EP0631712B1 - Procede d'acceleration de particules chargees electriquement - Google Patents
Procede d'acceleration de particules chargees electriquement Download PDFInfo
- Publication number
- EP0631712B1 EP0631712B1 EP93906431A EP93906431A EP0631712B1 EP 0631712 B1 EP0631712 B1 EP 0631712B1 EP 93906431 A EP93906431 A EP 93906431A EP 93906431 A EP93906431 A EP 93906431A EP 0631712 B1 EP0631712 B1 EP 0631712B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dielectric
- tube
- reservoir
- particle
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 23
- 230000001133 acceleration Effects 0.000 claims description 17
- 208000028659 discharge Diseases 0.000 claims description 15
- 230000032258 transport Effects 0.000 claims description 7
- 238000011109 contamination Methods 0.000 claims description 6
- 238000010292 electrical insulation Methods 0.000 claims description 3
- 230000003071 parasitic effect Effects 0.000 claims description 3
- 230000006378 damage Effects 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 28
- 238000010894 electron beam technology Methods 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000010453 quartz Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000005855 radiation Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000002679 ablation Methods 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 230000005461 Bremsstrahlung Effects 0.000 description 2
- 244000089486 Phragmites australis subsp australis Species 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/02—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
- H05H1/04—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using magnetic fields substantially generated by the discharge in the plasma
- H05H1/06—Longitudinal pinch devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H5/00—Direct voltage accelerators; Accelerators using single pulses
Definitions
- the invention relates to a method for generating an electrical charged particle beam and a particle accelerator to carry out the method and to apply it.
- Such processes and accelerators become particles predetermined charge and mass extracted from a reservoir and an acceleration space between two different ones electrical potentials supplied, ultimately as a beam to be available for further machining processes.
- the invention has for its object high particle beam intensities or equivalent to a high current or a high current density and a sharp focus of the particle beam with economically acceptable means and expenses to reach.
- the sub-claims 3 to 9 have advantageous refinements of the particle accelerator.
- Further process steps for targeted beam acceleration are: For setting the process energy of the particle beam or its beam strength, the acceleration distance over a resistive or inductively coupled auxiliary electrode between shorten both outer electrodes, or is over one Potential control through resistively coupled auxiliary electrodes the acceleration distance between the two main electrodes divided for the particle beam.
- Suitable particle accelerator To the loaded To be able to withdraw particles from the reservoir with high current forms one electrode partially the reservoir wall. It starts at her the dielectric tube space or others, if many such would be appropriate. The counter electrode is located outside the reservoir. The dielectric tube space is on them directed in its further course.
- the tube space expediently partially or completely aligned through a system arranged dielectric tube segments formed.
- the segments form radially shaped slots with each other. Thereby surface currents are prevented.
- the slit is such that it is radial radiation or particles emanating from the tube axis the radial Do not reach the slot end, or if at all over a long detour.
- the striking quality improvement of the particle beam is on the one hand, essentially attributable to the structural measure, the stack of electrodes and insulators of the pseudo-spark gap by a limited with dielectric material Pipe space, in the embodiment described below a quartz tube or an aligned series of several shorter quartz tubes to replace.
- a quartz tube or an aligned series of several shorter quartz tubes to replace On the other hand, it stirs the high beam quality in turn largely depends on the independent Formation of a charged particle stream in the Quartz tube arrangement.
- the electron beam which leaves the quartz tube, consists of two parts, namely from a portion of the gas discharge in the Pseudo-radio chamber and from a portion of that of an independent Beam formation occurs in the quartz tube.
- the electron beam couples out of the pseudo-spark chamber reliable in the dielectric tube only if that End of the dielectric tube rests on an intermediate electrode, and the better, the more cathodically charged it is is, i.e. the deeper they are pushed into the pseudo-spark chamber becomes.
- this is achieved in one device (FIG. 1) to generate magnetically self-focused electron beams 7, e.g. from the plasma 1 of a rapidly changing hollow cathode and a dielectric tube 5 protruding therein consists.
- the other end of the dielectric tube 5 protrudes from the cathode electrode 2 insulated, freely into a recipient 8 (see Fig. 2).
- This end comes away comparatively low voltage (10 kV) and pulse power (5 MW) a sharp focused electron beam 7 with a half-width in time of 100 ns, even after a 6 cm free flight path Ablation effects, as shown in Figure 2 by the material cloud 33 indicated.
- the anode 3 plays a subordinate role.
- An anode 3 can also be dispensed with; the function of the anode 3 is then taken over by the metallic one Recipient 8. Both collect the negative excess charge and form the return current to the capacitors.
- the dielectric tube space 5 must contain a residual gas filling with the pressure p.
- the particle stream 7 ionizes and clarifies the residual gas, so that the wall of the tube space 5 is repelled by the particle beam 7 and the axis is attracted (see the schematic illustration in FIG. 1 a).
- the space charge repulsion in the axis 12 is reduced in the case of the electron beam 7 (FIG. 1a).
- the profile of the electron beam 7 resembles a hollow cylinder. This indicates a remaining space charge rejection during of the acceleration process.
- the beam 7 remains stable and widens along one Distance of 15 cm only slightly; however, the residual Pressure in the recipient 8 be greater than 0.2 Pa (oxygen).
- the profile of the beam 7 indicates the ability of the tube space 5 towards holding and accelerating those electrons, the beam in an open acceleration structure 7 would leave. That explains the good efficiency of the acceleration of particles in the tube space 5.
- the dielectric tube 5 must lose electrons or the first section of the same at least three times as long like their inside diameter.
- the voltage breakdown at tube 5 is about 4 Pa with applied voltage of 20 kV and a diameter d of dielectric tube 5 of 3 mm.
- the preferred working pressure range in the implementation example lies between 0.1 Pa and 1.5 Pa.
- Oxygen was used as the gas filling. However, it can each gas can be taken as a residual gas filling.
- auxiliary electrode 9 is integrated in the dielectric tube 5 , which is connected via an ohmic or inductive resistor 10 is connected to the anode 3 (Fig. 3a).
- the resistor 10 is dimensioned so that from a low current (10 mA-10 A) the anode potential drifts away from the auxiliary anode 9 and that Potential is applied to the entire dielectric tube 5. This measure is generally recommended, in particular if the dielectric tube 5 is very long (e.g. 100 cm) and / or is curved, and / or if to decrease or Increase in the current density of the cross section along the dielectric Tube 5 changes.
- the distance from the reservoir 1 to the auxiliary electrode 9 in Fig. 3a is called channel accelerator 5 and the formation of the Particle beam 7 channel spark.
- the section from the auxiliary electrode 9 becomes the anodic end of the dielectric tube 5 designated with beam guide 12.
- the electrical insulation capacity of the inner wall of the accelerator tube 5 is affected by contamination; thereby disturbing the operation of the channel spark given.
- a secondary discharge is also unavoidable in the adsorbates of the inner wall of the dielectric Tube 5 when the particle stream from the reservoir 1 grows.
- the discharge on the inner wall of the dielectric Tube 5 shields the external field, causing the focusing of the particle stream 7 from the reservoir 1 the axis 12 is hindered.
- continuous 4 shows three solution examples a), b), c) for a segmented arrangement 16 of the tube 5 each in connection with a dielectric body 18, 19, 20, the an inner radial 18 or topologically arbitrary slit 19.20 has an interruption of any harmful internal surface currents from one to the other dielectric tube segment is intended to effect.
- This slit can also have at least one depression 22 or the like. involve that further penetration of vapors into the rear space of the slot prevented. This is how the segments are isolated from each other ensures what a safe operation of the channel spark means.
- a reservoir 1 for electrons in Fig. 1 can instead of one rapidly changing hollow cathode also a pulsed surface discharge or laser plasma.
- a pulsed surface discharge or laser plasma For the Transport of the high-current beam in the anode compartment must, however a minimum pressure of the order of 0.2 Pa is set will.
- a dielectric Tube 30 with approximately the same inner diameter and the same length like the accelerator tube 5 passed into the reservoir space 1 and thus the operation can be initiated.
- the other end of the dielectric tube 30 is connected to trigger source 31 via a resistor 32 dimensioned in such a manner, that any secondary discharge to trigger source 31 is none Destruction causes (see Fig. 6).
- a gas supply 24 is attached to the tube 5 so that the gas both in Flow in the direction of reservoir 1 as well as into recipient 8 can, in which the counter electrode 3 is located (Fig. 5).
- the gas supply hose 25 between the tube end and the Gas source 26 must avoid parasitic gas discharge between the dielectric tube 5 and the gas source 26 further dielectric tube 27 are introduced, the has an inner diameter of at most 1/2 d and that metallized on both sides of the end faces or with electrodes 28 is provided, the one facing the gas source 26 Electrode 28 is grounded and the other floats freely.
- the potential of the reservoir is to accelerate ions 1 on anode potential. Because of the shielding effect of the The electrons and the low mobility of the ions must Density of the plasma in the reservoir 1 at the entrance of the dielectric Tube 5 high. For effective extraction of the ions from the plasma into the dielectric tube 5 Acceleration section (up to the first auxiliary electrode 13, see Fig. 3b) short and because of the Child-Langmuir law the tension be chosen high.
- the auxiliary electrode 13 begins to carry current.
- the ohmic or inductive resistor 6, which is the auxiliary electrode 13 connects to the cathode, leaves the first auxiliary electrode 13 drift to anode potential. Now one takes over 3b the second auxiliary electrode adjoining to the right in FIG.
- the residual pressure must be as small as possible be. In the implementation example it was around 0.1 Pa.
- auxiliary electrodes 13 act like a linear accelerator; secondly, the ion beam leaves the with good parallelism dielectric tube 5.
- the channel spark is initially a simple and inexpensive Source for high-intensity directional electron and ion beams with the help of process energy in dormant or differential pumped gases, gas mixtures and mixtures of gas and Aerosols can be deposited.
- Gas target can be created in which the electron beam is under Generation of braking and characteristic radiation in the gas is braked. Aerosols of unknown composition can continuously passed through the dielectric tube, completely ionized by the electron beam and based on the characteristic radiation can be determined.
- Material can be irradiated and removed with the help of particle beams and edited (see Fig. 2).
- the removal process in the case of electrons is ablation, in the case of ions atomization including hot processes.
- the sputtered, ablated and evaporated materials 33 move away from target 14 predominantly in the target normal away and exist, roughly ordered according to the power density of the particle beam, from ions, atoms, molecules, clusters and aerosols of all sizes, some of which are still excited and Carry excess loads.
- the sputtered, ablated and evaporated from the particle beam Target material can be used to produce layers on substrates according to the Tayloring method (each atomic layer is different), as an atomic mixture (between otherwise incompatible Materials) and as a compound substance on high-strength fibers or similar be used.
- Layers on substrates can also be made with atomic material be produced using the particle and / or electromagnetic Rays from its gaseous chemical Connection is released.
- the powerful electron / ion beams from the channel spark form a particle source with high brilliance and current and after a differentially pumped route in middle and high-energy accelerators are initiated.
- the plasma that occurs when the particle beams hit a Target is a rich pulsed source for electromagnetic radiation (light, UV, VUV, soft X-rays).
- a very intense pulsed light source 37 is obtained from the bombardment of the end face of a light guide 35 by means of Particle beam (see Fig. 7). This creates a very hot plasma 36 generated from the light guide material, the emitted Light because of its spectral composition and power density at the place of origin, with high yield in the Optical fiber is coupled.
- the electron beam of the channel discharge is characterized by a high current in the lower kA range at comparatively low acceleration voltage (5-10 kV) and is suitable to produce pulsed soft bremsstrahlung Impact of the well-focused electron beam on a target. With this bremsstrahlung, biological structures can in the micrometer range by casting shadows.
- Duct discharge is suitable if it can be kept above 100 kV as a free-running and triggerable switch for high Tensions.
- the channel discharge can be used for lower voltages also as a pulse generator with repetition frequencies up to 10 kHz be used.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Particle Accelerators (AREA)
Claims (9)
- Procédé pour accélérer des particules chargées électriquement à partir d'un réservoir pulsé à densité de particules élevée, comprenant les séquences suivantes :les particules sont accélérées au moyen d'un système d'électrodes (2, 3) dans une chambre de tube (5) et dans celle-ci et sont maintenues rassemblées dedans au moyen d'une focalisation électrostatique en raison de l'existence d'un remplissage résiduel de gaz qui se trouve dedans,dans le cas d'une tension d'accélération de 10 à 20 kV entre les deux électrodes on obtient une densité de courant de 103 à 104 A/ cm2 et une énergie moyenne des électrons de 11 à n12 keV,la pression des gaz résiduels p dans la chambre tubulaire diélectrique (5) est maintenue dans la zone de 0,1 à 1,5 Pa et le remplissage résiduel de gaz est ionisé et est polarisé électriquement dans la chambre tubulaire (5) par le courant de particules (7) chargé électriquement.le trajet d'accélération dans la chambre tubulaire (5) est raccourci par une électrode auxiliaire (9) couplée avec l'électrode (3) au moyen d'une résistance (10) ou d'une inductance (10), qui est mise autour de la chambre tubulaire (5), ou l'échelonnement du potentiel entre les électrodes (2, 3) est réalisé au moyen d'un diviseur de tension (6), sur la prise intermédiaire duquel sont raccordées des électrodes auxiliaires (13), qui se trouvent autour de la chambre tubulaire (5).
- Accélérateur de particules servant à la mise en oeuvre du procédé selon la revendication 1, consistant en une source pulsée, qui délivre les particules chargées, et en un réservoir, qui est garni avec les particules chargées, ainsi qu'en un dispositif d'accélération,
caractérisé en ce queentre deux électrodes (2, 3) dont l'une (2) limite en même temps le réservoir (1) en partie, et l'autre (3) se trouve en dehors, on installe au moins une chambre tubulaire diélectrique (5), qui commence par une ouverture dans l'électrode (2) et est alignée en direction de l'autre électrode (3),la chambre tubulaire (5) diélectrique, qui commence sur l'électrode (2), a une longueur minimale égale à trois fois son diamètre intérieur,pour recevoir l'isolation électrique axiale en cas de contamination la chambre tubulaire diélectrique (5) est constituée entre les deux électrodes (2, 3) en partie ou en totalité par un système de segments tubulaires (16), diélectriques, disposé en alignement, que relie un corps diélectrique, fendu radialement à l'intérieur (ou topologiquement comme on veut) (18, 19, 20) avec un alésage intérieur en alignement, de telle sorte que des courants superficiels intérieurs ne peuvent pas s'écouler entre les segments de tube (16). - Accélérateur de particules selon la revendication 2,
caractérisé en ce que
la fente radiale ou topologiquement comme l'on veut (18, 19, 20) contient en plus une dépression (22), de telle sorte que la chambre arrière qui se raccorde après la dépression soit protégée de la contamination et d'une conductibilité superficielle. - Accélérateur de particules selon la revendication 3,
caractérisé en ce que
à l'extrémité des tubes diélectriques (5) en direction de l'électrode opposée (3,8) une arrivée de gaz (24) peut s'écouler en direction du réservoir (1) comme aussi dans les récipients (8), dans lequel se trouve l'électrode opposée (3, 8). - Accélérateur de particules selon la revendication 4,
caractérisé en ce que
dans le tuyau d'arrivée des gaz (25) entre l'extrémité du tube (24) et la source des gaz (26) on met pour éviter une décharge parasitaire des gaz en direction de la source des gaz (26) un petit tube diélectrique (27), qui présente un diamètre intérieur d'au moins ½ d et qui est métallisé des deux côtés sur ses faces frontales ou est pourvu d'électrodes (28), l'électrode (28), tournée vers la source des gaz (26) étant mise à la terre et l'autre flottant librement. - Accélérateur de particules selon la revendication 2
caractérisé en ce que
le réservoir (1) est un plasma de corps solide pulsé. - Accélérateur de particules selon la revendication 2
caractérisé en ce que
la source est une cathode creuse pulsée et le réservoir (1) est un plasma de cathode creuse. - Accélérateur de particules selon la revendication 2
caractérisé en ce que
dans le cas d'une chambre de réservoir à potentiel élevé (1) on fait passer un plasma de déclenchement (29) ou des courants de particules de faible énergie à travers la chambre tubulaire diélectrique (30) avec à peu près le même diamètre et la même longueur que les tubes d'accélérateur dans la chambre du réservoir (1). - Accélérateur de particules selon la revendication 8
caractérisé en ce que
le tube diélectrique (30),qui transporte le plasma de déclenchement (29) ou les courants de particules de faible énergie dans la chambre du réservoir est mis à la terre au moyen d'une résistance (32), de telle sorte que la décharge auxiliaire ne puisse pas causer de dérangement à la source de déclenchement (31).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4208764 | 1992-03-19 | ||
DE4208764A DE4208764C2 (de) | 1992-03-19 | 1992-03-19 | Gasgefüllter Teilchenbeschleuniger |
PCT/DE1993/000253 WO1993019572A1 (fr) | 1992-03-19 | 1993-03-18 | Procede d'acceleration de particules chargees electriquement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0631712A1 EP0631712A1 (fr) | 1995-01-04 |
EP0631712B1 true EP0631712B1 (fr) | 1998-05-20 |
Family
ID=6454418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93906431A Expired - Lifetime EP0631712B1 (fr) | 1992-03-19 | 1993-03-18 | Procede d'acceleration de particules chargees electriquement |
Country Status (5)
Country | Link |
---|---|
US (1) | US5576593A (fr) |
EP (1) | EP0631712B1 (fr) |
JP (1) | JP2831468B2 (fr) |
DE (2) | DE4208764C2 (fr) |
WO (1) | WO1993019572A1 (fr) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19813589C2 (de) * | 1998-03-27 | 2002-06-20 | Karlsruhe Forschzent | Verfahren zum Erzeugen eines gepulsten Elektronenstrahls und Elektronenstrahlquelle zur Durchführung des Verfahrens |
DE19902146C2 (de) * | 1999-01-20 | 2003-07-31 | Fraunhofer Ges Forschung | Verfahren und Einrichtung zur gepulsten Plasmaaktivierung |
JP3482949B2 (ja) * | 2000-08-04 | 2004-01-06 | 松下電器産業株式会社 | プラズマ処理方法及び装置 |
US6906338B2 (en) * | 2000-08-09 | 2005-06-14 | The Regents Of The University Of California | Laser driven ion accelerator |
DE10207835C1 (de) * | 2002-02-25 | 2003-06-12 | Karlsruhe Forschzent | Kanalfunkenquelle zur Erzeugung eines stabil gebündelten Elektronenstrahls |
DE10310623B8 (de) * | 2003-03-10 | 2005-12-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zum Erzeugen eines Plasmas durch elektrische Entladung in einem Entladungsraum |
WO2005027913A1 (fr) * | 2003-09-19 | 2005-03-31 | Pfizer Products Inc. | Compositions pharmaceutiques et methodes de traitement consistant en des associations d'un derive de la 2-alkylidene-19-nor-vitamine d et d'un secretagogue de l'hormone de croissance |
ITMI20040008A1 (it) * | 2004-01-08 | 2004-04-08 | Valentin Dediu | Processo per la produzione di nanotubi di carbonio a singola parete |
ITMI20050585A1 (it) * | 2005-04-07 | 2006-10-08 | Francesco Cino Matacotta | Apparato e processo per la generazione accelerazione e propagazione di fasci di elettroni e plasma |
US7557511B2 (en) * | 2005-08-01 | 2009-07-07 | Neocera, Llc | Apparatus and method utilizing high power density electron beam for generating pulsed stream of ablation plasma |
JP2009507344A (ja) * | 2005-08-30 | 2009-02-19 | アドバンスト テクノロジー マテリアルズ,インコーポレイテッド | 低圧ドーパントガスの高電圧イオン源への配送 |
DE102006028856B4 (de) * | 2006-06-23 | 2008-05-29 | Forschungszentrum Karlsruhe Gmbh | Verfahren zum Aufbringen einer bioaktiven, gewebeverträglichen Schicht auf einen Formkörper, solche Formkörper sowie Verwendung solchermaßen beschichteter Formkörper |
IT1395701B1 (it) | 2009-03-23 | 2012-10-19 | Organic Spintronics S R L | Dispositivo per la generazione di plasma e per dirigere un flusso di elettroni verso un bersaglio |
JP5681030B2 (ja) * | 2011-04-15 | 2015-03-04 | 清水電設工業株式会社 | プラズマ・電子ビーム発生装置、薄膜製造装置及び薄膜の製造方法 |
RU2462009C1 (ru) * | 2011-06-08 | 2012-09-20 | Мурадин Абубекирович Кумахов | Способ изменения направления движения пучка ускоренных заряженных частиц, устройство для осуществления этого способа, источник электромагнитного излучения, линейный и циклический ускорители заряженных частиц, коллайдер и средство для получения магнитного поля, создаваемого током ускоренных заряженных частиц |
ITBO20120695A1 (it) * | 2012-12-20 | 2014-06-21 | Organic Spintronics S R L | Dispositivo di deposizione a plasma impulsato |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3546524A (en) * | 1967-11-24 | 1970-12-08 | Varian Associates | Linear accelerator having the beam injected at a position of maximum r.f. accelerating field |
US3864640A (en) * | 1972-11-13 | 1975-02-04 | Willard H Bennett | Concentration and guidance of intense relativistic electron beams |
US4020384A (en) * | 1975-08-25 | 1977-04-26 | The Raymond Lee Organization, Inc. | Linear particle accelerator |
US4128764A (en) * | 1977-08-17 | 1978-12-05 | The United States Of America As Represented By The United States Department Of Energy | Collective field accelerator |
US4363774A (en) * | 1978-01-24 | 1982-12-14 | Bennett Willard H | Production and utilization of ion cluster acceleration |
DE2804393C2 (de) * | 1978-02-02 | 1987-01-02 | Jens Prof. Dr. 8520 Buckenhof Christiansen | Verfahren zum Erzeugen und Beschleunigen von Elektronen bzw. Ionen in einem Entladungsgefäß, sowie dazugehöriger Teilchenbeschleuniger und ferner dazugehörige Anwendungen des Verfahrens |
US4201921A (en) * | 1978-07-24 | 1980-05-06 | International Business Machines Corporation | Electron beam-capillary plasma flash x-ray device |
SU793343A1 (ru) * | 1979-11-06 | 1982-01-30 | Предприятие П/Я А-7094 | Ускор юща структура |
US4748378A (en) * | 1986-03-31 | 1988-05-31 | The United States Of America As Represented By The Department Of Energy | Ionized channel generation of an intense-relativistic electron beam |
JPS63100364A (ja) * | 1986-10-16 | 1988-05-02 | Fuji Electric Co Ltd | 酸化物超微粉膜の製造装置 |
US4894546A (en) * | 1987-03-11 | 1990-01-16 | Nihon Shinku Gijutsu Kabushiki Kaisha | Hollow cathode ion sources |
DE3844814A1 (de) * | 1988-03-19 | 1992-02-27 | Kernforschungsz Karlsruhe | Teilchenbeschleuniger zur erzeugung einer durchstimmbaren punktfoermigen hochleistungs-pseudofunken-roentgenquelle |
US4912421A (en) * | 1988-07-13 | 1990-03-27 | The United States Of America As Represented By The United States Department Of Energy | Variable energy constant current accelerator structure |
DE3834402C1 (fr) * | 1988-10-10 | 1989-05-03 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De | |
US4990229A (en) * | 1989-06-13 | 1991-02-05 | Plasma & Materials Technologies, Inc. | High density plasma deposition and etching apparatus |
JPH06508235A (ja) * | 1991-03-25 | 1994-09-14 | コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション | アークソース用大粒子フィルター |
-
1992
- 1992-03-19 DE DE4208764A patent/DE4208764C2/de not_active Expired - Fee Related
-
1993
- 1993-03-18 DE DE59308583T patent/DE59308583D1/de not_active Expired - Lifetime
- 1993-03-18 WO PCT/DE1993/000253 patent/WO1993019572A1/fr active IP Right Grant
- 1993-03-18 EP EP93906431A patent/EP0631712B1/fr not_active Expired - Lifetime
- 1993-03-18 JP JP5516169A patent/JP2831468B2/ja not_active Expired - Lifetime
-
1994
- 1994-09-06 US US08/301,078 patent/US5576593A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
WO1993019572A1 (fr) | 1993-09-30 |
JPH07501654A (ja) | 1995-02-16 |
US5576593A (en) | 1996-11-19 |
JP2831468B2 (ja) | 1998-12-02 |
DE4208764A1 (de) | 1993-09-30 |
DE59308583D1 (de) | 1998-06-25 |
EP0631712A1 (fr) | 1995-01-04 |
DE4208764C2 (de) | 1994-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0631712B1 (fr) | Procede d'acceleration de particules chargees electriquement | |
DE68926962T2 (de) | Plasma elektronengewehr fur ionen aus einer entfernten quelle | |
DE10130464B4 (de) | Plasmabeschleuniger-Anordnung | |
DE19681165C2 (de) | Ionenimplantationsanlage mit Massenselektion und anschließender Abbremsung | |
EP0503748B1 (fr) | Procédé pour générer des ions, en particulier pour un spectromètre de masse tel qu'un spectromètre à temps de vol, à partir de molécules thermiquement instables, non-volatiles et de masse élevée | |
EP1872372B1 (fr) | Cylindre creux soumis a l'action d'un rayonnement laser, utilise en tant que lentille pour faisceaux d'ions | |
DE2264437A1 (de) | Mit hochfrequenz-spannung betriebene entladungsvorrichtung | |
CH696972A5 (de) | Vorrichtung zur Kathodenzerstäubung. | |
DE69112166T2 (de) | Plasmaquellenvorrichtung für Ionenimplantierung. | |
DE2552783A1 (de) | Verfahren und anordnung zur erzeugung von ionen | |
DE1222589B (de) | Vorrichtung zum Erzeugen eines raumladungsneutralisierten Strahles geladener Teilchen | |
DE3881579T2 (de) | Ionenquelle. | |
DE1153463B (de) | Plasmaerzeuger zur Erzeugung eines kontinuierlichen Plasmastrahls | |
DE1920183C3 (de) | Verfahren zum Beschluß eines elektrisch isolierenden Materials mit Ionen zur Zerstäubung, Dotierung oder Analyse des Materials | |
DE19628093B4 (de) | Verfahren und Vorrichtung zum Nachweis von Probenmolekülen | |
DE2037030C1 (de) | Einrichtung zur Trennung von Isotopen durch Zentrifugalkräfte | |
DE102017218456B3 (de) | Vorrichtung und Verfahren zum Erzeugen von Ionenpulsen sowie deren Verwendung | |
DE2712829C3 (de) | Ionenquelle | |
DE2141376C3 (de) | Vorrichtung zur Erzeugung von relativistischen Elektronenstrahlimpulsen mit magnetischer Selbstfokussierung | |
DE3124987A1 (de) | Oberflaechenbehandlungsverfahren und -vorrichtung | |
DE2522227A1 (de) | Verfahren und vorrichtung zur erzeugung einer glimmentladung | |
DE2025987A1 (de) | Ionenquelle | |
DE102013001940B4 (de) | Vorrichtung und Verfahren zur Erzeugung von EUV-und/oder weicher Röntgenstrahlung | |
DE68913920T2 (de) | Dampf- und Ionenquelle. | |
CH650104A5 (de) | Mit bombardierung durch elektronen arbeitende ionenquelle. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940826 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH |
|
17Q | First examination report despatched |
Effective date: 19960524 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980520 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG Ref country code: CH Ref legal event code: EP |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59308583 Country of ref document: DE Date of ref document: 19980625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980820 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980811 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH Free format text: FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) -TRANSFER TO- FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20120323 Year of fee payment: 20 Ref country code: FR Payment date: 20120403 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120322 Year of fee payment: 20 Ref country code: IT Payment date: 20120327 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120522 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59308583 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20130317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130317 Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130319 |