EP0628650A1 - Verfahren zur Herstellung von träger- und trennmittelfreien, thermoaktivierbaren Vliesen sowie deren Verwendung zum Verkleben unterschiedlicher Substrate - Google Patents

Verfahren zur Herstellung von träger- und trennmittelfreien, thermoaktivierbaren Vliesen sowie deren Verwendung zum Verkleben unterschiedlicher Substrate Download PDF

Info

Publication number
EP0628650A1
EP0628650A1 EP94108039A EP94108039A EP0628650A1 EP 0628650 A1 EP0628650 A1 EP 0628650A1 EP 94108039 A EP94108039 A EP 94108039A EP 94108039 A EP94108039 A EP 94108039A EP 0628650 A1 EP0628650 A1 EP 0628650A1
Authority
EP
European Patent Office
Prior art keywords
nonwovens
melt
release agent
different substrates
supportless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94108039A
Other languages
English (en)
French (fr)
Other versions
EP0628650B1 (de
Inventor
Volker Nebe
Herbert Dr. Blankenheim
Günter Dr. Arend
Bruno Sawaryn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0628650A1 publication Critical patent/EP0628650A1/de
Application granted granted Critical
Publication of EP0628650B1 publication Critical patent/EP0628650B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/724Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to a process for the production of carrier-free and release agent-free, thermally activatable nonwovens based on hydroxyl polyester polyurethanes, and to the use thereof for bonding different substrates.
  • thermo-activatable films based on hydroxyl polyester polyurethanes are their low gas permeability and their hardening of the handle, which is particularly important when gluing textiles, as well as the relatively high weight per unit area, which is a higher material costs.
  • thermo-activatable films based on hydroxyl polyester polyurethanes is therefore important for technical applications, e.g. Laminating parts for the automotive interior, limited.
  • a larger and closed-area adhesive application is necessary for some composite structures, e.g. To absorb the restoring forces of deep-drawn soft PVC films, there are sufficient fields of application where it is possible to work with less adhesive and a closed film-like surface structure of the applied adhesive is only a disadvantage.
  • the films which can be thermally activated and are used to bond various substrates can be produced by a wide variety of processes.
  • thermoplastic elastomers e.g. Polyurethanes
  • monofilm blown film extrusion process The production of foils from thermoplastic elastomers, e.g. Polyurethanes, using the monofilm blown film extrusion process.
  • an internal release agent or spacer must be added to the relatively strong adhesive thermoplastics before blowing the film tube, otherwise the film webs will stick to one another after being laid flat by means of a squeeze roller and subsequently can no longer be separated.
  • the object of the present invention was therefore to avoid the disadvantages mentioned when using solvent-containing adhesives and also when using solvent-free adhesives, such as films.
  • Some of the disadvantages mentioned can be avoided by using thermo-activatable nonwovens when bonding various substrates, in particular if the meltblown method (eg: REICOFIL® melt-blown method) is used to produce the nonwovens.
  • the invention therefore relates to a process for the production of carrier and release agent-free, thermally activatable nonwovens based on hydroxyl polyester polyurethanes with viscosities from 600 to 3500 mPa.s, measured as solution viscosity in methyl ethyl ketone (15%) and with basis weights in the range from 5 to 200 g / m2, characterized in that the nonwovens are formed by means of a melt-blowing process (eg REICOFIL® melt-blown process) at melt temperatures of 230 to 260 ° C, using a storage belt, the material of which has a surface tension of 18 , 5 x 10 ⁇ 5 N / cm to 46 x 10 ⁇ 5 N / cm.
  • a melt-blowing process eg REICOFIL® melt-blown process
  • the invention furthermore relates to the use of the nonwovens produced in the above manner for gluing or coating different substrates.
  • the carrier-free and release agent-free, thermo-activatable nonwovens produced by the process according to the invention preferably have basis weights in the range from 8 to 50, very particularly preferably 10 to 30 g / m 2.
  • the basis weights of the nonwovens depend on the substrates used in the bonding and, depending on requirements, can also contain higher basis weights, especially if unevenness has to be compensated for during the bonding.
  • the raw materials based on hydroxyl polyester polyurethanes used in the process according to the invention preferably have a viscosity of 1500 to 2100 mPa.s, measured as solution viscosity (15%) in methyl ethyl ketone (Brookfield LVT viscometer, spindle 3, 60 rpm at 23 ° C.).
  • Particularly suitable hydroxyl polyester polyurethanes are those which, by reacting organic isocyanates with preferably difunctional, alcoholic hydroxyl groups containing polyester polyols and low molecular weight diols as chain extenders while maintaining an NCO / OH equivalent ratio from 0.9: 1 to 0.999: 1 are available, as described in EP 0 158 086 and DE-PS 1 256 822, DE-PS 2 161 340, DE-PS 3 502 379.
  • Suitable dihydroxy polyesters are in particular those of a molecular weight above 600, preferably between 1200 and 6000, particularly preferably between 2000 and 4000 g / mol, as are known in a known manner from alkanedicarboxylic acids with preferably 6 carbon atoms and alkanediols with preferably at least 4 carbon atoms.
  • Suitable dicarboxylic acids are, for example, adipic acid, sebacic acid, pimilic acid, suberic acid, azelaic acid, sebacic acid.
  • Suitable alkanediols are, for example, 1,4-butanediol, 1,5-pentanediol, or 1,6-hexanediol.
  • the chain extenders are in particular diols or diol mixtures in the molecular weight range 62 to 300, preferably 62 to 150 g / mol.
  • Suitable such diols are e.g. Alkanediols preferably having 4 to 6 carbon atoms, such as 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol.
  • diisocyanates examples include 1,6-diisocyanatohexane, 1,4-diisocyanatocyclohexane, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethylcyclohexane, methylenebis (4-isocyanatocyclohexane), 2,4- and optionally 2, 6-diisoocyanatotoluene, 4,4'-diisocyanatodiphenylmethane, 4,4'-diisocyanatodiphenylpropane-2,2 or any mixture of such isocyanates.
  • 4,4'-Diisocyanatodiphenylmethane is particularly preferred as the reaction component.
  • the nonwovens according to the invention are produced by the melt-blow method, in particular melt temperatures (measured in front of the spinning nozzles) of 230 to 260 ° C. being used.
  • the melt-blowing process is described in more detail in DE-OS 19 64 060 and in DE-OS 23 08 242 and essentially consists of a specially designed shaping tool for polymer threads connected downstream of an extruder, the main feature of which is therein there is that a directed, heated air flow can be assigned to each individual nozzle, which ensures that the emerging polymer threads are stretched up and torn off in a controlled manner.
  • the hot air can be brought to the polymer melt from slits that are tight on two sides or flow around the polymer melt from an annular hole around the inner melt hole.
  • the spun threads are deposited on a moving pick-up device, e.g. a rotating conveyor belt.
  • a storage belt is used, the material of which has a surface tension of preferably 18.5 x 10 ⁇ 5 to 33 x 10 ⁇ 5 N / cm. Teflon-coated textile fabrics, for example, are suitable as materials for the storage belt.
  • a wide variety of methods can be used to bond the substrates to the nonwoven produced by the method according to the invention.
  • the vacuum deep-drawing process, deep-drawing presses, vacuum deep-drawing presses are used to produce molded parts for headliners, side cladding elements or foam-backable composites for seat manufacture etc.
  • a large number of substrates can be bonded to themselves or to one another with the nonwoven fabric produced by the method according to the invention.
  • a wide variety of textile fabrics based on cotton, cotton blended fabrics, wool, wool blended fabrics, polyester and polyamide fabrics and polyolefins are particularly worth mentioning.
  • hydroxyl polyester polyurethanes can be processed to nonwovens by a melt-blow process, since it had to be expected that at the high melt temperatures required for the melt-blow process and which would be about 50 ° C. above the temperatures of the usual film production processes, there is such a large shift in equilibrium in favor of the starting components in hydroxyl polyester polyurethanes that at most oligomeric products are obtained which can no longer be consolidated into a nonwoven.
  • a limited number of raw materials are known in the prior art, which can be formed into nonwovens by means of the melt-blowing technique.
  • these are polymers that solidify completely amorphously or partially crystalline, such as polypropylene and polystyrene.
  • These polymers generally have the property of having a completely tack-free surface immediately after the temperature drops below about 70 ° C.
  • Hydroxylpolyesterpolyurethane with segmented structure of soft and Hard segments are more critical in this regard. In order to recrystallize the hydroxyl polyester polyurethane processed in the extrusion process, a much longer time is required in comparison to the abovementioned polymers, and in any case the temperature in the molded extrudate is below 50 ° C. This behavior of segmented polyester urethanes generally leads to the disadvantages mentioned of the non-release or spacer-free production and the blocking of these extrudates on the roll.
  • the hydroxyl polyester polyurethanes deposited as tangled fibers have a tack-free surface shortly after being deposited on the conveyor belt of the melt-blown system, so that the melt-blown spunbonded fabric obtained can subsequently be fed directly to a winder. Blocking on the winder no longer occurs subsequently.
  • the fleece obtained Due to the low fiber titer (approx. 0.1 dtex), the fleece obtained is characterized by a large surface coverage (opacity) even with small application quantities. With, for textile applications, even high application quantities of 30 g / m2, a soft feel is retained. Depending on the order volume, air permeability can be set specifically.
  • thermoplastic elastomeric hydroxyl polyester polyurethanes were predried in a SOMOS® air dryer over a period of 12 hours.
  • the extruder and mold temperatures were set so that a melt temperature of 250 ° C was achieved in front of the unloading nozzles.
  • the hydroxyl polyester polyurethane solution viscosity: 2000 mPa.s
  • the spinning pump output was increased to 4 rpm. set.
  • the resulting extrusion rate was 22 kg / h.
  • a melt pressure of the extruder / nozzle of 40/16 bar is established.
  • the polymer threads emerging from the melt nozzles were placed after stretching by the compressed air preheated to 220 ° C.
  • the extruder and mold temperatures were set so that a melt temperature of 250 ° C was achieved in front of the unloading nozzles. With a screw speed of 5 rpm. the hydroxyl polyester polyurethane (solution viscosity: 1200 mPa.s) extruded. The spinning pump output was increased to 4 rpm. set. The resulting extrusion rate was 22 kg / h. A melt pressure of the extruder / nozzle of 40/30 bar is established.
  • the polymer threads emerging from the melt nozzles were placed on a circulating conveyor belt with a surface tension of 30 ⁇ 10 ⁇ 5 N / cm after stretching through the compressed air preheated to 220 ° C and the controlled thread break-off and fed from there to an intermediate take-off where the edge trimming took place .
  • the fleece was then wound onto 1000 mm cardboard cores. Different basis weights were set by changing the spinning belt speed and / or the throughput. 200 running meters were wound up per attempt. The processing of the cardboard core could be carried out at any time without any problems.
  • the hydroxyl polyester polyurethane was applied as a fleece directly to a TPU surface film (thickness 100 ⁇ m).
  • a TPU surface film thickness 100 ⁇ m.
  • it was wound up on 1000 mm cardboard tubes. The process was easily carried out at all times.
  • Example 3 The procedure was analogous to that in Example 3 with a soft PVC (foam) film web.
  • the adhesion of the melt-blown spunbond made of the hydroxyl polyester polyurethane was sufficient to ensure that the coated web could be wound up and unwound easily.
  • Example 3 Analogously to Example 3, the hydroxyl polyester polyurethane was applied directly to a cotton fabric as a fleece. The adhesion of the fleece to the textile web was excellent here too. Bonding this fabric, coated with different amounts of material, to an uncoated cotton fabric provided the peel strengths listed in Table 1 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Paints Or Removers (AREA)
  • Artificial Filaments (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von träger- und trennmittelfreien, thermoaktivierbaren Vliesen auf Basis von Hydroxylpolyesterpolyurethanen mit Viskositäten von 600 bis 3500 mPa.s, gemessen als Lösungsviskosität in Methylethylketon (15%ig, Brookfield LVT-Viskosimeter, Spindel 3, 60 UPM, 23°C), und mit Flächengewichten im Bereich von 5 bis 200 g/m², das dadurch gekennzeichnet ist, daß man die Vliese mittels eines Schmelz-Blas-Verfahrens bei Massetemperaturen von 230 bis 260°C formt, wobei ein Ablageband benutzt wird, dessen Material eine Oberflächenspannung von 18,5 x 10<-><5> N/cm bis 46 x 10<-><5> N/cm aufweist. Die nach dem erfindungsgemäßen Verfahren hergestellten Vliesen lassen sich ohne den Zusatz von Trenn- oder Abstandsmitteln blockfrei aufwickeln und eignen sich vorzüglich zum Verkleben unterschiedlicher Substrate.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von träger- und trennmittelfreien, thermoaktivierbaren Vliesen auf Basis von Hydroxylpolyesterpolyurethanen sowie deren Verwendung zum Verkleben unterschiedlicher Substrate.
  • Es ist bekannt, die Verklebung unterschiedlicher Substrate zu bewerkstelligen durch lösungsmittelhaltige Klebesysteme oder durch lösungsmittelfreie Klebesysteme auf Basis von Hydroxylpolyesterpolyurethanen, beispielsweise durch die Verwendung von Schmelzklebefolien (siehe z.B. H.J. Studt in Coating 2/93, S. 34 ff). Nachteilig bei den lösungsmittelhaltigen Klebesystemen ist zum einen die Belastung der Umwelt durch Lösungsmittel, die bei dem Klebevorgang freigesetzt werden, zum anderen deren lange Verarbeitungszyklen, was hohe Folgekosten nach sich zieht. Aus wirtschaftlichen- und Umweltschutzgründen ist man daher geneigt, lösungsmittelfreie Klebstoffsysteme für die Verklebung unterschiedlicher Substrate zu verwenden.
  • Bei den lösungsmittelfreien Klebesystemen, wie z.B. bei der Verwendung von thermoaktivierbaren Folien auf Basis von Hydroxylpolyesterpolyurethanen, ergeben sich als Nachteile deren geringe Gasdurchlässigkeit, sowie deren Griffverhärtung, was insbesondere bei der Verklebung von Textilien ins Gewicht fällt, darüber hinaus das relativ hohe Flächengewicht, was eine höhere Materialaufwendung bedingt.
  • Aus den genannten Gründen ist deshalb die Verwendung der thermoaktivierbaren Folien auf Basis von Hydroxylpolyesterpolyurethanen auf technische Anwendungen, wie z.B. Kaschierteile für den Kraftfahrzeuginnenausbau, beschränkt. Wenngleich in diesem Anwendungsbereich für einige Verbundstrukturen ein größerer und geschlossenflächiger Klebstoffauftrag notwendig ist, um z.B. Rückstellkräfte von tiefgezogenen Weich-PVC-Folien aufzufangen, so gibt es hinreichende Einsatzmöglichkeiten, wo mit geringerem Klebstoffstoffauftrag gearbeitet werden kann und eine geschlossene filmartige Oberflächenstruktur des aufgebrachten Klebstoffes nur von Nachteil ist.
  • Die thermoaktivierbaren, zur Verklebung verschiedener Substrate zu verwendenden Folien können nach den verschiedensten Verfahren hergestellt werden.
  • Allseits bekannt ist die Hertellung von elastomeren Folien aus z.B. Polyurethanen nach dem Coextrusionsverfahren (DE-A 2 114 065, US 3 880 691). Die erhaltenen Flächengebilde enthalten keine Trennmittel bzw. Abstandsmittel. Ein großer Nachteil dieses Verfahrens besteht in der benötigten, aufwendigen Verfahrenstechnik (2 Extruder und Blaskopf mit 2 konzentrischen Ringdüsen) sowie im Anfallen einer Trennfolie, welche kaum mehr einer stofflichen Verwertung zuzuführen ist.
  • Weiterhin bekannt ist die Herstellung von Folien aus thermoplastischen Elastomeren, z.B. Polyurethanen, nach dem Monofolien-Blasextrusionsverfahren.
  • Um den Vorteil dieses Verfahrens in Bezug auf geringere Anlageninvestitionen voll ausschöpfen zu können, muß den relativ stark klebenden thermoplastischen Kunststoffen vor dem Blasen des Folienschlauchs ein internes Trenn- bzw. Abstandsmittel zugesetzt werden, da sonst die Folienbahnen nach dem Flachlegen mittels Abquetschwalze miteinander verkleben und nachfolgend auch nicht mehr getrennt werden können.
  • Weiterhin werden diese Trenn- bzw. Abstandsmittel eingesetzt, um das durch Nachkristallisation auftretende Verblocken der aufgewickelten und getrennten Folienbahnen zu vermeiden. Nach dem heutigen Stand der Technik sind Wachse und/oder organische Zusätze wie z.B. in
    • A) H. Saechtling, Kunststoff-Taschenbuch, 25. Ausgabe, Carl-Hanser-Verlag
    • B) Becker/Braun, Kunststoff-Handbuch Bd. 7, Polyurethane, Carl-Hanser-Verlag
    • C) Kunststoffe 80 (7), S. 827 ff. (1990)
    • D) Gächter/Müller, Kunststoffadditive, 3. Ausgabe, Carl-Hanser-Verlag
    beschrieben, geeignete Abstands- bzw. Trennmittel. Stand der Technik ist allerdings, daß die Zugabe von Trenn- bzw. Abstandsmitteln bei einigen Substraten eine Verminderung der Klebkraft zur Folge hat. Ebenfalls Verwendung finden polymere Abstandsmittel wie z.B. in der EP 0 526 858 beschrieben. Diese haben den Nachteil, daß sich unter Umständen das mechanische Eingeschaftsbild der resultierenden Flächengebilde in ungewollter Weise ändert. Daneben ist nicht auszuschließen, daß eine, im Vergleich zum eingesetzten Rohstoff, deutlich veränderte Aktivierbarkeit sowie Veränderungen bezüglich der spezifischen Adhäsion zu einigen Substraten feststellbar ist.
  • Aufgabe der vorliegenden Erfindung war es somit, die genannten Nachteile bei der Verwendung von lösungsmittelhaltigen Klebstoffen als auch bei der Verwendung von lösungsmittelfreien Klebstoffen, wie Folien, zu vermeiden. Einige der genannten Nachteile können durch die Anwendung von thermoaktivierbaren Vliesen bei der Verklebung verschiedener Substrate vermieden werden, insbesondere wenn zur Herstellung der Vliese das Schmelz-Blas-Verfahren (z.B.: REICOFIL® Melt-Blown-Verfahren) angewendet wird.
  • Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von träger- und trennmittelfreien, thermoaktivierbaren Vliesen auf Basis von Hydroxylpolyesterpolyurethanen mit Viskositäten von 600 bis 3500 mPa.s, gemessen als Lösungsviskosität in Methylethylketon (15 %ig) und mit Flächengewichten im Bereich von 5 bis 200 g/m², dadurch gekennzeichnet, daß die Vliese mittels eines Schmelz-Blas-Verfahrens (z.B. REICOFIL® Melt-Blown-Verfahren) bei Massetemperaturen von 230 bis 260°C ausgeformt werden, wobei ein Ablageband benutzt wird, dessen Material eine Oberflächenspannung von 18,5 x 10⁻⁵ N/cm bis 46 x 10⁻⁵ N/cm aufweist.
  • Weiterhin ist Gegenstand der Erfindung die Verwendung der in obiger Weise hergestellten Vliese zum Verkleben oder Beschichten unterschiedlicher Substrate.
  • Die nach dem erfindungsgemäßen Verfahren hergestellten träger- und trennmittelfreien, thermoaktivierbaren Vliese besitzen bevorzugt Flächengewichte im Bereich von 8 bis 50, ganz besonders bevorzugt 10 bis 30 g/m². Die Flächengewichte der Vliese richten sich nach den bei der Verklebung zur Anwendung kommenden Substraten und können je nach Bedarf auch höhere Flächengewichte beinhalten, insbesondere dann, wenn bei der Verklebung noch Unebenheiten auszugleichen sind.
  • Die nach dem erfindungsgemäßen Verfahren eingesetzten Rohstoffe auf Basis von Hydroxylpolyesterpolyurethanen besitzen bevorzugt eine Viskosität von 1500 bis 2100 mPa.s, gemessen als Lösungsviskosität (15 %) in Methylethylketon (Brookfield LVT-Viskosimeter, Spindel 3, 60 UPM bei 23°C).
  • Als Hydroxylpolyesterpolyurethane kommen insbesondere solche in Frage, welche durch Umsetzung von organischen Isocyanaten mit vorzugsweise difunktionellen, alkoholischen Hydroxylgruppen aufweisenden Polyesterpolyolen und niedermolekularen Diolen als Kettenverlängerungsmittel unter Einhaltung eines NCO/OH-Äquivalentverhältnisses von 0,9:1 bis 0,999:1 erhältich sind, wie in den EP 0 158 086 und DE-PS 1 256 822, DE-PS 2 161 340, DE-PS 3 502 379 beschrieben.
  • Geeignete Dihydroxypolyester sind insbesondere solche eines über 600, vorzugsweise zwischen 1200 und 6000, besonders bevorzugt zwischen 2000 und 4000 g/mol, liegenden Molekulargewichtes, wie sie in bekannter Weise aus Alkandicarbonsäuren mit vorzugsweise 6 Kohlenstoffatomen und Alkandiolen mit vorzugsweise mindestens 4 Kohlenstoffatomen zugänglich sind. Geeignete Dicarbonsäuren sind beispielsweise Adipinsäure, Sebazinsäure, Pimilinsäure, Korksäure, Azelainsäure, Sebazinsäure. Geeignete Alkandiole sind beispielweise Butandiol-1,4, Pentandiol-1,5, oder Hexandiol-1,6. Bei den Kettenverlängerungsmitteln handelt es sich insbesondere um Diole oder Diolgemische des Molekulargewichtsbereiches 62 bis 300, vorzugsweise 62 bis 150 g/mol. Geeigente derartige Diole sind z.B. Alkandiole mit vorzugsweise 4 bis 6 Kohlenstoffatomen wie Butandiol-1,4, Pentandiol-1,5, Hexandiol-1,6.
  • Beispiele geeigneter Diisocyanate sind 1,6-Diisocyanatohexan, 1,4-Diisocyanatocyclohexan, 1-Isocyanato-3-isocyanatomethyl-3,5,5-trimethyl-cyclohexan, Methylenbis-(4-isocyanatocyclohexan), 2,4- und gegebenenfalls 2,6-Diisoocyanatotoluol, 4,4'-Diisocyanatodiphenylmethan, 4,4'-Diisocyanatodiphenylpropan-2,2 bzw. beliebige Gemische derartiger Isocyanate. Besonders bevorzugt wird als Reaktionskomponente 4,4'-Diisocyanatodiphenylmethan.
  • Wie erwähnt, werden die erfindungsgemäßen Vliese durch das Schmelz-Blas-Verfahren hergestellt, wobei insbesondere Massetemperaturen (gemessen vor den Ausspinndüsen) von 230 bis 260°C angewendet werden. Das Schmelz-Blas-Verfahren ist naher beschrieben in der DE-OS 19 64 060 und in der DE-OS 23 08 242 und besteht im wesentlichen aus einem speziell konzipierten, einem Extruder nachgeschalteten Ausformwerkzeug für Polymerfäden, dessen Hauptmerkmal darin besteht, daß jeder einzelnen Düse ein gerichteter, beheizter Luftstrom zuordenbar ist, welcher dafür Sorge trägt, daß die austretenden Polymerfäden hochverstreckt und kontrolliert abgerissen werden. Die heiße Luft kann hierbei aus von 2 Seiten enganliegenden Schlitzen an die Polymerschmelze herangeführt werden oder die Polymerschmelze aus einer Ringbohrung um die innere Schmelzebohrung umströmen.
  • Die Ablage der ausgesponnenen Fäden erfolgt auf einer sich bewegenden Aufnahmevorrichtung, z.B. einem umlaufenden Transportband.
  • Bei dem erfindungsgemäßen Verfahren ist es wichtig, daß ein Ablageband benutzt wird, dessen Material eine Oberflächenspannung von bevorzugt 18,5 x 10⁻⁵ bis 33 x 10⁻⁵ N/cm aufweist. Als Materialien für das Ablageband kommen beispielsweise teflonbeschichtete Textilgewebe in Frage.
  • Selbstverständlich ist es auch möglich, die Verklebung unterschiedlicher Substrate dadurch zu bewerkstelligen, daß man das zu verklebende Substrat unmittelbar mit dem nach dem erfindungsgemäßen Verfahren hergestellten Vlies beschichtet und durch Thermoaktivierung des Vlieses (z.B. mittels IR-Bestrahlung oder Kontaktwärme) die Verklebung der Substrate in Gang setzt.
  • Zur Verklebung der Substrate mit dem nach dem erfindungsgemäßen Verfahren hergestellten Vlies können die unterschiedlichsten Verfahren zur Anwendung kommen.
  • Im Fall von vorbeschichteten Substraten (z.B. Weich-PVC-Schaumfolien, TPU-Folien) wird zur Herstellung von Formteilen für Dachhimmel-, Seitenverkleidungselementen oder hinterschäumbaren Verbunden für die Sitzherstellung etc. das Vakuumtiefziehverfahren, Tiefziehpressen, Vakuumtiefziehpressen angewandt. Diese Verfahren sind bekannt und ausführlich in z.B. Saechtling "Kunststoff Taschenbuch", 21. Auflage, 1979, Seiten 140 bis 184 beschrieben.
  • Es lassen sich mit dem nach dem erfindungsgemäßen Verfahren hergestellte Vlies eine große Vielzahl von Substraten mit sich selbst oder untereinander verbinden. Neben den genannten Weich-PVC und TPU-Oberflächenfolien sind insbesondere die unterschiedlichsten textilen Flächengebilde auf Basis von Baumwolle, Baumwollmischgeweben, Wolle, Wollmischgeweben, Polyester- und Polyamidgewebe sowie Polyolefinen zu nennen.
  • Es ist überraschend, daß sich durch ein Schmelz-Blas-Verfahren Hydroxylpolyesterpolyurethane zu Vliesen verarbeiten lassen, da erwartet werden mußte, daß bei den hohen Massetemperaturen, die für das Schmelz-Blas-Verfahren erforderlich sind und die etwa 50°C über den Temperaturen der üblichen Folienherstellungsverfahren liegen, es bei Hydroxylpolyesterpolyurethanen in so starkem Ausmaß zu einer Gleichgewichtsverschiebung zugunsten der Ausgangskomponenten kommt, daß allenfalls oligomere Produkte erhalten werden, die sich nicht mehr zu einem Vlies verfestigen lassen.
  • Es mußte weiterhin erwartet werden, daß die Kohäsionsfestigkeit bei, mittels der ausgeformten Vliese, hergestellten Verklebungen aufgrund des Polymerabbaus nicht mehr in genügendem Umfang vorhanden ist. Dies ist nicht der Fall.
  • Im Stand der Technik ist eine begrenzte Zahl von Rohstoffen bekannt, welche mittels der Schmelze-Blas-Technik zu Vliesen ausformbar sind. Insbesondere sind dies Polymere, welche vollständig amorph bzw. teilkristallin erstarren, wie z.B. Polypropylen und Polystyrol. Diese genannten Polymere haben im allgemeinen die Eigenschaft, direkt nach unterschreiten von ca. 70°C eine vollkommen klebfreie Oberfläche zu besitzen. Hydroxylpolyesterpolyurethane mit segmentiertem Aufbau von Weich- und Hartsegment verhalten sich diesbezüglich kritischer. So ist zur Rekristallisation des im Extrusionsprozeß verarbeiteten Hydroxylpolyesterpolyurethans eine, im Vergleich zu den vorgenannten Polymeren, sehr viel länger Zeit notwendig, sowie in jedem Fall das unterschreiten von 50°C Massetemperatur im ausgeformten Extrudat. Dieses Verhalten von segmentiertem Polyesterurethanen führt im Allgemeinen zu den genannten Nachteilen der nicht trenn- bzw. abstandsmittelfreien Herstellung und des Verblockens dieser Extrudate auf dem Wickel.
  • Überraschenderweise wurde gefunden, daß die genannten, als wirre Fasern abgelegten Hydroxylpolyesterpolyurethane kurz nach der Ablage auf dem Transportband der Melt-Blown-Anlage eine klebfreie Oberfläche besitzen, so daß nachfolgend das erhaltene Melt-Blown-Spinnvlies direkt einem Wickler zugeführt werden kann. Ein Verblocken auf dem Wickler tritt nachfolgend nicht mehr auf.
  • Das erhaltene Vlies zeichnet sich aufgrund der geringen Fasertiter (ca. 0,1 dtex) auch bei kleinen Auftragsmengen durch eine große Oberflächenbelegung (Deckkraft) aus. Bei, für textile Anwendungen, schon hohen Auftragsmengen von 30 g/m² bleibt ein weicher Griff erhalten. Je nach Auftragsmenge können Luftdurchlässigkeiten gezielt eingestellt werden.
  • Beispiele
  • Die nachfolgend beschriebenen Versuche wurden auf einer handelsüblichen REICOFIL® Melt-Blown-Anlage von 1 Meter Produktionsbreite durchgeführt. Die thermoplastischen elastomeren Hydroxylpolyesterpolyurethane wurden in einem Lufttrockner der Bauart SOMOS® über einen Zeitraum von 12 Stunden vorgetrocknet.
  • Beispiel 1
  • Extruder- und Werkzeugtemperatur wurden so eingestellt, daß sich eine Massetemperatur vor den Ausspinndüsen von 250°C einstellte. Mit einer Schneckendrehzahl von 5 U/min. wurde das Hydroxylpolyesterpolyurethan (Lösungsviskosität: 2000 mPa.s) extrudiert. Die Spinnpumpenleistung wurde auf 4 U/min. eingestellt. Die resultierende Extrusionsleistung betrug 22 kg/h. Es stellt sich ein Schmelzedruck Extruder/Düse von 40/16 bar ein. Die aus den Schmelzedüsen austretenden Polymerfäden wurden nach dem Verstrecken durch die auf 220°C vorgeheizte Pressluft und dem kontrollierten Fadenabriß auf ein umlaufendes Transportband mit Oberflächenspannung von 30·10⁻⁵ N/cm abgelegt und von dort einem Zwischenabzug zugeführt, wo der Randbeschnitt erfolgte. Anschließend wurde das Vlies auf 1000 mm Pappkerne aufgewickelt. Unterschiedliche Flächengewichte wurden durch Änderung der Spinnbandgeschwindigkeit und/oder der Durchsatzleistung eingestellt. Es wurden 200 Laufmeter je Versuch aufgewickelt. Die Abwicklung von dem Pappkern konnte zu jeder Zeit problemlos durchgeführt werden.
  • Beispiel 2
  • Extruder- und Werkzeugtemperatur wurden so eingestellt, daß sich eine Massetemperatur vor den Ausspinndüsen von 250°C einstellte. Mit einer Schneckendrehzahl von 5 U/min. wurde das Hydroxylpolyesterpolyurethan (Lösungsviskosität: 1200 mPa.s) extrudiert. Die Spinnpumpenleistung wurde auf 4 U/min. eingestellt. Die resultierende Extrusionsleistung betrug 22 kg/h. Es stellt sich ein Schmelzedruck Extruder/Düse von 40/30 bar ein. Die aus den Schmelzdüsen austretenden Polymerfäden wurden nach dem Verstrecken durch die auf 220°C vorgeheizte Pressluft und dem kontrollierten Fadenabriß auf ein umlaufendes Transportband mit einer Oberflächenspannung von 30·10⁻⁵ N/cm abgelegt und von dort einem Zwischenabzug zugeführt, wo der Randbeschnitt erfolgte. Anschließend wurde das Vlies auf 1000 mm Pappkerne aufgewickelt. Unterschiedliche Flächengewichte wurden durch Änderung der Spinnbandgeschwindigkeit und/oder der Durchsatzleistung eingestellt. Es wurden 200 Laufmeter je Versuch aufgewickelt. Die Abwicklung von dem Pappkern konnte zu jeder Zeit problemlos durchgeführt werden.
  • Beispiel 3
  • In gleicher Weise wie bei Beispiel 1 beschrieben, wurde das Hydroxylpolyesterpolyurethan als Vlies direkt auf eine TPU-Oberflächenfolie (Dicke 100 µm) aufgebracht. Auch hier wurde nach Zwischenabzug und Randbeschnitt auf 1000 mm Papphülsen aufgewickelt. Die Abwicklung war zu jeder Zeit problemlos durchführbar.
  • Beispiel 4
  • Analog wie im Beispiel 3 wurde mit einer Weich-PVC (Schaum)-Folienbahn verfahren. Die Haftung des Melt-Blown Spinnvlieses aus dem Hydroxylpolyesterpolyurethan war ausreichend, um ein problemloses Auf- und Abwickeln der beschichteten Warenbahn zu gewährleisten.
  • Beispiel 5
  • Analog wie im Beispiel 3 wurde auf ein Baumwollgewebe das Hydroxylpolyesterpolyurethan als Vlies direkt aufgebracht. Die Haftung des Vlieses zur textilen Warenbahn war auch hier ausgezeichnet. Verklebungen dieses, mit unterschiedlichen Materialmengen beschichteten Gewebes gegen ein unbeschichtetes Baumwollgewebe lieferte die nachfolgend in Tabelle 1 aufgeführten Schälfestigkeiten. Tabelle 1
    Verklebungstemperatur (°C) Probenbezeichnung ---- Auftragsmenge (g/m²) Schälfestigkeit (N/5 cm)
    100 PUR-Beispiel 1 10 12,5
    100 PUR-Beispiel 1 20 24,0
    100 PUR-Beispiel 1 30 38,5
    120 PUR-Beispiel 1 20 31,0
    120 PUR-Beispiel 1 30 35,0
    140 PUR-Beispiel 1 10 16,5
    140 PUR-Beispiel 1 20 35,0
    140 PUR-Beispiel 1 30 41,5
    160 PUR-Beispiel 1 10 20,0
    160 PUR-Beispiel 1 20 39,0
    160 PUR-Beispiel 1 30 51,5
    100 PUR-Beispiel 2 10 13,5
    100 PUR-Beispiel 2 20 27,5
    100 PUR-Beispiel 2 30 46,0
    120 PUR-Beispiel 2 10 16,5
    120 PUR-Beispiel 2 20 29,0
    120 PUR-Beispiel 2 30 42,5
    140 PUR-Beispiel 2 10 14,0
    140 PUR-Beispiel 2 20 30,0
    140 PUR-Beispiel 2 30 43,5
    160 PUR-Beispiel 2 10 16,0
    160 PUR-Beispiel 2 20 36,0
    160 PUR-Beispiel 2 30 53,5
    Pressdruck: 1 bar
    Presszeit: 20 sec.

Claims (2)

  1. Verfahren zur Herstellung von träger- und trennmittelfreien, thermoaktivierbaren Vliesen auf Basis von Hydroxylpolyesterpolyurethanen mit Viskositäten von 600 bis 3500 mPa.s, gemessen als Lösungsviskosität in Methylethylketon (15 %ig, Brookfield LVT-Viskosimeter, Spindel 3, 60 UPM, 23°C), und mit Flächengewichten im Bereich von 5 bis 200 g/m², dadurch gekennzeichnet, daß die Vliese mittels eines Schmelz-Blas-Verfahrens (z.B. REICOFIL® Melt-Blown-Verfahren) bei Massetemperaturen von 230 bis 260°C hergestellt werden, wobei ein Ablageband benutzt wird, dessen Material eine Oberflächenspannung von 18,5 x 10⁻⁵ N/cm bis 46 x 10⁻⁵ N/cm aufweist.
  2. Verwendung der nach Anspruch 1 hergestellten Vliese zum Verkleben und Beschichten unterschiedlicher Substrate.
EP94108039A 1993-06-07 1994-05-25 Verfahren zur Herstellung von träger- und trennmittelfreien, thermoaktivierbaren Vliesen Expired - Lifetime EP0628650B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4318887 1993-06-07
DE4318887A DE4318887A1 (de) 1993-06-07 1993-06-07 Verfahren zur Herstellung von träger- und trennmittelfreien, thermoaktivierbaren Vliesen sowie deren Verwendung zum Verkleben unterschiedlicher Substrate

Publications (2)

Publication Number Publication Date
EP0628650A1 true EP0628650A1 (de) 1994-12-14
EP0628650B1 EP0628650B1 (de) 1999-08-04

Family

ID=6489809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94108039A Expired - Lifetime EP0628650B1 (de) 1993-06-07 1994-05-25 Verfahren zur Herstellung von träger- und trennmittelfreien, thermoaktivierbaren Vliesen

Country Status (5)

Country Link
EP (1) EP0628650B1 (de)
JP (1) JPH07310270A (de)
CA (1) CA2125076A1 (de)
DE (2) DE4318887A1 (de)
ES (1) ES2136140T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753607A2 (de) * 1995-07-04 1997-01-15 Messer Griesheim Gmbh Kunststoff-Fibride
DE19640607A1 (de) * 1996-10-01 1998-04-09 Juergen Dipl Chem Dr Hoffmann Nach dem Schmelz-Blas-Verfahren hergestellte Vliese

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29711495U1 (de) * 1997-07-01 1997-09-11 Gottschalk, Wolfgang, 81241 München Papiervlies zum Schließen von Einrissen an Papierblättern
DE10040551A1 (de) 2000-08-15 2002-02-28 Bayer Ag Verfahren zur Erzeugung von Polyurethan-Partikeln

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1161746A (en) * 1965-11-05 1969-08-20 Bayer Ag Production of Microporous Sheet Structures Based on Poly (Thio) Ether Urethanes
DE2042202A1 (de) * 1970-08-26 1972-03-02 Freudenberg Carl Fa Vorrichtung zum Impraegnieren von Faservliesen
FR2243288A1 (de) * 1973-09-07 1975-04-04 Clupak Inc
JPS6440655A (en) * 1987-08-04 1989-02-10 Kuraray Co Added cloth and its production
JPH0247306A (ja) * 1988-08-03 1990-02-16 Kuraray Co Ltd ポリウレタン弾性繊維不織布の製造方法
JPH0376856A (ja) * 1989-08-11 1991-04-02 Kuraray Co Ltd ポリウレタン極細繊維不織布の製造方法
JPH03130452A (ja) * 1989-10-16 1991-06-04 Asahi Chem Ind Co Ltd 伸縮性不織布とその製造法
WO1992001094A1 (en) * 1990-07-07 1992-01-23 The Dow Chemical Company Microfibers of rigid polyurethane having large amount of hard segment, nonwoven mats of the microfibers and melt-blowing process for the production thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1161746A (en) * 1965-11-05 1969-08-20 Bayer Ag Production of Microporous Sheet Structures Based on Poly (Thio) Ether Urethanes
DE2042202A1 (de) * 1970-08-26 1972-03-02 Freudenberg Carl Fa Vorrichtung zum Impraegnieren von Faservliesen
FR2243288A1 (de) * 1973-09-07 1975-04-04 Clupak Inc
JPS6440655A (en) * 1987-08-04 1989-02-10 Kuraray Co Added cloth and its production
JPH0247306A (ja) * 1988-08-03 1990-02-16 Kuraray Co Ltd ポリウレタン弾性繊維不織布の製造方法
JPH0376856A (ja) * 1989-08-11 1991-04-02 Kuraray Co Ltd ポリウレタン極細繊維不織布の製造方法
JPH03130452A (ja) * 1989-10-16 1991-06-04 Asahi Chem Ind Co Ltd 伸縮性不織布とその製造法
WO1992001094A1 (en) * 1990-07-07 1992-01-23 The Dow Chemical Company Microfibers of rigid polyurethane having large amount of hard segment, nonwoven mats of the microfibers and melt-blowing process for the production thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 1289, Derwent World Patents Index; Class A94, AN 89090040 *
DATABASE WPI Section Ch Week 1390, Derwent World Patents Index; Class A32, AN 90095517 *
DATABASE WPI Section Ch Week 1991, Derwent World Patents Index; Class A25, AN 91138120 *
DATABASE WPI Section Ch Week 2891, Derwent World Patents Index; Class A35, AN 91204879 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753607A2 (de) * 1995-07-04 1997-01-15 Messer Griesheim Gmbh Kunststoff-Fibride
EP0753607A3 (de) * 1995-07-04 1997-08-20 Messer Griesheim Gmbh Kunststoff-Fibride
DE19640607A1 (de) * 1996-10-01 1998-04-09 Juergen Dipl Chem Dr Hoffmann Nach dem Schmelz-Blas-Verfahren hergestellte Vliese

Also Published As

Publication number Publication date
EP0628650B1 (de) 1999-08-04
DE59408568D1 (de) 1999-09-09
JPH07310270A (ja) 1995-11-28
DE4318887A1 (de) 1994-12-08
CA2125076A1 (en) 1994-12-08
ES2136140T3 (es) 1999-11-16

Similar Documents

Publication Publication Date Title
DE69117276T2 (de) Mikrofasern aus starrem Polyurethan mit grossem Anteil harter Segmente, Vliese dieser Mikrofasern und Schmelzblasspinnverfahren zu deren Herstellung.
EP0942057B1 (de) Klebeband zur Bündelung von Kabeln
DE2906091C3 (de) Verwendung von Polyurethanen zur Heißversiegelung von textilen Flächengebilden
DE60025331T2 (de) Faservlies aus Polyurethanelastomerfasern und Verfahren zu dessen Herstellung und synthetisches Leder unter Verwendung des Faservlieses aus Polyurethanelastomerfasern
DE2305693A1 (de) Nicht-gewebte struktur
DE1930340A1 (de) Verwendung von Polyurethanen zur Heissversiegelung von textilen Flaechengebilden
DE19638686A1 (de) Wäßrige Dispersion eines biologisch abbaubaren Polyesters sowie deren Verwendung
EP0518003A1 (de) Spinnvliesstoff aus thermoplastischen Endlosfilamenten und Verfahren zu seiner Herstellung
WO2008087087A1 (de) Laminat enthaltend folie und vlies auf der basis von thermoplastischem polyurethan
DE2060599A1 (de) Verfahren zur Herstellung von Beschichtungsmassen auf Polyurethanbasis
WO2007101808A1 (de) Vliesstoff auf der basis von thermoplastischem polyurethan
DE69819202T2 (de) Feuchtigkeitshärtender polyurethanklebstoff für die hygiene
DE2834438C3 (de) Spinnvliesstoff aus Polyester-Filamenten zur Verwendung als Trägermaterial für einen tiefziehfähigen Tufting-Teppich
EP3715516A1 (de) Thermisch fixierbares textiles flächengebilde
DE4035280A1 (de) Schmelzklebstoffe
EP0628650B1 (de) Verfahren zur Herstellung von träger- und trennmittelfreien, thermoaktivierbaren Vliesen
EP1707666A1 (de) Synthetisches Leder, Verfahren zu dessen Herstellung und dessen Verwendung
EP0464400B1 (de) Verfahren zur Herstellung von vernadelten Spinnvliesen
DE3911725A1 (de) Verfahren zur herstellung von klebfreien, hochelastischen, multifilen polyurethan-elastomerfaeden, elastomerfaeden, hergestellt nach diesem verfahren und ihre verwendung
EP2181844A2 (de) Thermoplastische Mehrschichtfolie zur Gewebekaschierung und ein Verfahren zu ihrer Herstellung
EP1097975A2 (de) Selbstklebendes Abdeckband
EP0824140A1 (de) Copolyetheresterschmelzklebemassen
DE1469467C3 (de)
EP3722476A1 (de) Nanofaser-vlies-verbundstoff
DE2342149A1 (de) Heissversiegelung von textilien mit polyurethanen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19950517

17Q First examination report despatched

Effective date: 19980622

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

RTI1 Title (correction)

Free format text: PROCESS FOR MANUFACTURING SUPPORTLESS AND RELEASE AGENT FREE THERMALLY ACTIVATED NONWOVENS

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59408568

Country of ref document: DE

Date of ref document: 19990909

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991007

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2136140

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030415

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030509

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030513

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030519

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030530

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050525

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040526