leu Leu Val Ser Ile Leu Val Met Pro
90 95 100
ATC AGC ACC ATG TAC ACT GTC GCC GGC CGC TGG ACA CTG GGC CAG GTG 387 Ile Ser Thr Met Tyr Thr Val Ala Gly Arg Trp Thr Leu Gly Gin Val 105 110 115 120
GTC TGT GAC TTC TGG CTG TCG TCG GAC ATC ACT TGT TGC ACT GCC TCC 435 Val Cys Asp Phe Trp Leu Ser Ser Asp Ile Thr Cys Cys Thr Ala Ser
125 130 135
ATC CTG CAC CTC TGT GTG ATC GCC CTG GAC CGC TAC TGG GCC ATC ACG 483 Ile Leu His Leu Cys Val Ile Ala Leu Asp Arg Tyr Trp Ala Ile Thr
140 145 150
GAC GAC GTG GAG TAC TCA GCT AAA AGG ACT CCC AAG AGG GCG GCG GTC 531 Asp Asp Val Glu Tyr Ser Ala Lys Arg Thr Pro Lys Arg Ala Ala Val
155 160 165
ATG ATC GCG CTG GTG TGG GTC TTC TCC ACC TCT GCC TCG CTG CCG CCC 579 Met Ile Ala Leu Val Trp Val Phe Ser Thr Ser Ala Ser Leu Pro Pro
170 175 180
TTC TTC TGG CGT CAG GCT AAG GCC GAA GAG GAG GTG TCG GAA TGC GTG 627 Phe Phe Trp Arg Gin Ala Lys Ala Glu Glu Glu Val Ser Glu Cys Val 185 190 195 200
GTG AAC ACC GAC CAC ATC CTC TAC ACG GTC TAC TCC ACG GTG GGT GCT 675 Val Asn Thr Asp His Ile Leu Tyr Thr Val Tyr Ser Thr Val Gly Ala 205 210 215
ERSATZBLATT TTC TAC TTC CCC ACC CTG CTC CTC ATC GCC CTC TAT GGC CGC ATC TAC 723 Phe Tyr Phe Pro Thr Leu Leu Leu Ile Ala Leu Tyr Gly Arg Ile Tyr
220 225 230
GTA GAA GCC CGC TCC CGG ATT TTG AAÄ CAG ACG CCC AAC AGG ACC GGC 771 Val Glu Ala Arg Ser Arg Ile Leu Lys Gin Thr Pro Asn Arg Thr Gly
235 240 245
AAG CGC TTG ACC CGA GCC CAG CTG ATA ACC GAC TCC CCC GGG TCC ACG 819 Lys Arg Leu Thr Arg Ala Gin Leu Ile Thr Asp Ser Pro Gly Ser Thr
250 255- 260
TCC TCG GTC ACC TCT ATT AAC TCG CGG GTT CCC GAC GTG CCC AGC GAA 867 Ser Ser Val Thr Ser Ile Asn Ser Arg Val Pro Asp Val Pro Ser Glu 265 270 275 280
TCC GGA TCT CCT GTG TAT GTC AAC CAA GTC AAA GTG CGA GTC TCC GAC 915 Ser Gly Ser Pro Val Tyr Val Asn Gin Val Lys Val Arg Val Ser Asp
285 290 295
GCC CTG CTG GAA AAG AAG AAA CTC ATG GCC GCT AGG GAG CGC AAA GCC 963 Ala Leu Leu Glu Lys Lys Lys Leu Met Ala Ala Arg Glu Arg Lys Ala
300 305 310
ACC AAG ACC CTA GGG ATC ATT TTG GGA GCC TTT ATT GTG TGT TGG CTA 1011 Thr Lys Thr Leu Gly Ile Ile Leu Gly Ala Phe Ile Val Cys Trp Leu
315 320 325
CCC TTC TTC ATC ATC TCC CTA GTG ATG CCT ATC TGC AAA GAT GCC TGC 1059 Pro Phe Phe Ile Ile Ser Leu Val Met Pro Ile Cys Lys Asp Ala Cys
330 335 340
TGG TTC CAC CTA GCC ATC TTT GAC TTC TTC ACA TGG CTG GGC TAT CTC 1107 Trp Phe His Leu Ala Ile Phe Asp Phe Phe Thr Trp Leu Gly Tyr Leu 345 350 355 360
AAC TCC CTC ATC AAC CCC ATA ATC TAT ACC CTG TCC AÄT GAG GAC TTT 1155 Asn Ser Leu Ile Asn Pro Ile Ile Tyr Thr Leu Ser Asn Glu Asp Phe
365 370 375
AAA CAA GCA TTC CAT AAA CTG ATA CGT TTT AAG TGC ACA AGT 1197
Lys Gin Ala Phe His Lys Leu Ile Arg Phe Lys Cys Thr Ser 380 385 390
TGACTTGTCA ATGGCATTGG GGTCGCCTAA G 1228
(2) INFORMATION ZU SEQ ID NO: 3:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LäNGE: 390 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
ERSATZBLATT (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:
Met Glu Glu Pro Gly Ala Gin Cys Ala Pro Pro Pro Pro Ala Gly Ser
1 5 10 15
Glu Thr Trp Val Pro Gin Ala Asn Leu Ser Ser Ala Pro Ser Arg Asn
20 25 30
Cys Ser Ala Lys Asp Tyr Ile Tyr Gin Asp Ser Ile Ser Leu Pro Trp
35 40 45
Lys Val Leu Leu Val Met Leu Leu Ala Leu Ile Thr Leu Ala Thr Thr
50 55 60
Leu Ser Asn Ala Phe Val Ile Ala Thr Val Tyr Arg Thr Arg Lys Leu 65 70 75 80
His Thr Pro Ala Asn Tyr Leu Ile Ala Ser Leu Ala Val Thr Asp Leu
85 90 95
Leu Val Ser Ile Leu Val Met Pro Ile Ser Thr Met Tyr Thr Val Ala
100 105 110
Gly Arg Trp Thr Leu Gly Gin Val Val Cys Asp Phe Trp Leu Ser Ser
115 120 125
Asp Ile Thr Cys Cys Thr Ala Ser Ile Leu His Leu Cys Val Ile Ala
130 135 140
Leu Asp Arg Tyr Trp Ala Ile Thr Asp Asp Val Glu Tyr Ser Ala Lys 145 150 155 160
Arg Thr Pro Lys Arg Ala Ala Val Met- Ile Ala Leu Val Trp Val Phe
165 170 175
Ser Thr Ser Ala Ser Leu Pro Pro Phe Phe Trp Arg Gin Ala Lys Ala
180 185 190
Glu Glu Glu Val Ser Glu Cys Val Val Asn Thr Asp His Ile Leu Tyr
195 200 205
Thr Val Tyr Ser Thr Val Gly Ala Phe Tyr Phe Pro Thr Leu Leu Leu
210 215 220
Ile Ala Leu Tyr Gly Arg Ile Tyr Val Glu Ala Arg Ser Arg Ile Leu 225 230 235 240
Lys Gin Thr Pro Asn Arg Thr Gly Lys Arg Leu Thr Arg Ala Gin Leu
245 250 255
Ile Thr Asp Ser Pro Gly Ser Thr Ser Ser Val Thr Ser Ile Asn Ser
260 265 270
Arg Val Pro Asp Val Pro Ser Glu Ser Gly Ser Pro Val Tyr Val Asn
275 280 285
Gin Val Lys Val Arg Val Ser Asp Ala Leu Leu Glu Lys Lys Lys Leu
290 295 300
Met Ala Ala Arg Glu Arg Lys Ala Thr Lys Thr Leu Gly Ile Ile Leu 305 310 315 320
Gly Ala Phe Ile Val Cys Trp Leu Pro Phe Phe Ile Ile Ser Leu Val 325 330 335 Met Pro Ile Cys Lys Asp Ala Cys Trp Phe His Leu Ala Ile Phe Asp
340 345 350
Phe Phe Thr Trp Leu Gly Tyr Leu Asn Ser Leu Ile Asn Pro Ile Ile
355 360 365
Tyr Thr Leu Ser Asn Glu Asp Phe Lys Gin Ala Phe His Lys Leu Ile
370 375 380
Arg Phe Lys Cys Thr Ser 385 390

Claims

Patentansprüche
1. Proteine mit der in SEQ ID NO 3 beschriebenen Amino- säuresequenz.
2. DNA-Sequenzen, die für 5-HTιB-Rezeptoren codieren und die aus der Gruppe, die von
a) DNA-Sequenzen der in SEQ ID NO 2 beschriebenen Struktur,
b) DNA-Sequenzen, die für Proteine gemäß Anspruch 1 codieren, und
c) DNA-Sequenzen, die unter Standardbedingungen mit DNA-Sequenzen a) oder b) hybridisieren, gebildet wird,
ausgewählt sind.
3. Expressionsvektor, der eine DNA-Sequenz gemäß Anspruch 2 enthält.
4. Verfahren zur Herstellung eines 5-HTιB-Rezeptors unter Verwendung eines Expressionsvektors gemäß Anspruch 3.
5. Verwendung von DNA-Sequenzen gemäß Anspruch 2 zur Identifizierung funktionaler Liganden für 5-HTιB-Re- zeptoren.
6. Verfahren zur Identifizierung funktionaler Liganden für 5-HTiß-Rezeptoren, dadurch gekennzeichnet, daß man mit einer für einen 5-HTιB-Rezeptor codierenden DNA-Sequenz gemäß Anspruch 2 Zellen transfiziert, die Membranen dieser Zellen isoliert und mit diesen Membranen übliche Rezeptorbindungsexperimente durchführt.
7. Verfahren zur Identifizierung funktionaler Liganden für 5~HTiB-Rezeptoren, dadurch gekennzeichnet, daß man mit einer für einen 5-HTιB-Rezeptor codierenden DNA-Sequenz gemäß Anspruch 2 Zellen transfiziert und die in diesen Zellen durch Bindung der Liganden an den Rezeptor verur- sachte Veränderung des second messenger Spiegels durch ein Reportersystem detektiert.
EP93909902A 1992-05-16 1993-05-06 Menschlicher 5ht-1b rezeptor (serotonin rezeptor), verfahren zur herstellung und seine verwendungen Withdrawn EP0641386A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19924216319 DE4216319A1 (de) 1992-05-16 1992-05-16 Serotonin Rezeptor, Verfahren zur Herstellung und seine Verwendung
DE4216319 1992-05-16
PCT/EP1993/001105 WO1993023535A1 (de) 1992-05-16 1993-05-06 Menschlicher 5ht-1b rezeptor (serotonin rezeptor), verfahren zur herstellung und seine verwendungen

Publications (1)

Publication Number Publication Date
EP0641386A1 true EP0641386A1 (de) 1995-03-08

Family

ID=6459115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93909902A Withdrawn EP0641386A1 (de) 1992-05-16 1993-05-06 Menschlicher 5ht-1b rezeptor (serotonin rezeptor), verfahren zur herstellung und seine verwendungen

Country Status (5)

Country Link
EP (1) EP0641386A1 (de)
JP (1) JPH07506724A (de)
CA (1) CA2135905A1 (de)
DE (1) DE4216319A1 (de)
WO (1) WO1993023535A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1334130A2 (de) * 2000-10-31 2003-08-13 Bayer Ag Regulation des menschlichen serotoninrezeptors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278045A (en) * 1990-02-28 1994-01-11 Du Pont Merck Pharmaceutical Company Method and compositions to screen compounds for enhancement of the cholinergic, dopaminergic and serotonergic function
US5155218A (en) * 1990-05-08 1992-10-13 Neurogenetic Corporation Dna encoding human 5-ht1d receptors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9323535A1 *

Also Published As

Publication number Publication date
WO1993023535A1 (de) 1993-11-25
CA2135905A1 (en) 1993-11-25
JPH07506724A (ja) 1995-07-27
DE4216319A1 (de) 1993-11-18

Similar Documents

Publication Publication Date Title
DE3588219T2 (de) T-Zellenrezeptor, spezifisch für Antigenpolypeptide und verwandte Polynukleotide
DE69232832T2 (de) Bindungsdomänen in notch- und delta-proteinen
DE69132306T2 (de) Menschlicher und Murin-Interleukin-5-Rezeptor
FI116059B (fi) Analogiamenetelmä komponentti B:ksi kutsutun rekombinanttiproteiinin valmistamiseksi sekä DNA-molekyyli, ilmentämisvektori ja isäntäsolu
DE69128362T2 (de) Zusammensetzungen und verfahren zur identifizierung von molekülen mit biologischer wirksamkeit
DE69332334T2 (de) Verfahren zur verstärkten expression von virusproteinen
DE3856238T2 (de) DNA, die für Proteine kodiert, die menschliches IL-1 binden
DE69626859T2 (de) Il-13 rezeptor polypeptid
DE69426033T2 (de) Für die alpha-1e untereinheit des menschlichen kalziumkanals kodierende dna
DE69736109T2 (de) Differenzierungsinhibitor
WO1995003328A2 (de) Melanom-inhibierendes protein
US6280973B1 (en) Mammalian methadone-specific opioid receptor gene and uses
EP0720623B1 (de) Monoklonale antikörper gegen leukozyten-spezifische g-protein-gekoppelte rezeptoren
DE3752391T2 (de) Rattenproteinkinase C und Verfahren zur Herstellung
DE69427921T2 (de) Epsilon opioid rezeptor und dessen verwendungen
DE3855634T2 (de) Innerhalb des alpha-Locus gelegenes T-Zell-Rezeptor-Gen und DNA-Konstruktionen
DE69413944T2 (de) Humane 5-ht2 rezeptor
AT410672B (de) Nucleinsäure, die einen nervengewebe-natriumkanal kodiert
WO1993023535A1 (de) Menschlicher 5ht-1b rezeptor (serotonin rezeptor), verfahren zur herstellung und seine verwendungen
DE69230903T2 (de) Menschlicher KA-1 Rezeptor, Rezeptor aus der EAA1-Familie (Excitatory Amino Acid) mit hoher Affinität für Kainat
WO1993023536A1 (de) Untereinheiten von nmda-rezeptoren, verfahren zu ihrer herstellung und ihre verwendung
DE69836278T2 (de) Allele formen von menschlichem stat3
DE69230872T2 (de) Menschlicher KA-2-Rezeptor, Rezeptor aus der EAA2-Familie (Excitatory Amino Acid) mit hoher Affinität für Kainat
DE69230492T2 (de) Menschlicher nervenzellenadhäsionsfaktor l1, dessen herstellung und für denselben kodierendes gen
WO1992011362A1 (de) Serotonin rezeptor der klasse 1: der 5-ht1x-rezeptor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19960322

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19980305