EP0631712B1 - Procede d'acceleration de particules chargees electriquement - Google Patents

Procede d'acceleration de particules chargees electriquement Download PDF

Info

Publication number
EP0631712B1
EP0631712B1 EP93906431A EP93906431A EP0631712B1 EP 0631712 B1 EP0631712 B1 EP 0631712B1 EP 93906431 A EP93906431 A EP 93906431A EP 93906431 A EP93906431 A EP 93906431A EP 0631712 B1 EP0631712 B1 EP 0631712B1
Authority
EP
European Patent Office
Prior art keywords
dielectric
tube
reservoir
particle
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93906431A
Other languages
German (de)
English (en)
Other versions
EP0631712A1 (fr
Inventor
Christoph Schultheiss
Martin Konijnenberg
Markus Schwall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0631712A1 publication Critical patent/EP0631712A1/fr
Application granted granted Critical
Publication of EP0631712B1 publication Critical patent/EP0631712B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/04Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using magnetic fields substantially generated by the discharge in the plasma
    • H05H1/06Longitudinal pinch devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses

Definitions

  • the invention relates to a method for generating an electrical charged particle beam and a particle accelerator to carry out the method and to apply it.
  • Such processes and accelerators become particles predetermined charge and mass extracted from a reservoir and an acceleration space between two different ones electrical potentials supplied, ultimately as a beam to be available for further machining processes.
  • the invention has for its object high particle beam intensities or equivalent to a high current or a high current density and a sharp focus of the particle beam with economically acceptable means and expenses to reach.
  • the sub-claims 3 to 9 have advantageous refinements of the particle accelerator.
  • Further process steps for targeted beam acceleration are: For setting the process energy of the particle beam or its beam strength, the acceleration distance over a resistive or inductively coupled auxiliary electrode between shorten both outer electrodes, or is over one Potential control through resistively coupled auxiliary electrodes the acceleration distance between the two main electrodes divided for the particle beam.
  • Suitable particle accelerator To the loaded To be able to withdraw particles from the reservoir with high current forms one electrode partially the reservoir wall. It starts at her the dielectric tube space or others, if many such would be appropriate. The counter electrode is located outside the reservoir. The dielectric tube space is on them directed in its further course.
  • the tube space expediently partially or completely aligned through a system arranged dielectric tube segments formed.
  • the segments form radially shaped slots with each other. Thereby surface currents are prevented.
  • the slit is such that it is radial radiation or particles emanating from the tube axis the radial Do not reach the slot end, or if at all over a long detour.
  • the striking quality improvement of the particle beam is on the one hand, essentially attributable to the structural measure, the stack of electrodes and insulators of the pseudo-spark gap by a limited with dielectric material Pipe space, in the embodiment described below a quartz tube or an aligned series of several shorter quartz tubes to replace.
  • a quartz tube or an aligned series of several shorter quartz tubes to replace On the other hand, it stirs the high beam quality in turn largely depends on the independent Formation of a charged particle stream in the Quartz tube arrangement.
  • the electron beam which leaves the quartz tube, consists of two parts, namely from a portion of the gas discharge in the Pseudo-radio chamber and from a portion of that of an independent Beam formation occurs in the quartz tube.
  • the electron beam couples out of the pseudo-spark chamber reliable in the dielectric tube only if that End of the dielectric tube rests on an intermediate electrode, and the better, the more cathodically charged it is is, i.e. the deeper they are pushed into the pseudo-spark chamber becomes.
  • this is achieved in one device (FIG. 1) to generate magnetically self-focused electron beams 7, e.g. from the plasma 1 of a rapidly changing hollow cathode and a dielectric tube 5 protruding therein consists.
  • the other end of the dielectric tube 5 protrudes from the cathode electrode 2 insulated, freely into a recipient 8 (see Fig. 2).
  • This end comes away comparatively low voltage (10 kV) and pulse power (5 MW) a sharp focused electron beam 7 with a half-width in time of 100 ns, even after a 6 cm free flight path Ablation effects, as shown in Figure 2 by the material cloud 33 indicated.
  • the anode 3 plays a subordinate role.
  • An anode 3 can also be dispensed with; the function of the anode 3 is then taken over by the metallic one Recipient 8. Both collect the negative excess charge and form the return current to the capacitors.
  • the dielectric tube space 5 must contain a residual gas filling with the pressure p.
  • the particle stream 7 ionizes and clarifies the residual gas, so that the wall of the tube space 5 is repelled by the particle beam 7 and the axis is attracted (see the schematic illustration in FIG. 1 a).
  • the space charge repulsion in the axis 12 is reduced in the case of the electron beam 7 (FIG. 1a).
  • the profile of the electron beam 7 resembles a hollow cylinder. This indicates a remaining space charge rejection during of the acceleration process.
  • the beam 7 remains stable and widens along one Distance of 15 cm only slightly; however, the residual Pressure in the recipient 8 be greater than 0.2 Pa (oxygen).
  • the profile of the beam 7 indicates the ability of the tube space 5 towards holding and accelerating those electrons, the beam in an open acceleration structure 7 would leave. That explains the good efficiency of the acceleration of particles in the tube space 5.
  • the dielectric tube 5 must lose electrons or the first section of the same at least three times as long like their inside diameter.
  • the voltage breakdown at tube 5 is about 4 Pa with applied voltage of 20 kV and a diameter d of dielectric tube 5 of 3 mm.
  • the preferred working pressure range in the implementation example lies between 0.1 Pa and 1.5 Pa.
  • Oxygen was used as the gas filling. However, it can each gas can be taken as a residual gas filling.
  • auxiliary electrode 9 is integrated in the dielectric tube 5 , which is connected via an ohmic or inductive resistor 10 is connected to the anode 3 (Fig. 3a).
  • the resistor 10 is dimensioned so that from a low current (10 mA-10 A) the anode potential drifts away from the auxiliary anode 9 and that Potential is applied to the entire dielectric tube 5. This measure is generally recommended, in particular if the dielectric tube 5 is very long (e.g. 100 cm) and / or is curved, and / or if to decrease or Increase in the current density of the cross section along the dielectric Tube 5 changes.
  • the distance from the reservoir 1 to the auxiliary electrode 9 in Fig. 3a is called channel accelerator 5 and the formation of the Particle beam 7 channel spark.
  • the section from the auxiliary electrode 9 becomes the anodic end of the dielectric tube 5 designated with beam guide 12.
  • the electrical insulation capacity of the inner wall of the accelerator tube 5 is affected by contamination; thereby disturbing the operation of the channel spark given.
  • a secondary discharge is also unavoidable in the adsorbates of the inner wall of the dielectric Tube 5 when the particle stream from the reservoir 1 grows.
  • the discharge on the inner wall of the dielectric Tube 5 shields the external field, causing the focusing of the particle stream 7 from the reservoir 1 the axis 12 is hindered.
  • continuous 4 shows three solution examples a), b), c) for a segmented arrangement 16 of the tube 5 each in connection with a dielectric body 18, 19, 20, the an inner radial 18 or topologically arbitrary slit 19.20 has an interruption of any harmful internal surface currents from one to the other dielectric tube segment is intended to effect.
  • This slit can also have at least one depression 22 or the like. involve that further penetration of vapors into the rear space of the slot prevented. This is how the segments are isolated from each other ensures what a safe operation of the channel spark means.
  • a reservoir 1 for electrons in Fig. 1 can instead of one rapidly changing hollow cathode also a pulsed surface discharge or laser plasma.
  • a pulsed surface discharge or laser plasma For the Transport of the high-current beam in the anode compartment must, however a minimum pressure of the order of 0.2 Pa is set will.
  • a dielectric Tube 30 with approximately the same inner diameter and the same length like the accelerator tube 5 passed into the reservoir space 1 and thus the operation can be initiated.
  • the other end of the dielectric tube 30 is connected to trigger source 31 via a resistor 32 dimensioned in such a manner, that any secondary discharge to trigger source 31 is none Destruction causes (see Fig. 6).
  • a gas supply 24 is attached to the tube 5 so that the gas both in Flow in the direction of reservoir 1 as well as into recipient 8 can, in which the counter electrode 3 is located (Fig. 5).
  • the gas supply hose 25 between the tube end and the Gas source 26 must avoid parasitic gas discharge between the dielectric tube 5 and the gas source 26 further dielectric tube 27 are introduced, the has an inner diameter of at most 1/2 d and that metallized on both sides of the end faces or with electrodes 28 is provided, the one facing the gas source 26 Electrode 28 is grounded and the other floats freely.
  • the potential of the reservoir is to accelerate ions 1 on anode potential. Because of the shielding effect of the The electrons and the low mobility of the ions must Density of the plasma in the reservoir 1 at the entrance of the dielectric Tube 5 high. For effective extraction of the ions from the plasma into the dielectric tube 5 Acceleration section (up to the first auxiliary electrode 13, see Fig. 3b) short and because of the Child-Langmuir law the tension be chosen high.
  • the auxiliary electrode 13 begins to carry current.
  • the ohmic or inductive resistor 6, which is the auxiliary electrode 13 connects to the cathode, leaves the first auxiliary electrode 13 drift to anode potential. Now one takes over 3b the second auxiliary electrode adjoining to the right in FIG.
  • the residual pressure must be as small as possible be. In the implementation example it was around 0.1 Pa.
  • auxiliary electrodes 13 act like a linear accelerator; secondly, the ion beam leaves the with good parallelism dielectric tube 5.
  • the channel spark is initially a simple and inexpensive Source for high-intensity directional electron and ion beams with the help of process energy in dormant or differential pumped gases, gas mixtures and mixtures of gas and Aerosols can be deposited.
  • Gas target can be created in which the electron beam is under Generation of braking and characteristic radiation in the gas is braked. Aerosols of unknown composition can continuously passed through the dielectric tube, completely ionized by the electron beam and based on the characteristic radiation can be determined.
  • Material can be irradiated and removed with the help of particle beams and edited (see Fig. 2).
  • the removal process in the case of electrons is ablation, in the case of ions atomization including hot processes.
  • the sputtered, ablated and evaporated materials 33 move away from target 14 predominantly in the target normal away and exist, roughly ordered according to the power density of the particle beam, from ions, atoms, molecules, clusters and aerosols of all sizes, some of which are still excited and Carry excess loads.
  • the sputtered, ablated and evaporated from the particle beam Target material can be used to produce layers on substrates according to the Tayloring method (each atomic layer is different), as an atomic mixture (between otherwise incompatible Materials) and as a compound substance on high-strength fibers or similar be used.
  • Layers on substrates can also be made with atomic material be produced using the particle and / or electromagnetic Rays from its gaseous chemical Connection is released.
  • the powerful electron / ion beams from the channel spark form a particle source with high brilliance and current and after a differentially pumped route in middle and high-energy accelerators are initiated.
  • the plasma that occurs when the particle beams hit a Target is a rich pulsed source for electromagnetic radiation (light, UV, VUV, soft X-rays).
  • a very intense pulsed light source 37 is obtained from the bombardment of the end face of a light guide 35 by means of Particle beam (see Fig. 7). This creates a very hot plasma 36 generated from the light guide material, the emitted Light because of its spectral composition and power density at the place of origin, with high yield in the Optical fiber is coupled.
  • the electron beam of the channel discharge is characterized by a high current in the lower kA range at comparatively low acceleration voltage (5-10 kV) and is suitable to produce pulsed soft bremsstrahlung Impact of the well-focused electron beam on a target. With this bremsstrahlung, biological structures can in the micrometer range by casting shadows.
  • Duct discharge is suitable if it can be kept above 100 kV as a free-running and triggerable switch for high Tensions.
  • the channel discharge can be used for lower voltages also as a pulse generator with repetition frequencies up to 10 kHz be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Particle Accelerators (AREA)

Claims (9)

  1. Procédé pour accélérer des particules chargées électriquement à partir d'un réservoir pulsé à densité de particules élevée, comprenant les séquences suivantes :
    les particules sont accélérées au moyen d'un système d'électrodes (2, 3) dans une chambre de tube (5) et dans celle-ci et sont maintenues rassemblées dedans au moyen d'une focalisation électrostatique en raison de l'existence d'un remplissage résiduel de gaz qui se trouve dedans,
    dans le cas d'une tension d'accélération de 10 à 20 kV entre les deux électrodes on obtient une densité de courant de 103 à 104 A/ cm2 et une énergie moyenne des électrons de 11 à n12 keV,
    caractérisé en ce que
    la pression des gaz résiduels p dans la chambre tubulaire diélectrique (5) est maintenue dans la zone de 0,1 à 1,5 Pa et le remplissage résiduel de gaz est ionisé et est polarisé électriquement dans la chambre tubulaire (5) par le courant de particules (7) chargé électriquement.
    le trajet d'accélération dans la chambre tubulaire (5) est raccourci par une électrode auxiliaire (9) couplée avec l'électrode (3) au moyen d'une résistance (10) ou d'une inductance (10), qui est mise autour de la chambre tubulaire (5), ou l'échelonnement du potentiel entre les électrodes (2, 3) est réalisé au moyen d'un diviseur de tension (6), sur la prise intermédiaire duquel sont raccordées des électrodes auxiliaires (13), qui se trouvent autour de la chambre tubulaire (5).
  2. Accélérateur de particules servant à la mise en oeuvre du procédé selon la revendication 1, consistant en une source pulsée, qui délivre les particules chargées, et en un réservoir, qui est garni avec les particules chargées, ainsi qu'en un dispositif d'accélération,
    caractérisé en ce que
    entre deux électrodes (2, 3) dont l'une (2) limite en même temps le réservoir (1) en partie, et l'autre (3) se trouve en dehors, on installe au moins une chambre tubulaire diélectrique (5), qui commence par une ouverture dans l'électrode (2) et est alignée en direction de l'autre électrode (3),
    la chambre tubulaire (5) diélectrique, qui commence sur l'électrode (2), a une longueur minimale égale à trois fois son diamètre intérieur,
    pour recevoir l'isolation électrique axiale en cas de contamination la chambre tubulaire diélectrique (5) est constituée entre les deux électrodes (2, 3) en partie ou en totalité par un système de segments tubulaires (16), diélectriques, disposé en alignement, que relie un corps diélectrique, fendu radialement à l'intérieur (ou topologiquement comme on veut) (18, 19, 20) avec un alésage intérieur en alignement, de telle sorte que des courants superficiels intérieurs ne peuvent pas s'écouler entre les segments de tube (16).
  3. Accélérateur de particules selon la revendication 2,
    caractérisé en ce que
    la fente radiale ou topologiquement comme l'on veut (18, 19, 20) contient en plus une dépression (22), de telle sorte que la chambre arrière qui se raccorde après la dépression soit protégée de la contamination et d'une conductibilité superficielle.
  4. Accélérateur de particules selon la revendication 3,
    caractérisé en ce que
    à l'extrémité des tubes diélectriques (5) en direction de l'électrode opposée (3,8) une arrivée de gaz (24) peut s'écouler en direction du réservoir (1) comme aussi dans les récipients (8), dans lequel se trouve l'électrode opposée (3, 8).
  5. Accélérateur de particules selon la revendication 4,
    caractérisé en ce que
    dans le tuyau d'arrivée des gaz (25) entre l'extrémité du tube (24) et la source des gaz (26) on met pour éviter une décharge parasitaire des gaz en direction de la source des gaz (26) un petit tube diélectrique (27), qui présente un diamètre intérieur d'au moins ½ d et qui est métallisé des deux côtés sur ses faces frontales ou est pourvu d'électrodes (28), l'électrode (28), tournée vers la source des gaz (26) étant mise à la terre et l'autre flottant librement.
  6. Accélérateur de particules selon la revendication 2
    caractérisé en ce que
    le réservoir (1) est un plasma de corps solide pulsé.
  7. Accélérateur de particules selon la revendication 2
    caractérisé en ce que
    la source est une cathode creuse pulsée et le réservoir (1) est un plasma de cathode creuse.
  8. Accélérateur de particules selon la revendication 2
    caractérisé en ce que
    dans le cas d'une chambre de réservoir à potentiel élevé (1) on fait passer un plasma de déclenchement (29) ou des courants de particules de faible énergie à travers la chambre tubulaire diélectrique (30) avec à peu près le même diamètre et la même longueur que les tubes d'accélérateur dans la chambre du réservoir (1).
  9. Accélérateur de particules selon la revendication 8
    caractérisé en ce que
    le tube diélectrique (30),qui transporte le plasma de déclenchement (29) ou les courants de particules de faible énergie dans la chambre du réservoir est mis à la terre au moyen d'une résistance (32), de telle sorte que la décharge auxiliaire ne puisse pas causer de dérangement à la source de déclenchement (31).
EP93906431A 1992-03-19 1993-03-18 Procede d'acceleration de particules chargees electriquement Expired - Lifetime EP0631712B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4208764 1992-03-19
DE4208764A DE4208764C2 (de) 1992-03-19 1992-03-19 Gasgefüllter Teilchenbeschleuniger
PCT/DE1993/000253 WO1993019572A1 (fr) 1992-03-19 1993-03-18 Procede d'acceleration de particules chargees electriquement

Publications (2)

Publication Number Publication Date
EP0631712A1 EP0631712A1 (fr) 1995-01-04
EP0631712B1 true EP0631712B1 (fr) 1998-05-20

Family

ID=6454418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93906431A Expired - Lifetime EP0631712B1 (fr) 1992-03-19 1993-03-18 Procede d'acceleration de particules chargees electriquement

Country Status (5)

Country Link
US (1) US5576593A (fr)
EP (1) EP0631712B1 (fr)
JP (1) JP2831468B2 (fr)
DE (2) DE4208764C2 (fr)
WO (1) WO1993019572A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19813589C2 (de) * 1998-03-27 2002-06-20 Karlsruhe Forschzent Verfahren zum Erzeugen eines gepulsten Elektronenstrahls und Elektronenstrahlquelle zur Durchführung des Verfahrens
DE19902146C2 (de) * 1999-01-20 2003-07-31 Fraunhofer Ges Forschung Verfahren und Einrichtung zur gepulsten Plasmaaktivierung
JP3482949B2 (ja) * 2000-08-04 2004-01-06 松下電器産業株式会社 プラズマ処理方法及び装置
US6906338B2 (en) * 2000-08-09 2005-06-14 The Regents Of The University Of California Laser driven ion accelerator
DE10207835C1 (de) * 2002-02-25 2003-06-12 Karlsruhe Forschzent Kanalfunkenquelle zur Erzeugung eines stabil gebündelten Elektronenstrahls
DE10310623B8 (de) * 2003-03-10 2005-12-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Erzeugen eines Plasmas durch elektrische Entladung in einem Entladungsraum
WO2005027913A1 (fr) * 2003-09-19 2005-03-31 Pfizer Products Inc. Compositions pharmaceutiques et methodes de traitement consistant en des associations d'un derive de la 2-alkylidene-19-nor-vitamine d et d'un secretagogue de l'hormone de croissance
ITMI20040008A1 (it) * 2004-01-08 2004-04-08 Valentin Dediu Processo per la produzione di nanotubi di carbonio a singola parete
ITMI20050585A1 (it) * 2005-04-07 2006-10-08 Francesco Cino Matacotta Apparato e processo per la generazione accelerazione e propagazione di fasci di elettroni e plasma
US7557511B2 (en) * 2005-08-01 2009-07-07 Neocera, Llc Apparatus and method utilizing high power density electron beam for generating pulsed stream of ablation plasma
KR20080041285A (ko) * 2005-08-30 2008-05-09 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 저압 가스 이송 장치 및 방법
DE102006028856B4 (de) * 2006-06-23 2008-05-29 Forschungszentrum Karlsruhe Gmbh Verfahren zum Aufbringen einer bioaktiven, gewebeverträglichen Schicht auf einen Formkörper, solche Formkörper sowie Verwendung solchermaßen beschichteter Formkörper
IT1395701B1 (it) 2009-03-23 2012-10-19 Organic Spintronics S R L Dispositivo per la generazione di plasma e per dirigere un flusso di elettroni verso un bersaglio
JP5681030B2 (ja) * 2011-04-15 2015-03-04 清水電設工業株式会社 プラズマ・電子ビーム発生装置、薄膜製造装置及び薄膜の製造方法
RU2462009C1 (ru) * 2011-06-08 2012-09-20 Мурадин Абубекирович Кумахов Способ изменения направления движения пучка ускоренных заряженных частиц, устройство для осуществления этого способа, источник электромагнитного излучения, линейный и циклический ускорители заряженных частиц, коллайдер и средство для получения магнитного поля, создаваемого током ускоренных заряженных частиц
ITBO20120695A1 (it) * 2012-12-20 2014-06-21 Organic Spintronics S R L Dispositivo di deposizione a plasma impulsato

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546524A (en) * 1967-11-24 1970-12-08 Varian Associates Linear accelerator having the beam injected at a position of maximum r.f. accelerating field
US3864640A (en) * 1972-11-13 1975-02-04 Willard H Bennett Concentration and guidance of intense relativistic electron beams
US4020384A (en) * 1975-08-25 1977-04-26 The Raymond Lee Organization, Inc. Linear particle accelerator
US4128764A (en) * 1977-08-17 1978-12-05 The United States Of America As Represented By The United States Department Of Energy Collective field accelerator
US4363774A (en) * 1978-01-24 1982-12-14 Bennett Willard H Production and utilization of ion cluster acceleration
DE2804393A1 (de) * 1978-02-02 1979-08-09 Christiansen Jens Verfahren zur erzeugung hoher gepulster ionen- und elektronenstroeme
US4201921A (en) * 1978-07-24 1980-05-06 International Business Machines Corporation Electron beam-capillary plasma flash x-ray device
SU793343A1 (ru) * 1979-11-06 1982-01-30 Предприятие П/Я А-7094 Ускор юща структура
US4748378A (en) * 1986-03-31 1988-05-31 The United States Of America As Represented By The Department Of Energy Ionized channel generation of an intense-relativistic electron beam
JPS63100364A (ja) * 1986-10-16 1988-05-02 Fuji Electric Co Ltd 酸化物超微粉膜の製造装置
US4894546A (en) * 1987-03-11 1990-01-16 Nihon Shinku Gijutsu Kabushiki Kaisha Hollow cathode ion sources
DE3844814A1 (de) * 1988-03-19 1992-02-27 Kernforschungsz Karlsruhe Teilchenbeschleuniger zur erzeugung einer durchstimmbaren punktfoermigen hochleistungs-pseudofunken-roentgenquelle
US4912421A (en) * 1988-07-13 1990-03-27 The United States Of America As Represented By The United States Department Of Energy Variable energy constant current accelerator structure
DE3834402C1 (fr) * 1988-10-10 1989-05-03 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De
US4990229A (en) * 1989-06-13 1991-02-05 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
DE69226360T2 (de) * 1991-03-25 1999-02-25 Commw Scient Ind Res Org Makroteilchenfilter in lichtbogenquelle

Also Published As

Publication number Publication date
EP0631712A1 (fr) 1995-01-04
US5576593A (en) 1996-11-19
DE59308583D1 (de) 1998-06-25
DE4208764C2 (de) 1994-02-24
DE4208764A1 (de) 1993-09-30
JP2831468B2 (ja) 1998-12-02
JPH07501654A (ja) 1995-02-16
WO1993019572A1 (fr) 1993-09-30

Similar Documents

Publication Publication Date Title
EP0631712B1 (fr) Procede d'acceleration de particules chargees electriquement
DE10130464B4 (de) Plasmabeschleuniger-Anordnung
DE19681165C2 (de) Ionenimplantationsanlage mit Massenselektion und anschließender Abbremsung
EP0503748B1 (fr) Procédé pour générer des ions, en particulier pour un spectromètre de masse tel qu'un spectromètre à temps de vol, à partir de molécules thermiquement instables, non-volatiles et de masse élevée
DE3429591A1 (de) Ionenquelle mit wenigstens zwei ionisationskammern, insbesondere zur bildung von chemisch aktiven ionenstrahlen
EP1872372B1 (fr) Cylindre creux soumis a l'action d'un rayonnement laser, utilise en tant que lentille pour faisceaux d'ions
DE2264437A1 (de) Mit hochfrequenz-spannung betriebene entladungsvorrichtung
EP0349556A1 (fr) Procede et dispositif de traitement de la surface de semi-conducteurs par bombardement de particules.
CH696972A5 (de) Vorrichtung zur Kathodenzerstäubung.
DE2552783A1 (de) Verfahren und anordnung zur erzeugung von ionen
DE1222589B (de) Vorrichtung zum Erzeugen eines raumladungsneutralisierten Strahles geladener Teilchen
DE1153463B (de) Plasmaerzeuger zur Erzeugung eines kontinuierlichen Plasmastrahls
DE1920183C3 (de) Verfahren zum Beschluß eines elektrisch isolierenden Materials mit Ionen zur Zerstäubung, Dotierung oder Analyse des Materials
DE19628093B4 (de) Verfahren und Vorrichtung zum Nachweis von Probenmolekülen
DE2037030C1 (de) Einrichtung zur Trennung von Isotopen durch Zentrifugalkräfte
DE2712829C3 (de) Ionenquelle
DE102017218456B3 (de) Vorrichtung und Verfahren zum Erzeugen von Ionenpulsen sowie deren Verwendung
DE2141376C3 (de) Vorrichtung zur Erzeugung von relativistischen Elektronenstrahlimpulsen mit magnetischer Selbstfokussierung
DE3124987A1 (de) Oberflaechenbehandlungsverfahren und -vorrichtung
DE2522227A1 (de) Verfahren und vorrichtung zur erzeugung einer glimmentladung
DE2025987A1 (de) Ionenquelle
DE102013001940B4 (de) Vorrichtung und Verfahren zur Erzeugung von EUV-und/oder weicher Röntgenstrahlung
CH650104A5 (de) Mit bombardierung durch elektronen arbeitende ionenquelle.
DE102015104213A1 (de) Vorrichtung und Verfahren zur Erzeugung und Aussendung eines ladungs- und massenseparierten Ionenstrahls variabler Energie
DE10051986A1 (de) Verfahren zum Strippen von Ionen in einer aus einem Gasentladungsplasma bestehenden Umladestrecke und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940826

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

17Q First examination report despatched

Effective date: 19960524

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980520

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59308583

Country of ref document: DE

Date of ref document: 19980625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980820

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980811

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

Free format text: FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) -TRANSFER TO- FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120323

Year of fee payment: 20

Ref country code: FR

Payment date: 20120403

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120322

Year of fee payment: 20

Ref country code: IT

Payment date: 20120327

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120522

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59308583

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130317

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130319