EP0633923B1 - Granulares, nichtionische tenside enthaltendes, phosphatfreies additiv für wasch- und reinigungsmittel - Google Patents

Granulares, nichtionische tenside enthaltendes, phosphatfreies additiv für wasch- und reinigungsmittel Download PDF

Info

Publication number
EP0633923B1
EP0633923B1 EP93906534A EP93906534A EP0633923B1 EP 0633923 B1 EP0633923 B1 EP 0633923B1 EP 93906534 A EP93906534 A EP 93906534A EP 93906534 A EP93906534 A EP 93906534A EP 0633923 B1 EP0633923 B1 EP 0633923B1
Authority
EP
European Patent Office
Prior art keywords
weight
component
granular
free
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93906534A
Other languages
English (en)
French (fr)
Other versions
EP0633923A1 (de
Inventor
Lothar Pioch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0633923A1 publication Critical patent/EP0633923A1/de
Application granted granted Critical
Publication of EP0633923B1 publication Critical patent/EP0633923B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/126Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • C11D11/0088Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Definitions

  • the invention relates to a granular additive for washing and cleaning agents, which consists of two granular powder components of a defined composition, on which liquid, semi-solid or solid nonionic surfactants are adsorbed. Both powder components have a porous structure and can absorb up to 30% by weight, based on the additive, of such nonionic surfactants without the free-flowing properties suffering.
  • nonionic surfactants have a very high cleaning power, which makes them particularly suitable for use in low-temperature detergents.
  • their proportion cannot be increased significantly beyond 8 to 10 percent by weight in the generally customary production of detergents by spray drying, since this would otherwise result in excessive smoke formation in the exhaust air from the spray towers and inadequate pouring properties of the spray powder. Processes have therefore been developed in which the liquid or melted nonionic surfactant is mixed onto the previously spray-dried powder or sprayed onto a carrier substance.
  • water-soluble builder substances in particular spray-dried phosphates, carbonates, bicarbonates, soluble silicates and borates, and water-insoluble builder substances, such as sodium aluminosilicate (zeolite) and silicon dioxide (aerosil), have been proposed as the carrier substance, but the known agents often have only a limited adsorption capacity and certain application technology disadvantages on.
  • phosphates are often undesirable because of their eutrophic properties.
  • Fine powdered zeolites also have only a limited absorption capacity for liquid substances, while special adsorbents such as diatomaceous earth and Aerosil ® , as inert components, do not contribute to the washing effect.
  • DE-A-24 18 294 discloses detergents which consist of a powder component obtained by hot spray drying and granular sodium perborate tetrahydrate, the latter being impregnated with a defined mixture of nonionic surfactants. Due to the selection of non-ionic surfactants, the granulate is dust-free and free-flowing. According to EP-A-34 194, the perborate tetrahydrate is treated with nonionic surfactants which contain both ethylene glycol ether groups and propylene glycol ether groups. In addition to good flowability, the granules are particularly characterized by being odorless.
  • DE-A-25 07 926 contains examples of the preparation of premixes, powder mixtures of aluminosilicate (zeolite), perborate and optionally also a bleach activator being sprayed with nonionic surfactants.
  • the resulting granules are then mixed with other powder components, in particular tower spray powder.
  • a certain stickiness of the granules disturbs, which can also be transferred to the overall mixture, especially if the admixed tower spray powder contains no phosphates.
  • EP-A-168 102 discloses a process for producing high-density detergents in which nonionic surfactants are sprayed onto a powder mixture of sodium perborate monohydrate, zeolite and other builder substances. In this spray mixing process, granulation of the base powder occurs at the same time. Another part of the total nonionic surfactants used is sprayed onto a second powder component which is free of sodium sulfate and consists of spray-dried granules, the usual surfactants, builder substances and others Contains detergent ingredients. Both the perborate-containing base powder and the spray-dried powder component contain considerable amounts of sodium tripolyphosphate in the agents according to the examples.
  • absorbent carrier grains which consist of several components and are usually produced by spray drying. Examples of these are the agents according to US-A-3 849 327, US-A-3 886 098 and US-A-3 838 027 and US-A-4 269 722 (DE-A-27 42 683).
  • these carrier grains developed especially for the adsorption of nonionic surfactants, contain considerable amounts of phosphates, which limits their possible uses.
  • Phosphate-free carrier grains are known from DE-A-32 06 265 and DE-A-32 06 379. They consist essentially of sodium carbonate or hydrogen carbonate, zeolite, sodium silicate, bentonite and polyacrylate. The high proportion of carbonates, however, favors the formation of calcium carbonate in hard water, while the sodium silicate in connection with zeolite considerably deteriorates the dispersibility of the grains in water.
  • EP-A-184 794 discloses a granular adsorbent which is able to absorb high proportions of liquid to pasty detergent constituents, in particular nonionic surfactants, and (based on anhydrous substance) 60 to 80% by weight of zeolite, 0.1 to 8% by weight. -% sodium silicate, 3 to 15 wt .-% of homo- or copolymers of acrylic acid, methacrylic acid and / or maleic acid, 8 to 18 wt .-% water and optionally up to 5 wt .-% contains nonionic surfactants and can be obtained by spray drying.
  • EP-A-425 804 discloses a granular, nonionic surfactant-containing additive for detergents and cleaning agents, which has improved washing-in behavior and consists of a granular adsorbent (I) and nonionic surfactants (II) adsorbed thereon, where (I) 50 to 75% by weight of finely crystalline zeolite, 2 to 10% by weight of a layered silicate, 3 to 15% by weight of the sodium salt of a (co) polymeric carboxylic acid, optionally up to 10% by weight of sodium sulfate and up to 3 Wt .-% of a surfactant and the rest contains water and minor components and the weight ratio of adsorbent (I) to nonionic surfactants (II) is 2: 1 to 20: 1.
  • component (B) contains a water-soluble soap, which significantly improves the washing-up behavior in the washing machine.
  • the soap-containing additive has a lower absorbency for nonionic surfactants and has a lower autoignition temperature or increased flammability.
  • the object of the invention was to provide an additive for granular and phosphate-free detergents and cleaning agents which contains nonionic surfactants and which has both improved wash-in behavior and an increased autoignition temperature or a reduced flammability.
  • the granular components (A) and (B) and the finished agent have an average particle size of 0.2 to 1.2 mm, preferably 0.3 to 1 mm, in the interest of good flowability and trouble-free flushing behavior.
  • the proportion of particles in the composite with a grain size of less than 0.05 mm is less than 1% by weight, preferably less than 0.1% by weight, the fraction with a grain size below 0.1 mm less than 2% by weight, preferably less than 1% by weight, the fraction with a grain size above 2 mm less than 5% by weight .-%, preferably less than 1 wt .-% and the proportion with a grain size above 1.2 mm less than 10 wt .-%, preferably less than 5 wt .-%.
  • Both components can have the same or a different grain size within the specified limits. Mixing and treating them together with nonionic surfactants can result in a slight agglomeration of the particles, in particular by attaching finely divided components to larger grains, and thus overall a slight increase in the average grain size.
  • the proportion of sodium perborate monohydrate (component A) is preferably 20 to 60% by weight and in particular 30 to 50% by weight.
  • the proportion of component (B) is preferably 35 to 70% by weight and in particular 40 to 60% by weight.
  • the proportion of the nonionic component (C) is preferably 7 to 25% by weight and in particular 10 to 20% by weight.
  • the perborate monohydrate is preferably used as loose, expanded pellets with a liter weight of 450 to 650 g / l, preferably 500 to 600 g / l.
  • Such granules are characterized by a good adsorption capacity for liquid to lard-like nonionic surfactants. Loading the granules with the nonionic surfactants generally increases the bulk density by about 50 to 200 g / l, which is in the interest of a higher total bulk weight and a saving in packaging and transport volume.
  • Component (B) likewise preferably consists of a granular, porous material, as can be obtained by spray drying aqueous slurries of water-insoluble or water-soluble salts or salt mixtures. It contains synthetic zeolite of the NaA type in proportions of 45 to 75, preferably 50 to 72% by weight and in particular 55 to 70% by weight (based on anhydrous substance). Mixtures of zeolite NaA and NaX can also be used, the proportion of the zeolite NaX in such mixtures advantageously being below 30%, in particular below 20%. Suitable zeolites have no particles larger than 30 ⁇ m and consist of at least 80% particles less than 10 ⁇ m in size.
  • Their average particle size (volume distribution, measurement method: Coulter Counter) is in the range from 1 to 10 ⁇ m.
  • the zeolites can still contain excess alkali from their production.
  • the water content of synthetic zeolites is usually 18 to 22% by weight.
  • the layered silicates can contain hydrogen, alkali and alkaline earth ions, in particular Na+ and Ca++.
  • the amount of water of hydration is usually in the range of 8 to 20% by weight and depends on the swelling condition or the type of processing.
  • the particle size is in the range from 0.05 to 25 ⁇ m, usually less than 10 ⁇ m.
  • Useful sheet silicates are known, for example, from US-A-3,966,629, US-A-4,062,647 (DE-A-23 34 899), EP-A-26 529 and EP-A-28 432.
  • Layered silicates are preferably used which are largely free of calcium ions and strongly coloring iron ions due to an alkali treatment.
  • the layer silicate content of component (B) is preferably 3 to 7% by weight.
  • component (B) Another advantageous component of component (B) is sodium sulfate, which is calculated as an anhydrous substance and is present in proportions of 0 to 30% by weight, preferably 1 to 25 and in particular 3 to 20% by weight.
  • the sodium sulfate contributes to a considerable improvement in the grain structure of component (B) and the washing-in behavior of the detergent additive and at the same time increases its bulk density, which results in the possibility of saving packaging and transport volume.
  • Another inorganic salt that can be combined with the zeolite is sodium carbonate, which can be present in proportions of up to 20% by weight, based on component (B). With regard to the flushing-in behavior, however, such mixtures are inferior to the mixtures of zeolite and sodium sulfate.
  • component (B) in inorganic salts including zeolite should be at least 75% by weight, preferably at least 85% by weight (based on component B).
  • component (B) contains organic salts which are of particular advantage for the grain structure, the grain stability and in particular for the washing-in behavior of the granules and their mixtures with other detergent constituents.
  • organic salts which are contained in component (B) include the sodium or potassium salts, preferably the sodium salts of homopolymeric and / or copolymeric carboxylic acids.
  • Suitable homopolymers are polyacrylic acid, polymethacrylic acid and polymaleic acid, with polyacrylic acid being preferred.
  • Suitable copolymers are those of acrylic acid with methacrylic acid or copolymers of acrylic acid, methacrylic acid or maleic acid with vinyl ethers, such as vinyl methyl ether or vinyl ethyl ether.
  • the proportion thereof in the interest of sufficient hater solubility is not more than 50 mole percent, preferably less than 30 mole percent.
  • Copolymers of acrylic acid or methacrylic acid with maleic acid as described in more detail in EP-A-25 551, have proven to be particularly suitable. These are copolymers which contain 40 to 90% by weight of acrylic acid or methacrylic acid and 60 to 10% by weight of maleic acid. Such copolymers are particularly preferred, in which 45 to 85 percent by weight acrylic acid and 55 to 15 percent by weight maleic acid are present.
  • the molecular weight of the homopolymers or copolymers is generally 2,000 to 150,000, preferably 5,000 to 100,000.
  • Their proportion in component (B) is, for example, up to 12% by weight, preferably 1.5 to 8% by weight. and in particular 2 to 5% by weight, calculated as the sodium salt.
  • the resistance of the grains to abrasion increases with an increasing proportion of polyacid or its salts. With a proportion from 1.5% by weight, sufficient abrasion resistance is achieved in many cases. Mixtures with 2 to 5% by weight of sodium salt of polyacid have optimal abrasion properties.
  • the zeolite in those cases in which the zeolite is used in the production of the granular component (B) not in powder or spray-dried form, but rather as a moist filter cake, it can contain dispersion stabilizers, as is the case in DE-A-25 27 388 are described in more detail. Suitable stabilizers are in particular nonionic surfactants with HLB values below 12, such as ethoxylated tallow alcohol with 3 to 8 EO. The proportion of these additives in the powder component (B) can, depending on the zeolite content, be up to 4% by weight, usually 0.3 to 3% by weight. In the final balance, this portion of component (C) is added.
  • the difference of up to 100% by weight is due to water, which is present in bound form and as moisture, the major amount being bound to the zeolite.
  • a proportion of the water which is about 8 to 18 wt .-% (based on the agent) can be removed at a drying temperature of 145 ° C.
  • Another portion which is between 4 and 8% by weight depending on the zeolite portion, is released at the annealing temperature by about 800 ° C. and corresponds to the water stored in the crystal lattice of the zeolite.
  • the average grain size of component (B) is 0.2 to 1.2 mm, the proportion of the grains below 0.05 mm less than 1% by weight, preferably less than 0.5% by weight and above 2 mm should not be more than 5% by weight.
  • at least 80% by weight, in particular at least 90% by weight, of the grains have a size of 0.1 to 1.2 mm, the proportion of the Grains between 0.1 and 0.05 mm, preferably not more than 3% by weight, in particular less than 1% by weight, the proportion of the grains between 0.1 and 0.2 mm less than 20% by weight , in particular less than 10% by weight and the proportion of the grains between 1.2 and 2 mm is not more than 10% by weight, in particular not more than 5% by weight.
  • the bulk density of component (B) in the preferred embodiment is 400 to 680 g / l, preferably 450 to 650 g / l.
  • the adsorption of the non-ionic surfactants also increases it by 50 to 200 g / l.
  • the nonionic surfactants adsorbed on the mixture of components (A) and (B) are those which are usually used in washing and cleaning agents.
  • Other suitable additives are organic solvents, with which the cleaning ability of detergents and cleaning agents is improved, in particular with regard to greasy soiling, and which can in this way be incorporated into a granular cleaning agent without problems.
  • other substances such as fragrances, finishing agents, optical brighteners and anionic or cationic surfactants, can also be mixed into the mixture of components (A) and (B) after prior dissolution or dispersion in organic solvents or the liquid or molten nonionic surfactants. These substances penetrate into the porous grains together with the solvent or dispersant and are thus protected against interactions with other powder components.
  • Preferred detergent constituents which are bound to the granular mixture and are present together with this as a free-flowing mixture are liquid to pasty nonionic surfactants from the class of the polyglycol ethers, derived from alcohols with 10 to 22, in particular 12 to 18, carbon atoms. These alcohols can be saturated or olefinically unsaturated, linear or methyl-branched in the 2-position (oxo radical).
  • EO ethylene oxide
  • PO propylene oxide
  • the number of EO or PO groups corresponds to the statistical mean for technical alkoxylates.
  • ethoxylated fatty alcohols examples include C12-18 coconut alcohols with 3 to 12 EO, C16 ⁇ 18 tallow alcohol with 4 to 16 EO, oleyl alcohol with 4 to 12 EO as well as ethoxylation products of appropriate chain and EO distribution available from other native fatty alcohol mixtures. From the series of ethoxylated oxo alcohols, for example, those of the composition C12 ⁇ 15 + 5 to 10 EO and C14-C15 + 5 to 12 EO are suitable.
  • Mixtures of low and highly ethoxylated alcohols are distinguished by an increased detergency against both greasy and mineral soiling, for example those made from tallow alcohol with 3 to 6 EO and tallow alcohol with 12 to 16 EO or C13 ⁇ 15 oxo alcohol with 3 to 5 EO and C12 ⁇ 14 oxo alcohol with 8 to 12 EO.
  • Agents in which the adsorbed nonionic surfactants have both long hydrophobic residues and higher degrees of ethoxylation have particularly favorable flushing properties.
  • the bulk density of the additives according to the invention is preferably between 600 and 950 g / l, in particular between 650 and 850 g / l.
  • additives according to the invention lie above all in that they have an increased autoignition temperature or a lower flammability with comparable flushing behavior compared to soap-containing additives of the prior art.
  • additives of the prior art which contain zeolite and (co) polymeric polycarboxylates, but contain neither soap nor layered silicates, they have, depending on the amount of nonionic surfactant applied, an analogue to better auto-ignition temperature or flammability and better flushing behavior.
  • An additional advantage of these additives is that they are more free-flowing than the additives mentioned in the prior art.
  • component (B) in the preferred embodiment is based, for example, on an aqueous batch containing a total of 40 to 55% by weight of water-free ingredients, which is sprayed into a falling space by means of nozzles and by means of drying gases which have an inlet temperature of 150 to 280 ° C and an outlet temperature of 50 to 120 ° C, is dried to a removable moisture content at 145 ° C.
  • the aqueous batch can be prepared by mixing the dry or water-containing constituents with the addition of the water required for liquefaction.
  • the corresponding free acids can also be incorporated and the alkali required for salt formation can be added separately.
  • alkali hydroxide in particular NaOH
  • NaOH is also recommended in order to make the aqueous zeolite suspension or the slurry alkaline, i.e. adjust to a pH of at least 8 and provide a sufficient alkali excess so that the pH does not drop to less than 8 during spray drying.
  • Such a pH reduction which would lead to a loss of activity of the zeolite, can be caused by CO2 in the dry gas.
  • the addition of NaOH which ensures a sufficient alkali reserve, can be, for example, up to 3% by weight. In general, 0.2 to 1% by weight is sufficient.
  • the content of water-free ingredients in the aqueous mixture is preferably 43 to 50% by weight. Its temperature is advantageously 50 to 100 ° C and its viscosity 2,000 to 20,000 mPas, usually 8,000 to 14,000 mPas.
  • the atomization pressure is usually 20 to 120 bar, preferably 30 to 80 bar.
  • the drying gas which is generally obtained by burning heating gas or heating oil, is preferably conducted in countercurrent.
  • the inlet temperature measured in the ring channel (ie immediately before entering the lower part of the tower), is 150 to 280 ° C, preferably 170 to 250 ° C .
  • the exhaust gas laden with moisture leaving the tower usually has a temperature of 50 to 130 ° C., preferably 55 to 115 ° C.
  • the spray drying is conducted so that the particle size of the spray product has the distribution given above.
  • Existing fine and coarse grains are screened before further processing. It has been shown that the rinsing behavior of the adsorption impregnated with nonionic surfactants deteriorates with increasing proportion of fine grain.
  • Both powder components are combined to form a homogeneous mixture and then mixed with liquid or nonionic liquid or liquefied by heating Treated surfactants or surfactant mixtures.
  • the nonionic surfactant is expediently sprayed onto the agitated mixture. Heating the nonionic surfactant to temperatures between 35 and 60 ° C, preferably 40 to 50 ° C, accelerates the adsorption process.
  • the abrasion resistance and constancy of shape of the grains is so high if the specified proportions or production conditions are observed that even the freshly prepared, but especially the cooled and possibly reheated, matured grains can be treated, mixed and conveyed with the liquid additives under the usual spray mixing conditions without the formation of fine fractions or coarser agglomerates.
  • the mixing of the two granular components and the subsequent spraying with nonionic surfactants can be carried out continuously or batchwise in conventional mechanical mixing devices, such as drum mixers, fluidized bed mixers or spray mixers.
  • the mixing and spraying process can also be carried out in a single mixing apparatus with continuous operation, the combination of the two powder components in a first mixing section and the admixing of the nonionic component in a final mixing section.
  • a particular advantage of the invention can be seen in the fact that the adsorption of the liquid nonionic surfactants and their diffusion into the interior of the grain takes place comparatively quickly. Shortly after leaving the mixing apparatus, the grain mixtures are fully free-flowing and can be processed without intermediate storage or time-consuming post-ripening processes.
  • the grains can optionally be dusted with finely divided powders or coated on the surface. This can further improve the pourability and slightly increase the bulk density.
  • Suitable powdering agents have a grain size of 0.001 to at most 0.1 mm, preferably less than 0.05 mm and can be present in proportions of 0.03 to 3, preferably 0.05 to 2% by weight, based on that with the additive loaded adsorbents are used.
  • finely powdered zeolites for example, finely powdered zeolites, silica airgel (Aerosil (R) ), colorless or colored pigments, such as titanium dioxide and other powder materials already proposed for powdering granules or detergent particles, such as finely powdered sodium tripolyphosphate, sodium sulfate, magnesium silicate and carboxylmethyl cellulose.
  • such treatment is generally not necessary, especially since the ability to be washed in is not improved thereby.
  • the granular adsorbents impregnated with the nonionic surfactants or with the mixtures of nonionic surfactant and additive can be mixed with further powdery to granular detergents or detergent components, as can be obtained, for example, by spray drying or granulation, or with bleaching agents or with bleaching detergents of known composition be mixed in any ratio.
  • their good flowability and their high grain stability are of great advantage, since an undesirable formation of abrasion and dust is avoided.
  • the powder mixtures are in turn stable in storage and do not tend to clump or exude the nonionic surfactant. When used, they are particularly easy to flush in compared to known agents.
  • the admixed spray powders and granules can also contain sodium sulfate, which is often advantageous for their grain properties, especially in the absence of phosphates. These admixed detergent components are therefore preferably also phosphate-free.
  • the absorbency of the granulate mixture according to the invention for nonionic surfactants is so high that an additional application of these surfactants to other mixture components is unnecessary.
  • the additives A1 and A2 according to the invention and the comparative additives V1 to V4 were examined in particular for their flammability and their flow behavior. All additives contained 40.9% by weight of perborate monohydrate with a bulk density of 460 g / l (sieve analysis: greater than 0.8 mm 0%, greater than 0.4 mm 48%, greater than 0.2 mm 47%, greater than 0.1 mm 5%, less than or equal to 0.1 mm 0%).
  • the additives A1, V1 and V2 each contained 34.1% by weight of component (B); additives A2, V3 and V4 each contained 46.5% by weight of component (B).
  • the mixtures of perborate monohydrate and component (B) were each sprayed with 25% by weight, based on the sprayed additive, of C12-C18 fatty alcohol with 5 EO; in the additives A2, V3 and V4, the mixtures of perborate monohydrate and component (B), each with 12.6% by weight, based on the sprayed additive, of C12-C18 fatty alcohol were sprayed with 5 EO.
  • the spray-dried component (B) had the composition given in Table 1 in the additives.
  • Table 1 Component (B) in A1 / A2 and V1 / V3 or V2 / V4 A1 / A2 V1 / V3 V2 / V4 Zeolite NaA (calculated as an anhydrous substance) 70.0 70.0 70.0 Tallow fatty alcohol with 5 EO 1.95 1.95 1.95 Laundrosil (R) DG-A (layered silicate treated with soda solution) 3.0 --- --- C12-C18 sodium fatty acid soap --- 3.0 --- Sodium sulfate --- --- 3.0 Sokalan CP5 (R) (acrylic acid-maleic acid polymer, sodium salt) 4.0 4.0 4.0 water 20.6 20.6 20.6 Sodium hydroxide 0.43 0.43 0.43 Silicone oil 0.02 0.02 0.02 Bulk density in g / l 610 460 575 Sieve analysis (in%) greater than 1.6 mm 0 0 0 0.8 mm 0 5 1 0.4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

  • Die Erfindung betrifft ein granulares Additiv für Wasch- und Reinigungsmittel, das aus zwei granularen Pulverkomponenten definierter Zusammensetzung besteht, an denen flüssige, halbfeste oder feste nichtionische Tenside adsorbiert sind. Beide Pulverkomponenten weisen eine poröse Struktur auf und können gemeinsam bis zu 30 Gew.-%, bezogen auf das Additiv, an derartigen nichtionischen Tensiden aufnehmen, ohne daß die Rieselfähigkeit darunter leidet.
  • Nichtionische Tenside besitzen bekanntlich ein sehr hohes Reinigungsvermögen, was sie insbesondere zur Verwendung in Niedrigtemperatur-Waschmitteln geeignet macht. Ihr Anteil läßt sich bei der allgemein üblichen Waschmittelherstellung mittels Sprühtrocknung jedoch nicht wesentlich über 8 bis 10 Gewichtsprozent hinaus steigern, da es sonst zu einer übermäßigen Rauchbildung in der Abluft der Sprühtürme sowie mangelhaften Rieseleigenschaften des Sprühpulvers kommt. Es wurden daher Verfahren entwickelt, bei denen das flüssige bzw. geschmolzene nichtionische Tensid auf das zuvor sprühgetrocknete Pulver aufgemischt bzw. auf eine Trägersubstanz aufgesprüht wird. Als Trägersubstanz wurden sowohl wasserlösliche Buildersubstanzen, insbesondere sprühgetrocknete Phosphate, Carbonate, Bicarbonate, lösliche Silikate und Borate als auch wasserunlösliche Buildersubstanzen, wie Natriumalumosilikat (Zeolith) und Siliciumdioxid (Aerosil) vorgeschlagen, jedoch weisen die bekannten Mittel vielfach nur ein beschränktes Adsorptionsvermögen sowie gewisse anwendungstechnische Nachteile auf. Phosphate sind darüber hinaus wegen ihrer eutrophierenden Eigenschaften vielfach unerwünscht. Feinpulvrige Zeolithe besitzen ebenfalls nur ein beschränktes Aufnahmevermögen für flüssige Stoffe, während spezielle Adsorptionsmittel, wie Kieselgur und Aerosil®, als inerte Bestandteile keinen Beitrag zur Waschwirkung liefern.
  • Aus DE-A-24 18 294 sind Waschmittel bekannt, die aus einer durch Heißsprühtrocknung erhaltenen Pulverkomponente und körnigem Natriumperborat-tetrahydrat bestehen, wobei letzteres mit einem definierten Gemisch nichtionischer Tenside imprägniert ist. Aufgrund der getroffenen Auswahl an nichtionischen Tensiden ist das Granulat staubfrei und gut rieselfähig. Gemäß EP-A-34 194 wird das Perborat-tetrahydrat mit nichtionischen Tensiden behandelt, die sowohl Ethylenglykolethergruppen wie auch Propylenglykolethergruppen enthalten. Die Granulate zeichnen sich außer durch gute Rieselfähigkeit insbesondere durch Geruchsfreiheit aus.
  • In DE-A-25 07 926 finden sich Beispiele über die Herstellung von Vorgemischen, wobei Pulvergemische aus Alumosilikat (Zeolith), Perborat und gegebenenfalls auch einem Bleichaktivator mit nichtionischen Tensiden besprüht werden. Die entstehenden Granulate werden anschließend mit weiteren Pulverkomponenten, insbesondere Turmsprühpulver vermischt. Hierbei stört eine gewisse Klebrigkeit der Granulate, die sich auch auf das Gesamtgemisch übertragen kann, insbesondere wenn das zugemischte Turmsprühpulver keine Phosphate enthält.
  • Versucht man, in diesen Granulaten das Natriumperborat-tetrahydrat durch Natriumperborat-monohydrat zu ersetzen, das sich bekanntlich durch eine bessere Löslichkeit in kaltem Wasser auszeichnet und daher im Niedrigtemperatur-Waschbereich Vorteile besitzt, so ergeben sich zusätzliche Schwierigkeiten. Ab einer gewissen kritischen Menge an adsorbiertem nichtionischen Tensid wird der Zündbereich des Gemisches so weit herabgesetzt, daß es unter ungünstigen Bedingungen zur Selbstentzündung der Gemische bereits bei Raumtemperatur kommen kann.
  • Aus EP-A-168 102 ist ein Verfahren zur Herstellung von Waschmitteln hoher Dichte bekannt, bei dem nichtionische Tenside auf ein Pulvergemisch aus Natriumperborat-monohydrat, Zeolith und weiteren Buildersubstanzen aufgesprüht werden. Bei diesem Sprühmischverfahren tritt gleichzeitig eine Granulierung des Basispulvers ein. Ein weiterer Teil der insgesamt eingesetzten nichtionischen Tenside wird auf eine zweite Pulverkomponente aufgesprüht, die frei von Natriumsulfat ist und aus einem sprühgetrockneten Granulat besteht, das übliche Tenside, Buildersubstanzen und sonstige Waschmittelbestandteile enthält. Sowohl das perborathaltige Basispulver als auch die sprühgetrocknete Pulverkomponente enthalten in den Mitteln gemäß den Beispielen erhebliche Mengen an Natriumtripolyphosphat. Wie bereits ausgeführt, führt ein solches Basispulver aus Perborat und pulverförmigem Zeolith, insbesondere wenn es frei von Tripolyphosphat ist, nach dem Aufbringen größerer Anteile an nichtionischen Tensiden zur Bildung klebriger, schlecht rieselfähiger Granulate. Um trotzdem größere Mengen an diesen Tensiden einarbeiten zu können, wird vorgeschlagen, nicht nur das Basispulver, sondern auch das Sprühtrocknungsprodukt in einer Sprühmischanlage in gleicher Weise zu behandeln. Dieses Verfahren ist daher vergleichsweise umständlich, da ein sehr viel größerer Produktstrom durch die Sprühmischanlage geführt werden muß. Das Problem der Selbstentzündung stellt sich bei diesem Verfahren im übrigen nicht, da der Anteil an Perborat-monohydrat im Basispulver nicht sehr hoch ist und mit dem nichtionischen Tensid gleichzeitig Wasser aufgesprüht wird.
  • Andererseits sind saugfähige Trägerkörner bekannt, die aus mehreren Bestandteilen bestehen und zumeist durch Sprühtrocknung hergestellt werden. Beispiele hierfür sind die Mittel gemäß US-A-3 849 327, US-A-3 886 098 und US-A-3 838 027 sowie US-A-4 269 722 (DE-A-27 42 683). Diese insbesondere zur Adsorption von nichtionischen Tensiden entwickelten Trägerkörner enthalten jedoch erhebliche Mengen an Phosphaten, was ihre Einsatzmöglichkeiten einschränkt. Phosphatfreie Trägerkörner sind aus DE-A-32 06 265 und DE-A-32 06 379 bekannt. Sie bestehen im wesentlichen aus Natriumcarbonat bzw. - hydrogencarbonat, Zeolith, Natriumsilikat, Bentonit und Polyacrylat. Der hohe Anteil an Carbonaten begünstigt jedoch eine Ausbildung von Calciumcarbonat in hartem Wasser, während das Natriumsilikat in Verbindung mit Zeolith die Dispergierbarkeit der Körner in Wasser erheblich verschlechtert.
  • Aus EP-A-184 794 ist ein körniges Adsorptionsmittel bekannt, das hohe Anteile an flüssigen bis pastösen Waschmittelbestandteilen, insbesondere nichtionischen Tensiden aufzunehmen vermag und (auf wasserfreie Substanz bezogen) 60 bis 80 Gew.-% Zeolith, 0,1 bis 8 Gew.-% Natriumsilikat, 3 bis 15 Gew.-% an Homo- oder Copolymeren der Acrylsäure, Methacrylsäure und/oder Maleinsäure, 8 bis 18 Gew.-% Wasser und gegebenenfalls bis zu 5 Gew.-% an nichtionischen Tensiden enthält und durch Sprühtrocknung erhältlich ist. In der Praxis hat sich gezeigt, daß in Waschmaschinen mit ungünstig konstruierten Einspülvorrichtungen sich die Produkte im Verlauf der Einspülphase nicht vollständig lösen und Rückstände hinterlassen. Dieses verschlechterte Einspülverhalten zeigen nicht nur die betreffenden Partikel selbst, vielmehr können sie auch einen Einfluß auf die Löslichkeit bzw. das Einspülverhalten der übrigen pulverförmigen Waschmittelkomponenten ausüben. Das hat zur Folge, daß ein an sich gut einspülbares Pulvergemisch insgesamt schlecht einspülbar wird, wenn es zusätzlich eine derartige Pulverkomponente im Gemisch enthält.
  • Aus der EP-A-425 804 ist ein granulares, nichtionische Tenside enthaltendes Additiv für Wasch- und Reinigungsmittel bekannt, das ein verbessertes Einspülverhalten aufweist und aus einem granularen Adsorptionsmittel (I) und daran adsorbierten nichtionischen Tensiden (II) besteht, wobei (I) 50 bis 75 Gew.-% feinkristallinen Zeolith, 2 bis 10 Gew.-% eines Schichtsilikates, 3 bis 15 Gew.-% des Natriumsalzes einer (co-)polymeren Carbonsäure, gegebenenfalls bis zu 10 Gew.-% Natriumsulfat und bis zu 3 Gew.-% eines Tensids sowie als Rest Wasser und Minderbestandteile enthält und das Gewichtsverhältnis Adsorptionsmittel (I) zu nichtionischen Tensiden (II) 2 : 1 bis 20 : 1 beträgt.
  • Die internationale Patentanmeldung W0 90/14412 beschreibt granulare Adsorptionsmittel, welche ein hohes Adsorptionsvermögen für nichtionische Tenside aufweisen und zusammen mit diesen ein verbessertes Lösungs- und Einspülverhalten besitzen. Diese granularen, rieselfähigen und phosphatfreien Waschmitteladditive enthalten (A) 10 bis 70 Gew.-% Natriumperborat-monohydrat, das eine mittlere Korngröße von 0,2 bis 1,2 mm aufweist, (B) 25 bis 80 Gew.-% eines granularen, eine mittlere Korngröße von 0,2 bis 1,2 mm aufweisenden Gemisches, das mindestens zu 75 Gew.-% anorganischer Natur und frei von Persauerstoff ist und (auf wasserfreie Substanz in Komponente B bezogen) 45 bis 75 Gew.-%. synthetischen, feinkristallinen Zeolith, 0 bis 30 Gew.-% Natriumsulfat und 1 bis 12 Gew.-% Salze homopolymerer bzw. copolymerer Carbonsäuren enthält, (C) 5 bis 30 Gew.-% an nichtionischen Tensiden, die an die granularen Komponenten (A) und (B) gebunden sind.
  • Fakultativ, aber mit Vorteilen enthält dabei der Bestandteil (B) eine wasserlösliche Seife, wodurch das Einspülverhalten in der Waschmaschine wesentlich verbessert wird. Nachteilig ist jedoch, daß das seifenhaltige Additiv eine geringere Saugfähigkeit für nichtionische Tenside besitzt und eine erniedrigte Selbstentzündungstemperatur bzw. eine erhöhte Brennbarkeit aufweist.
  • Die Aufgabe der Erfindung bestand darin, ein Additiv für granulare und phosphatfreie Wasch- und Reinigungsmittel bereitzustellen, das nichtionische Tenside enthält und sowohl ein verbessertes Einspülverhalten als auch eine erhöhte Selbstentzündungstemperatur bzw. eine erniedrigte Brennbarkeit aufweist.
  • Gegenstand der Erfindung ist dementsprechend ein granulares und phosphatfreies Additiv für Wasch- und Reinigungsmittel, enthaltend
    • (A) 10 bis 70 Gew.-% Natriumperborat-monohydrat, das eine mittlere Korngröße von 0,2 bis 1,2 mm aufweist,
    • (B) 25 bis 80 Gew.-% eines granularen, eine mittlere Korngröße von 0,2 bis 1,2 mm aufweisenden Gemisches, das mindestens zu 75 Gew.-% anorganischer Natur und frei von Persauerstoff ist und (auf wasserfreie Substanz in Komponente B bezogen) 45 bis 75 Gew.-% synthetischen, feinkristallinen Zeolith, 0 bis 30 Gew.-% Natriumsulfat und 1 bis 12 Gew.-% Salze homopolymerer bzw. copolymerer Carbonsäuren enthält,
    • (C) 5 bis 30 Gew.-% an nichtionischen Tensiden, die an den granularen Komponenten (A) und (B) gebunden sind, wobei (B) 2 bis 10 Gew.-%, bezogen auf die wasserfreie Substanz in Komponente (B), eines Schichtsilikats enthält.
  • Die granularen Komponenten (A) und (B) sowie das fertige Mittel weisen im Interesse einer guten Rieselfähigkeit und eines störungsfreien Einspülverhaltens eine mittlere Korngröße von 0,2 bis 1,2 mm, vorzugsweise von 0,3 bis 1 mm auf. Insbesondere beträgt der Anteil der Partikel im zusammengesetzten Mittel mit einer Korngröße unter 0,05 mm weniger als 1 Gew.-%, vorzugsweise weniger als 0,1 Gew.-%, der Anteil mit einer Korngröße unter 0,1 mm weniger als 2 Gew.-%, vorzugsweise weniger als 1 Gew.-%, der Anteil mit einer Korngröße über 2 mm weniger als 5 Gew.-%, vorzugsweise weniger als 1 Gew.-% und der Anteil mit einer Korngröße über 1,2 mm weniger als 10 Gew.-%, vorzugsweise weniger als 5 Gew.-%. Beide Komponenten können im Rahmen der angegebenen Grenzen die gleiche oder auch eine unterschiedliche Korngröße aufweisen. Durch das gemeinsame Vermischen und Behandeln mit nichtionischen Tensiden kann es zu einer geringfügigen Agglomeration der Partikel, insbesondere durch das Anbinden feinteiliger Bestandteile an größere Körner und damit insgesamt zu einer geringfügigen Erhöhung der mittleren Korngröße kommen.
  • Der Anteil des Natriumperborat-monohydrats (Komponente A) beträgt vorzugsweise 20 bis 60 Gew.-% und insbesondere 30 bis 50 Gew.-%. Der Anteil der Komponente (B) beträgt vorzugsweise 35 bis 70 Gew.-% und insbesondere 40 bis 60 Gew.-%. Der Anteil der nichtionischen Komponente (C) beträgt vorzugsweise 7 bis 25 Gew.-% und insbesondere 10 bis 20 Gew.-%.
  • Der Perborat-monohydrat kommt vorzugsweise als lockeres, geblähtes Granulat mit einem Litergewicht von 450 bis 650 g/l, vorzugsweise 500 bis 600 g/l zum Einsatz. Derartige Granulate zeichnen sich durch ein gutes Adsorptionsvermögen für flüssige bis schmalzartige nichtionische Tenside aus. Durch die Beladung der Granulate mit den nichtionischen Tensiden steigt das Schüttgewicht im allgemeinen um etwa 50 bis 200 g/l an, was im Interesse eines höheren Gesamtschüttgewichtes und einer Einsparung an Verpackungs- und Transportvolumens liegt.
  • Die Komponente (B) besteht ebenfalls vorzugsweise aus einem granularen, porösen Material, wie es durch Sprühtrocknung von wäßrigen Aufschlämmungen von wasserunlöslichen bzw. wasserlöslichen Salzen bzw. Salzgemischen erhältlich ist. Sie enthält synthetischen Zeolith vom Typ NaA in Anteilen von 45 bis 75, vorzugsweise 50 bis 72 Gew.-% und insbesondere 55 bis 70 Gew.-% (bezogen auf wasserfreie Substanz). Brauchbar sind ferner Gemische aus Zeolith NaA und NaX, wobei der Anteil des Zeoliths NaX in derartigen Gemischen zweckmäßigerweise unter 30 %, insbesondere unter 20 %, liegt. Geeignete Zeolithe weisen keine Teilchen mit einer Größe über 30 µm auf und bestehen zu wenigstens 80 % aus Teilchen einer Größe von weniger als 10 µm. Ihre mittlere Teilchengröße (Volumenverteilung, Meßmethode: Coulter Counter) liegt im Bereich von 1 bis 10 µm. Ihr Calciumbindevermögen, das nach den Angaben der DE-A-24 12 837 bestimmt wird, liegt im Bereich von 100 bis 200 mg CaO/g. Die Zeolithe können von ihrer Herstellung her noch überschüssiges Alkali enthalten. Der Wassergehalt synthetischer Zeolithe beträgt üblicherweise 18 bis 22 Gew.-%.
  • Geeignete Schichtsilikate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z.B. solche der allgemeinen Formel (OH) 4 Si 8-y Al y (M 8x Al 4-x )O 20 Montmorrilonit
    Figure imgb0001
    (OH) 4 Si 8-y Al y (Mg 6-z Li z )O 20 Hectorit
    Figure imgb0002
    (OH) 4 Si 8-y Al y (Mg 6-z Al z )O 20 Saponit
    Figure imgb0003
    mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6.
  • Zusätzlich kann in das Kristallgitter der Schichtsilikate gemäß vorstehenden Formeln geringe Mengen Eisen eingebaut sein. Ferner können die Schichtsilikate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali- und Erdalkali-Ionen, insbesondere Na⁺ und Ca⁺⁺ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Die Teilchengröße liegt im Bereich von 0,05 bis 25 µm, meist unter 10 µm. Brauchbare Schichtsilikate sind beispielsweise aus US-A-3,966,629, US-A-4,062,647 (DE-A-23 34 899), EP-A-26 529 und EP-A-28 432 bekannt. Vorzugsweise werden Schichtsilikate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Calciumionen und stark färbenden Eisenionen sind.
  • Der Gehalt der Komponente (B) an Schichtsilikaten beträgt vorzugsweise 3 bis 7 Gew.-%.
  • Ein weiterer vorteilhafter Bestandteil der Komponente (B) ist Natriumsulfat, das als wasserfreie Substanz gerechnet, in Anteilen von 0 bis 30 Gew.-%, vorzugsweise von 1 bis 25 und insbesondere von 3 bis 20 Gew.-% vorliegt. Das Natriumsulfat trägt zu einer erheblichen Verbesserung der Kornstruktur der Komponente (B) und des Einspülverhaltens des Waschmitteladditivs bei und erhöht gleichzeitig deren Schüttgewicht, wodurch sich die Möglichkeit ergibt, Verpackungs- und Transportvolumen einzusparen.
  • Als weiteres anorganisches Salz, das mit dem Zeolith kombiniert werden kann, ist Natriumcarbonat, das in Anteilen bis 20 Gew.-%, bezogen auf die Komponente (B) vorliegen, kann. Hinsichtlich des Einspülverhaltens sind solche Gemische jedoch den Gemischen aus Zeolith und Natriumsulfat unterlegen.
  • Der Gehalt der Komponente (B) an anorganischen Salzen einschließlich Zeolith soll mindestens 75 Gew.-%, vorzugsweise mindestens 85 Gew.-% (bezogen auf die Komponente B) betragen. Zusätzlich enthält die Komponente (B) organische Salze, die von besonderem Vorteil für die Kornstruktur, die Kornstabilität und insbesondere für das Einspülverhalten der Granulate und deren Gemische mit sonstigen Waschmittelbestandteilen sind.
  • Zu diesen organischen Salzen, die in der Komponente (B) enthalten sind, zählen die Natrium- oder Kaliumsalze, vorzugsweise die Natriumsalze homopolymerer und/oder copolymerer Carbonsäuren. Geeignete Homopolymere sind Polyacrylsäure, Polymethacrylsäure und Polymaleinsäure, wobei die Polyacrylsäure bevorzugt ist. Geeignete Copolymere sind solche der Acrylsäure mit Methacrylsäure bzw. Copolymere der Acrylsäure, Methacrylsäure oder Maleinsäure mit Vinylethern, wie Vinylmethylether bzw. Vinylethylether. In solchen copolymeren Säuren, in denen eine der Komponenten keine Säurefunktion aufweist, beträgt deren Anteil im Interesser einer ausreichenden Hasserlöslichkeit nicht mehr als 50 Molprozent, vorzugsweise weniger als 30 Molprozent. Als besonders geeignet haben sich Copolymere der Acrylsäure bzw. Methacrylsäure mit Maleinsäure erwiesen, wie sie beispielsweise in EP-A-25 551 näher charakterisiert sind. Es handelt sich dabei um Copolymerisate, die 40 bis 90 Gew.-% Acrylsäure bzw. Methacrylsäure und 60 bis 10 Gew.-% Maleinsäure enthalten. Besonders bevorzugt sind solche Copolymere, in denen 45 bis 85 Gewichtsprozent Acrylsäure und 55 bis 15 Gew.-% Maleinsäure anwesend sind.
  • Das Molekulargewicht der Homo- bzw. Copolymeren beträgt im allgemeinen 2000 bis 150 000, vorzugsweise 5 000 bis 100 000. Ihr Anteil an der Komponete (B) beträgt beispielsweise bis 12 Gew.-%, vorzugsweise 1,5 bis 8 Gew.-% und insbesondere 2 bis 5 Gew.-%, berechnet als Natriumsalz. Mit steigendem Anteil an Polysäure bzw. deren Salzen nimmt die Beständigkeit der Körner gegen Abrieb zu. Bei einem Anteil ab 1,5 Gew.-% wird bereits eine für viele Fälle hinreichende Abriebfestigkeit erzielt. Optimale Abriebeigenschaften weisen Gemische mit 2 bis 5 Gew.-% an Natriumsalz der Polysäure auf.
  • In den Fällen, in denen der Zeolith bei der Herstellung der granularen Komponente (B) nicht in pulveriger bzw. sprühgetrockneter Form, sondern als feuchter Filterkuchen eingesetzt wird, kann er Dispersions-Stabilisatoren enthalten, so wie diese in DE-A-25 27 388 näher beschrieben sind. Geeignete Stabilisatoren sind insbesondere nichtionische Tenside mit HLB-Werten unter 12, wie ethoxylierter Talgalkohol mit 3 bis 8 EO. Der Anteil dieser Zusatzstoffe an der Pulverkomponente (B) kann, je nach Zeolithanteil, bis zu 4 Gew.-%, meist 0,3 bis 3 Gew.-% betragen. In der Endbilanz wird dieser Anteil der Komponente (C) zugeschlagen.
  • Die Differenz bis 100 Gew.-% entfällt auf Wasser, das in gebundener Form und als Feuchtigkeit vorliegt, wobei die Hauptmenge an den Zeolith gebunden ist. Ein Anteil des Wassers, der etwa 8 bis 18 Gew.-% (bezogen auf das Mittel) beträgt, ist bei einer Trocknungstemperatur von 145 °C entfernbar. Ein weiterer Anteil, der je nach Zeolith-Anteil zwischen 4 und 8 Gew.-% beträgt, wird bei der Glühtemperatur um etwa 800 °C frei und entspricht dem in das Kristallgitter des Zeoliths eingelagerten Wasser.
  • Die mittlere Korngröße der Komponente (B) beträgt 0,2 bis 1,2 mm, wobei der Anteil der Körner unterhalb 0,05 mm weniger als 1 Gew.-%, vorzugsweise weniger als 0,5 Gew.-% und oberhalb 2 mm nicht mehr als 5 Gew.-% betragen soll. Vorzugsweise weisen mindestens 80 Gew.-%, insbesondere mindestens 90 Gew.-% der Körner eine Größe von 0,1 bis 1,2 mm auf, wobei der Anteil der Körner zwischen 0,1 und 0,05 mm, vorzugsweise nicht mehr als 3 Gew.-%, insbesondere weniger als 1 Gew.-%, der Anteil der Körner zwischen 0,1 und 0,2 mm weniger als 20 Gew.-%, insbesondere weniger als 10 Gew.-% und der Anteil der Körner zwischen 1,2 und 2 mm nicht mehr als 10 Gew.-%, insbesondere nicht mehr als 5 Gew.-% beträgt. Das Schüttgewicht der Komponente (B) beträgt in der bevorzugten Ausführungsform 400 bis 680 g/l, vorzugsweise 450 bis 650 g/l. Durch die Adsorption der nichtionischen Tenside erhöht es sich ebenfalls um 50 bis 200 g/l.
  • Die an dem Gemisch der Komponenten (A) und (B) adsorbierten nichtionischen Tenside sind solche, wie sie üblicherweise in Wasch- und Reinigungsmitteln verwendet werden. Weitere geeignete Zusatzstoffe sind organische Lösungsmittel, mit denen das Reinigungsvermögen von Wasch- und Reinigungsmitteln insbesondere gegenüber fettigen Verschmutzungen verbessert wird und die auf diese Weise einem körnigen Reinigungsmittel problemlos einverleibt werden können. Aber auch sonstige Stoffe, wie Duftstoffe, Avivagemittel, optische Aufheller sowie anionische oder kationische Tenside können nach vorherigem Lösen bzw. Dispergieren in organischen Lösungsmitteln bzw. den flüssigen oder geschmolzenen nichtionischen Tensiden dem Gemisch der Komponenten (A) und (B) zugemischt werden. Diese Stoffe dringen zusammen mit dem Lösungs- bzw. Dispergiermittel in die porösen Körner ein und sind auf diese Weise gegen Wechselwirkungen mit anderen Pulverbestandteilen geschützt.
  • Bevorzugte Waschmittelbestandteile, die an dem granularen Gemisch gebunden sind und mit diesem zusammen als rieselfähiges Gemisch vorliegen, sind flüssige bis pastöse nichtionische Tenside aus der Klasse der Polyglykolether, abgeleitet von Alkoholen mit 10 bis 22, insbesondere 12 bis 18 C-Atomen. Diese Alkohole können gesättigt oder olefinisch ungesättigt, linear oder in 2-Stellung methylverzweigt (Oxo-Rest) sein. Ihre Umsetzungsprodukte mit Ethylenoxid (EO) bzw. Propylenoxid (PO) sind wasserlöslich bzw. in Wasser dispergierbare Gemische von Verbindungen mit unterschiedlichem Alkoxylierungsgrad. Die Zahl der EO- bzw. PO-Gruppen entspricht bei technischen Alkoxylaten dem statistischen Mittelwert.
  • Beispiele für geeignete ethoxylierte Fettalkohle sind C₁₂-₁₈-Kokosalkohole mit 3 bis 12 EO, C₁₆₋₁₈-Talgalkohol mit 4 bis 16 EO, Oleylalkohol mit 4 bis 12 EO sowie aus anderen nativen Fettalkoholgemischen erhältliche Ethoxylierungsprodukte entsprechender Ketten- und EO-Verteilung. Aus der Reihe der ethoxylierten Oxoalkohole sind beispielsweise solche der Zusammensetzung C₁₂₋₁₅ + 5 bis 10 EO und C₁₄-C₁₅ + 5 bis 12 EO geeignet. Durch eine erhöhte Waschkraft sowohl gegenüber fettartigen und mineralischen Anschmutzungen zeichnen sich Gemische aus niedrig und hoch ethoxylierten Alkoholen aus, beispielsweise solche aus Talgalkohol mit 3 bis 6 EO und Talgalkohol mit 12 bis 16 EO oder C₁₃₋₁₅-Oxoalkohol mit 3 bis 5 EO und C₁₂₋₁₄-Oxoalkohol mit 8 bis 12 EO. Besonders günstige Einspüleigenschaften haben Mittel, in denen die adsorbierten nichtionische Tenside sowohl lange hydrophobe Reste als auch höhere Ethoxylierungsgrade aufweisen.
  • Das Schüttgewicht der erfindungsgemäßen Additive liegt vorzugsweise zwischen 600 und 950 g/l, insbesondere zwischen 650 und 850 g/l.
  • Die Vorteile der erfindungsgemäßen Additive liegen vor allem darin, daß sie gegenüber seifenhaltigen Additiven des Standes der Technik eine erhöhte Selbstentzündungstemperatur bzw. eine erniedrigte Brennbarkeit bei einem vergleichbaren Einspülverhalten aufweisen. Gegenüber Additiven des Standes der Technik, die Zeolith und (co-)polymere Polycarboxylate, aber weder Seife noch Schichtsilikate enthalten, weisen sie je nach Menge des aufgebrachten Niotensids eine analoge bis bessere Selbstentzündungstemperatur bzw. Brennbarkeit und ein besseres Einspülverhalten auf. Ein zusätzlicher Vorteil dieser Additive besteht darin, daß sie besser rieselfähig sind als die genannten Additive des Standes der Technik.
  • Bei der Herstellung der Komponente (B) in der bevorzugten Ausführungsform geht man beispielsweise von einem wäßrigen Ansatz aus, enthaltend insgesamt 40 bis 55 Gew.-% an wasserfrei gerechneten Inhaltsstoffen, der mittels Düsen in einen Fallraum versprüht und mittels Trocknungsgasen, die eine Eingangstemperatur von 150 bis 280 °C und eine Austrittstemperatur von 50 bis 120 °C aufweisen, auf einen bei 145 °C entfernbaren Feuchtigkeitsgehalt getrocknet wird.
  • Der wäßrige Ansatz kann durch Mischen der trockenen oder wasserhaltigen Bestandteile unter Zusatz des für eine Verflüssigung erforderlichen Wassers hergestellt werden. Anstelle der Salze der polymeren Carbonsäuren können auch die entsprechenden freien Säuren eingearbeitet und das zur Salzbildung erforderliche Alkali gesondert zugesetzt werden. Ein Zusatz von Alkalihydroxid, insbesonder NaOH, ist außerdem empfehlenswert, um die wäßrige Zeolith-Suspension bzw. den Slurry alkalisch, d.h. auf einen pH-Wert von wenigstens 8 einzustellen und einen hinreichenden Alkaliüberschuß bereitzustellen, damit während der Sprühtrocknung der pH-Wert nicht auf weniger als 8 absinkt. Eine solche pH-Wert-Erniedrigung, die zu einem Aktivitätsverlust des Zeoliths führen würde, kann durch CO₂ im Trockengas bewirkt werden. Der Zusatz von NaOH, der eine ausreichende Alkalireserve sicherstellt, kann beispielsweise bis zu 3 Gew.-% betragen. Im allgemeinen kommt man mit 0,2 bis 1 Gew.-% aus.
  • Vorzugsweise beträgt der Gehalt des wäßrigen Ansatzes an wasserfreien Inhaltsstoffen 43 bis 50 Gew.-%. Seine Temperatur beträgt zweckmäßigerweise 50 bis 100 °C und seine Viskosität 2 000 bis 20 000 mPas, meist 8 000 bis 14 000 mPas. Der Zerstäubungsdruck liegt meist bei 20 bis 120 bar, vorzugsweise bei 30 bis 80 bar. Das Trocknungsgas, das im allgemeinen durch Verbrennen von Heizgas oder Heizöl erhalten wird, wird vorzugsweise im Gegenstrom geführt. Bei Verwendung sogenannter Trockentürme, in welche der wäßrige Ansatz im oberen Teil über mehrere Hochdruckdüsen eingesprüht wird, beträgt die Eingangstemperatur, gemessen im Ringkanal (d.h. unmittelbar vor Eintritt in den unteren Teil des Turmes) 150 bis 280 °C, vorzugsweise 170 bis 250 °C. Das den Turm verlassende, mit Feuchtigkeit beladene Abgas weist überlicherweise eine Temperatur von 50 bis 130 °C, vorzugsweise 55 bis 115 °C auf. Die Sprühtrocknung wird so geleitet, daß die Korngröße des Sprühproduktes die vorstehend angegebene Verteilung aufweist. Vorhandenes Feinkorn und Grobkorn wird vor der Weiterverarbeitung abgesiebt. Es hat sich gezeigt, daß mit steigendem Anteil an Feinkorn sich das Einspülverhalten des mit nichtionischen Tensiden imprägnierten Adsorptions mittels verschlechtert.
  • Beide Pulverkomponenten werden zu einem homogenen Gemisch vereinigt und anschließend mit flüssigen bzw. durch Erwärmen verflüssigten nichtionischen Tensiden bzw. Tensidgemischen behandelt. Zwecks schnellerer Verteilung wird das nichtionische Tensid zweckmäßigerweise auf das bewegte Gemisch aufgesprüht. Ein Erwärmen des nichtionischen Tensids auf Temperaturen zwischen 35 und 60 °C, vorzugsweise 40 bis 50 °C, beschleunigt den Adsorptionsvorgang. Die Abriebfestigkeit und Formkonstanz der Körner ist bei Einhaltung der angegebenen Mengenverhältnisse bzw. Herstellungsbedingungen so hoch, daß auch die frisch zubereiteten, insbesondere aber die abgekühlten und gegebenenfalls wieder erwärmten, ausgereiften Körner unter den üblichen Sprühmischbedingungen mit den flüssigen Zusatzstoffen behandelt, gemischt und gefördert werden können, ohne daß es zur Bildung von Feinanteilen oder gröberen Agglomeraten kommt.
  • Das Vermischen der beiden granularen Komponenten und das anschließende Besprühen mit nichtionischen Tensiden kann in üblichen mechanischen Mischvorrichtungen, wie Trommelmischern, Wirbelbettmischern oder Sprühmischern kontinuierlich oder diskontinuierlich erfolgen. Der Misch- und Sprühprozeß kann auch bei kontinuierlicher Arbeitsweise in einer einzigen Mischapparatur vorgenommen werden, wobei die Vereinigung der beiden Pulverkomponenten in einer ersten Mischstrecke und das Zumischen der nichtionischen Komponente in einer abschließenden Mischstrecke erfolgt. Ein besonderer Vorteil der Erfindung ist darin zu sehen, daß die Adsorption der flüssigen nichtionischen Tenside und deren Diffusion in das Korninnere vergleichsweise schnell erfolgt. Bereits kurz nach Verlassen der Mischapparatur besitzen die Korngemische ihre volle Rieselfähigkeit und können ohne Zwischenlagerung oder zeitraubenden Nachreifeprozeß weiterverarbeitet werden.
  • Nach dem Aufbringen des nichtionischen Tensides bzw. der gegebenenfalls zugeführten Zusatzstoffe können die Körner gegebenenfalls noch mit feinteiligen Pulvern bestäubt bzw. oberflächlich beschichtet werden. Hierdruch kann die Rieselfähigkeit noch weiter verbessert und das Schüttgewicht geringfügig erhöht werden. Geeignete Puderungsmittel weisen eine Korngröße von 0,001 bis höchsten 0,1 mm, vorzugsweise von weniger als 0,05 mm auf und können in Anteilen von 0,03 bis 3, vorzugsweise 0,05 bis 2 Gew.-%, bezogen auf das mit Zusatzstoff beladene Adsorptionsmittel angewendet werden. In Frage kommen z.B. feinpulvrige Zeolithe, Kieselsäureaerogel (Aerosil (R)), farblose oder farbige Pigmente, wie Titandioxid sowie andere, bereits zum Pudern von Körnern bzw. Waschmittelteilchen vorgeschlagene Pulvermaterialien, wie feinpulvriges Natriumtripolyphosphat, Natriumsulfat, Magnesiumsilikat und Carboxylmethylcellulose. Bei den erfindungsgemäßen Produkten ist eine solche Behandlung im allgemeinen nicht erforderlich, zumal die Einspülbarkeit dadurch nicht verbessert wird.
  • Die mit den nichtionischen Tensiden bzw. mit den Gemischen aus nichtionischem Tensid und Zusatzstoff imprägnierten körnigen Adsorptionsmittel können mit weiteren pulverförmigen bis körnigen Waschmitteln bzw. Waschmittelkomponenten, wie sie beispielsweise durch Sprühtrocknung oder Granulation erhältlich sind, oder auch mit Bleichmitteln bzw. mit bleichmittelhaltigen Waschmitteln bekannter Zusammensetzung in jedem beliebigen Verhältnis vermischt werden. Hierbei ist ihre gute Rieselfähigkeit sowie ihre hohe Kornstabilität von großem Vorteil, da eine unerwünschte Bildung von Abrieb und Staub vermieden wird. Die Pulvergemische sind ihrerseits lagerbeständig und neigen nicht zum Verklumpen oder Ausschwitzen des nichtionischen Tensids. Bei der Anwendung sind sie im Vergleich zu bekannten Mitteln besonders gut einspülbar. Im Gegensatz zu den Angaben in EP-A-168 102 können die zugemischten Sprühpulver und Granulate auch Natriumsulfat enthalten, was vielfach für deren Korneigenschaften von Vorteil ist, insbesondere bei Abwesenheit von Phosphaten. Vorzugsweise sind auch diese zugemischten Waschmittelkomponenten daher phosphatfrei. Überdies ist die Aufnahmefähigkeit des erfindungsgemäßen Granulatgemisches für nichtionische Tenside so hoch, daß sich ein zusätzliches Aufbringen dieser Tenside auf weitere Mischungskomponenten erübrigt.
  • Beispiele
  • Es wurden die erfindungsgemäßen Additive A1 und A2 sowie die Vergleichsadditive V1 bis V4 insbesondere auf ihre Brennbarkeit und ihr Rieselverhalten untersucht. Alle Additive enthielten 40,9 Gew.-% Perboratmonohydrat mit einem Schüttgewicht von 460 g/l (Siebanalyse: größer als 0,8 mm 0 %, größer als 0,4 mm 48 %, größer als 0,2 mm 47 %, größer als 0,1 mm 5 %, kleiner oder gleich 0,1 mm 0 %). Die Additive A1, V1 und V2 enthielten jeweils 34,1 Gew.-% der Komponente (B); die Additive A2, V3 und V4 enthielten jeweils 46,5 Gew.-% der Komponente (B). In den Additiven A1, V1 und V2 wurden die Mischungen aus Perboratmonohydrat und Komponente (B) mit jeweils 25 Gew.-%, bezogen auf das besprühte Additiv, C₁₂-C₁₈-Fettalkohol mit 5 EO besprüht; in den Additiven A2, V3 und V4 wurden die Mischungen aus Perboratmonohydrat und Komponente (B) mit jeweils 12,6 Gew.-%, bezogen auf das besprühte Additiv, C₁₂-C₁₈-Fettalkohol mit 5 EO besprüht.
  • Die sprühgetrocknete Komponente (B) besaß in den Additiven die in Tabelle 1 angegebene Zusammensetzung.
  • Zur Bestimmung der Brennbarkeit wurden jeweils 50 g der Additive auf einem Uhrglas aufgehäuft und mit einer Bunsenbrennerflamme von oben im Winkel von 45 °C aus 10 cm Entfernung 10 Sekunden berührt.
  • Das in der Tabelle 2 angegebene Ergebnis nach dem Abstellen der Flamme wurde visuell ermittelt. Tabelle 1:
    Komponente (B) in A1/A2 und V1/V3 bzw. V2/V4
    A1/A2 V1/V3 V2/V4
    Zeolith NaA (gerechnet als wasserfreie Substanz) 70,0 70,0 70,0
    Talgfettalkohol mit 5 EO 1,95 1,95 1,95
    Laundrosil(R) DG-A (mit Sodalösung behandeltes Schichtsilikat) 3,0 --- ---
    C₁₂-C₁₈-Natriumfettsäureseife --- 3,0 ---
    Natriumsulfat --- --- 3,0
    Sokalan CP5(R) (Acrylsäure-Maleinsäure-Polymeres, Natriumsalz) 4,0 4,0 4,0
    Wasser 20,6 20,6 20,6
    Natriumhydroxid 0,43 0,43 0,43
    Silikonöl 0,02 0,02 0,02
    Schüttgewicht in g/l 610 460 575
    Siebanalyse (in %) größer als
        1,6 mm 0 0 0
        0,8 mm 0 5 1
        0,4 mm 17 38 16
        0,2 mm 61 37 55
        0,1 mm 21 12 26
    kleiner oder gleich
        0,1 mm 1 8 2
    Tabelle 2
    A1 V1 V2 A2 V3 V4
    Schüttgewicht in (g/l) 780 700 770 680 605 670
    Brennbarkeit nach Abstellen der Bunsenbrennerflamme brennt wenig brennt stärker als A1 und V2 brennt mit normaler Flamme Flamme geht aus schwelt durch Flamme geht nach 10 Sekunden aus
    Rieselfähigkeit (in %) 106 91 100 106 96 102
    Siebanalyse über 1,6 mm 0 0 0 0 0 0
        0,8 mm 1 1 0 1 1 0
        0,4 mm 31 35 37 26 31 27
        0,2 mm 54 49 51 54 49 55
        0,1 mm 14 14 12 17 16 17
    kleiner oder gleich 0,1 mm 0 1 0 2 3 1
    Das Einspülverhalten von A1 war in etwa vergleichbar mit dem Verhalten von V1 und besser als das von V2; das Einspülverhalten von A2 war vergleichbar mit dem von V3 und besser als das von V4.
  • Zur Bestimmung des Rieselverhaltens wurde 1 Liter des Pulvers in einem an seiner Auslauföffnung verschlossenen Trichter mit folgenden Abmessungen gefüllt:
    Durchmesser der oberen Öffnung 150 mm
    Durchmesser der unteren Öffnung 10 mm
    Höhe des konisches Trichterbereiches 230 mm
    Höhe des unten angesetzten zylindrischen Bereiches 20 mm
    Neigungswinkel des konischen Bereiches 73°
    Als Vergleichssubstanz wurde trockener Seesand mit folgendem Kornspektrum gewählt:
    mm über 1,5 bis 0,8 bis 0,4 bis 0,2 bis 0,1
    Gew.-% 0,2 11,9 54,7 30,1 3,1
    Die Auslaufzeit des trockenen Sandes nach Freigabe der Ausflußöffnung (51 Sekunden) wurde mit 100 % angesetzt. Die Rieselfähigkeit der Additive wird in %, bezogen auf diesen 100 %-Wert angegeben.

Claims (7)

  1. Granulares und phosphatfreies Additiv für Wasch- und Reinigungsmittel, enthaltend
    (A) 10 bis 70 Gew.-% Natriumperborat-monohydrat, das eine mittlere Korngröße von 0,2 bis 1,2 mm aufweist,
    (B) 25 bis 80 Gew.-% eines granularen, eine mittlere Korngröße von 0,2 bis 1,2 mm aufweisenden Gemisches, das mindestens zu 75 Gew.-% anorganischer Natur und frei von Persauerstoff ist und (auf wasserfreie Substanz in Komponente B bezogen) 45 bis 75 Gew.-% synthetischen, feinkristallinen Zeolith, 0 bis 30 Gew.-% Natriumsulfat und 1 bis 12 Gew.-% Salze homopolymerer bzw. copolymerer Carbonsäuren enthält,
    (C) 5 bis 30 Gew.-% an nichtionischen Tensiden, die an den granularen Komponenten (A) und (B) gebunden sind, dadurch gekennzeichnet, daß (B) 2 bis 10 Gew.-%, bezogen auf die wasserfreie Substanz in Komponente (B), eines Schichtsilikats enthält.
  2. Mittel nach Anspruch 1, in dem der Anteil mit einer Korngröße unter 0,05 mm weniger als 1 Gew.-%, vorzugsweise weniger als 0,1 Gew.-%, der Anteil mit einer Korngröße unter 0,1 mm weniger als 2 Gew.-%, vorzugsweise weniger als 1 Gew.-%, der Anteil mit einer Korngröße über 2 mm weniger als 5 Gew.-%, vorzugsweise weniger als 1 Gew.-% und der Anteil mit einer Korngröße über 1,2 mm weniger als 10 Gew.-%, vorzugsweise weniger als 5 Gew.-% beträgt.
  3. Mittel nach Anspruch 1 oder 2, enthaltend 20 bis 60 Gew.-%, insbesondere 30 bis 50 Gew.-% der Komponente (A), 35 bis 70 Gew.-%, insbesondere 40 bis 60 Gew.-% der Komponente (B) und 7 bis 25 Gew.-%, insbesondere 10 bis 20 Gew.-% der Komponente (C).
  4. Mittel nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das verwendete Natriumperborat-monohydrat ein Schüttgewicht von 450 bis 650 g/l, vorzugsweise von 500 bis 600 g/l aufweist.
  5. Mittel nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Komponente (B) zu 50 bis 72 Gew.-% (bezogen auf wasserfreie Substanz) aus synthetischem, gebundenes Wasser enthaltenden, feinteiligen Zeolith, 0 bis 30 Gew.-% aus Natriumsulfat, 1,5 bis 8 Gew.-% aus homopolymeren bzw. copolymeren Polycarbonsäuren (berechnet als Natriumsalz) und 3 bis 7 Gew.-% aus einem Schichtsilikat sowie gebundenem Wasser besteht.
  6. Verfahren zur Herstellung der Mittel nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man ein homogenes, trockenes Gemisch der Komponenten (A) und (B) mit einer flüssigen bzw. durch Erwärmen verflüssigten Komponente (C) unter gleichzeitigem Mischen besprüht.
  7. Pulverförmiges bis körniges, phosphatfreies bis phosphatarmes Waschmittel, gekennzeichnet durch einen Gehalt an dem Waschmitteladditiv gemäß einem oder mehreren der Ansprüche 1 bis 5.
EP93906534A 1992-03-24 1993-03-15 Granulares, nichtionische tenside enthaltendes, phosphatfreies additiv für wasch- und reinigungsmittel Expired - Lifetime EP0633923B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4209435 1992-03-24
DE4209435A DE4209435A1 (de) 1992-03-24 1992-03-24 Granulares, nichtionische Tenside enthaltendes, phosphatfreies Additiv für Wasch- und Reinigungsmittel
PCT/EP1993/000596 WO1993019151A1 (de) 1992-03-24 1993-03-15 Granulares, nichtionische tenside enthaltendes, phosphatfreies additiv für wasch- und reinigungsmittel

Publications (2)

Publication Number Publication Date
EP0633923A1 EP0633923A1 (de) 1995-01-18
EP0633923B1 true EP0633923B1 (de) 1996-01-24

Family

ID=6454818

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93906534A Expired - Lifetime EP0633923B1 (de) 1992-03-24 1993-03-15 Granulares, nichtionische tenside enthaltendes, phosphatfreies additiv für wasch- und reinigungsmittel

Country Status (6)

Country Link
EP (1) EP0633923B1 (de)
AT (1) ATE133447T1 (de)
DE (2) DE4209435A1 (de)
ES (1) ES2083281T3 (de)
TR (1) TR26864A (de)
WO (1) WO1993019151A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2253747T3 (es) * 1996-07-04 2006-06-01 THE PROCTER & GAMBLE COMPANY Proceso para la fabricar composiciones detergentes.
GB9712580D0 (en) * 1997-06-16 1997-08-20 Unilever Plc Production of detergent granulates
GB9712583D0 (en) 1997-06-16 1997-08-20 Unilever Plc Production of detergent granulates
GB9713748D0 (en) * 1997-06-27 1997-09-03 Unilever Plc Production of detergent granulates
ITMI20130757A1 (it) * 2013-05-09 2014-11-10 Unicalce S P A Composizione granulare a ridotta segregabilita', suo procedimento di preparazione e relativi usi

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3424987A1 (de) * 1984-07-06 1986-02-06 Unilever N.V., Rotterdam Verfahren zur herstellung eines pulverfoermigen waschmittels mit erhoehtem schuettgewicht
DE3702111A1 (de) * 1987-01-24 1988-08-04 Henkel Kgaa Poroeses schichtsilikat/natriumsulfat-agglomerat
DE3916629A1 (de) * 1989-05-22 1990-11-29 Henkel Kgaa Granulares, nichtionische tenside enthaltendes waschmitteladditiv
DE3936405A1 (de) * 1989-11-02 1991-05-08 Henkel Kgaa Koerniges, nichtionische tenside enthaltendes additiv fuer wasch- und reinigungsmittel mit verbessertem einspuelverhalten

Also Published As

Publication number Publication date
DE59301514D1 (de) 1996-03-07
ES2083281T3 (es) 1996-04-01
ATE133447T1 (de) 1996-02-15
TR26864A (tr) 1994-08-19
WO1993019151A1 (de) 1993-09-30
DE4209435A1 (de) 1993-09-30
EP0633923A1 (de) 1995-01-18

Similar Documents

Publication Publication Date Title
EP0184794B1 (de) Körniges Adsorptionsmittel
EP0344629B1 (de) Körniges Adsorptionsmittel mit verbessertem Einspülverhalten
DE68912983T3 (de) Waschmittelzusammensetzungen und Verfahren zu deren Herstellung.
DE69216191T2 (de) Waschmittelpulver und Verfahren zu deren Herstellung
EP0536110B1 (de) Verfahren zur herstellung von oberflächenaktive mittel enthaltenden granulaten
EP0150386B1 (de) Zur Verwendung in tensidhaltigen Mitteln geeignetes Schaumregulierungsmittel
DE69425534T2 (de) Mischverfahren zur Formulierung von Detergentien
EP0368137B1 (de) Verfahren zur Herstellung zeolithhaltiger Granulate hoher Dichte
EP0425804B1 (de) Körniges, nichtionische Tenside enthaltendes Additiv für Wasch- und Reinigungsmittel mit verbessertem Einspülverhalten
EP0633923B1 (de) Granulares, nichtionische tenside enthaltendes, phosphatfreies additiv für wasch- und reinigungsmittel
EP0544670B1 (de) Sprühgetrocknetes, avivierend wirkendes waschmitteladditiv
EP0560802B2 (de) Verfahren zur herstellung von zeolith-granulaten
EP0473622B1 (de) Granulares, nichtionische tenside enthaltendes, phosphatfreies waschmitteladditiv
WO1991009927A1 (de) Granulares, avivierend wirkendes waschmitteladditiv und verfahren zu seiner herstellung
EP0354331A1 (de) Waschmitteladditiv mit verbessertem Einspülverhalten
WO1993010210A1 (de) Verfahren zur herstellung niederalkalischer, aktivchlor- und phosphatfreier maschinengeschirrspülmittel in form von schwergranulaten
DE3942066A1 (de) Verfahren zur herstellung eines granularen, avivierend wirkenden waschmitteladditivs
EP1500429B1 (de) Adsorbat aus Schichtsilicat und seine Verwendung
EP0605436B1 (de) Verfahren zur herstellung von zeolith-granulaten
EP1347037B1 (de) Waschmittelzusatz mit hohem Gehalt an nichtionischen Tensiden und schnellem Auflösevermögen
DE19757217A1 (de) Teilchenförmiges Wasch- und Reinigungsmittel
DE19923626A1 (de) Verfahren zur Herstellung von Tensidgranulaten
DE10116210A1 (de) Zeolith-haltige Zusammensetzung in Partikelform und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 19950329

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 133447

Country of ref document: AT

Date of ref document: 19960215

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960222

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960301

Year of fee payment: 4

Ref country code: CH

Payment date: 19960301

Year of fee payment: 4

REF Corresponds to:

Ref document number: 59301514

Country of ref document: DE

Date of ref document: 19960307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960315

Year of fee payment: 4

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960328

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2083281

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960502

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970315

Ref country code: AT

Effective date: 19970315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970331

Ref country code: CH

Effective date: 19970331

Ref country code: BE

Effective date: 19970331

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 19970331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050315