EP0623905B1 - Détecteur de mouvement - Google Patents

Détecteur de mouvement Download PDF

Info

Publication number
EP0623905B1
EP0623905B1 EP94106652A EP94106652A EP0623905B1 EP 0623905 B1 EP0623905 B1 EP 0623905B1 EP 94106652 A EP94106652 A EP 94106652A EP 94106652 A EP94106652 A EP 94106652A EP 0623905 B1 EP0623905 B1 EP 0623905B1
Authority
EP
European Patent Office
Prior art keywords
sensor
radiation
motion detector
infrared
detector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94106652A
Other languages
German (de)
English (en)
Other versions
EP0623905A2 (fr
EP0623905A3 (fr
Inventor
Werner R. Bost
Karl Ulrich Erbse
Klaus Gringmann
Peter Schlechtingen
Harald Dr. Schlott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gebrueder Merten GmbH and Co KG
Original Assignee
Gebrueder Merten GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Merten GmbH and Co KG filed Critical Gebrueder Merten GmbH and Co KG
Publication of EP0623905A2 publication Critical patent/EP0623905A2/fr
Publication of EP0623905A3 publication Critical patent/EP0623905A3/fr
Application granted granted Critical
Publication of EP0623905B1 publication Critical patent/EP0623905B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/193Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using focusing means

Definitions

  • the invention relates to an infrared motion detector with one mounted in front of an infrared sensor arcuate lens shade, the lenses of each capture a surveillance area and the radiation one in the surveillance area Focus the infrared source on the infrared sensor, the ones located in the middle area of the lens shade Lenses the incident radiation directly on throw the infrared sensor while incidental to the side Edge rays directed onto the sensor by reflection become.
  • EP-A 0 113 468 is a passive infrared motion detector known of a symmetrical mirror arrangement of two opposite mirrors, with which a folded beam path is generated and with which the side radiation incident on the side the infrared sensor is deflected. Through this training an azimuth angle of the motion detector can be reached be around 180 °. This angle can by appropriate training of the lenses in the side Area of the lens shade can be enlarged. In total, infrared sources can be detected be in a range of more than 180 ° around the There are infrared sensors around, including infrared sources, which is already slightly behind the level of the infrared sensor.
  • a disadvantage of the mirror arrangement is that it Sensor "gets in the way” by the mirror backs switch off some of the monitoring areas and thus Shadow areas occur in front of the sensor in which the motion detector is ineffective.
  • the shadow areas The larger the monitoring areas behind, the larger the sensor should be detected.
  • the object of the invention is a motion detector to create the type described at the beginning, in the dead areas or blanking in the monitoring areas be avoided and an extension of the surveillance area also behind Sensor lying radiation sources in a simple way is achieved.
  • Beam splitters enable a luminous flux to be divided or another radiation, for example one Infrared radiation, in two equal or different Partial jet flows. This means that in contrast to the Mirror with a transmittance of 0 and a reflectance of about 95% with a beam splitter always a transmission radiation and a reflection radiation occurs.
  • the transmission radiation can on the Sensor can be directed even if the beam splitter lies directly in the incident beam path of the sensor.
  • the attenuation of radiation by transmission or Reflection losses can be compensated for by a corresponding enlargement of those in this area Lentils of the lens shade.
  • the training according to the invention is both a Acquisition angle in the azimuth range of more than 180 °, for example 220 °, as well as an increase in the detection angle in the elevation area compared to the known one Motion detector accessible.
  • one is in front of the infrared sensor inclined plane-parallel beam splitter element arranged, which is directly in the beam path between the middle area of the lens shade and the infrared sensor located (claim 1).
  • the infrared sensor inclined plane-parallel beam splitter element arranged, which is directly in the beam path between the middle area of the lens shade and the infrared sensor located (claim 1).
  • the middle of the lens shade Lenses the incident infrared radiation through the beam splitter directly onto the infrared sensor, while the edge radiation from one to the middle area adjacent edge area of the lens shade through the beam splitter according to his Reflectance redirected to the infrared detector from the edge area of the lens shade, to which the beam splitter element is inclined is.
  • the total surveillance area is determined by this arrangement on the edge area of the lens shade extended.
  • a motion detector can, for example, face forward and vertical Detect downward areas, creating a Creep protection is achieved.
  • An increase in the number of surveillance areas can be achieved if instead of only one beam splitter element two or more beam splitter elements are used, which are assembled into a beam splitter are, according to claims 11, 12, 13, 14 and 15.
  • an arrangement of the beam splitter according to claim 11 can be an azimuth angle of the motion detector of 220 °.
  • this arrangement by two further beam splitter elements to a pyramid-shaped beam splitter the elevation angle of the motion detector expand to 220 °.
  • Claims 12 and 13 in conjunction with Claim 11 show two examples of the interaction of the beam splitter with the sensor.
  • the redirection of the side incident edge rays are different according to claim 12 than according to claim 13.
  • One from the side area of the lens shield on the beam splitter (according to Claim 12) hitting beam of rays is through the leg of the beam splitter lying in the direction of incidence divided into one by the divider ratio T: R fixed transmission component and a reflection component.
  • the transmission component of the radiation is on that opposite the first leg of the beam splitter second leg also divided into one Transmission component and a reflection component. Of the Reflection component from the transmission component from the first Leg is through the second leg on the sensor redirected.
  • the solution according to claim 2 initially differs of the solution according to claim 1, characterized in that in direct Beam path between the lenses in the middle the lens screen and the infrared sensor Beam splitter needs to be arranged, the incident Infrared radiation directly onto the sensor falls.
  • the beam splitter is arranged such that it the edge radiation incident laterally through the lens shade redirected to the sensor.
  • the individual Beam splitter elements for example two symmetrical beam splitter elements arranged to the sensor, provided that are inclined towards the sensor, so that the incident from the side areas of the lens shade Border radiation either directly on the sensor facing surface of a beam splitter element falls and is deflected onto the sensor or onto a beam splitter element falls, its transmission radiation falls on the other beam splitter element, whose reflection radiation is redirected to the sensor.
  • This training will be shadowing in the surveillance areas avoided because the beam splitter element, as opposed to a mirror, from both sides forth for the infrared radiation is permeable.
  • a beam splitter made of silicon or Germanium exists. These are leaflets made of silicon or germanium from 0.1 to 0.5 mm thick, on one side, preferably on the reflection side, So on the side facing the sensor, with a reflective layer are provided.
  • the beam splitter elements can be made from one wafer in different Sizes and dimensions are made.
  • holographic imaging components can be used, the higher than silicon beam splitters Have efficiency.
  • the beam splitter on the incident Side facing the beam path with a multilayer system (Alternating layers) provided on the Multiple reflection occurs so that absorption is reduced and the reflection is increased.
  • two adjacent infrared sensors according to Claim 14 before, with a beam splitter and Lens screen form an electro-optical system.
  • an approximately hemispherical lens shade with a number arranged on the surface
  • Single lenses the infrared sensors arranged in the center so that one sensor in the focus of the single lenses of the Lens shade lies.
  • the individual lenses it can be are Fresnel lenses or convex lenses.
  • the two receiving lobes can already have one Cover the area of 180 °.
  • An increase in the number the reception area is then only for surveillance areas required behind the sensor. In this case, it can be sufficient for each sensor an additional rear-facing surveillance area to provide. Accordingly, in A beam splitter element in front of each sensor provide the reflection radiation from the side radiation incident on the respective Sensor is redirected.
  • the beam path By extending the beam path there is an enlargement the focal length of the lenses in the edge area of the Lens shade compared to the lenses in the middle area of the lens shade required to focus to achieve this edge radiation on the sensor.
  • the beam splitter elements no blind spots in the surveillance areas, since depending on the division ratio of the steel divider for example 50%, 60%, 70% or 80% of the transmission radiation be directed directly to the sensors.
  • To fix and adjust the beam splitter elements to enable a holder is provided to which the beam splitter elements are attached. Of the The holder should have the smallest possible dimensions and none Influence the monitoring areas.
  • the holder itself made of an infrared radiation transmissive Made of material.
  • the beam splitter elements are preferably flat plates, but can also be concave or convex curved plates can be used.
  • Figures 1 to 6 show schematically the optoelectronic Arrangement of a motion detector with a usual one Infrared sensor 10 with two side by side Sensor elements 11.
  • the sensor is on a holder, for example one with conductor tracks Board 12, assembled.
  • Such an infrared sensor 10 is within a club-like sensitivity range, which includes a detection angle of approx. 110 °, sensitive to infrared sources while being sensitive to Infrared sources located outside the reception lobe is not sensitive.
  • a lens screen 13 is located in front of the sensor 10 many individual lenses arranged on its surface 14, each covering a surveillance area and the radiation one is in the surveillance area Infrared radiation source located on the infrared sensor 10 focus.
  • the lenses can be used as Fresnel lenses or be designed as convex lenses.
  • the lens shade 13 has a hemispherical shape. Of course, the lens shade also a differently curved surface to have.
  • the inside the receiving lobe of the sensor 10 the through the lenses 14 incident infrared radiation directly be focused on the sensor.
  • the sensor 10 also for outside of its receiving lobe make lying infrared radiation sources sensitive, be the side, in the "Y" area of the lens shade 13 deflected incident edge rays, so that then within the receiving lobe of the sensor 10 run and can be redirected to the sensor.
  • FIG. 1 Another Beam splitter element 16 'takes over Sensor 10 a different position, so that another Beams 17 'approximately at a right angle to Normal radiation source located on the sensor the beam splitter element 16 'falls and its reflection radiation is redirected to the sensor.
  • Fig. 1 are only two beam splitter elements 16, 16 'for two beams 17, 17 'are shown.
  • laterally incident beams are further beam splitter elements to provide.
  • According to the division ratio are from a middle range "X" of the lens shade 13 coming and on that Beam splitter element 16, 16 'hitting beams 15.15 '70% transmission radiation directly onto the sensor 10 headed.
  • a trained in FIG. 1 motion detector can in addition to the forward-facing reception lobe another receiving lobe perpendicular to it be equipped, for example, as a creep protection serves.
  • Fig. 2 two opposite are exemplary plane-parallel beam splitter elements 18, 18 'in front of the Sensor 10 arranged. Your inclination to each other takes place in such a way that in the extension of the beam splitter element planes resulting intersection "A" on the side of the beam splitter elements facing away from the sensor 10 18 lies, the effective reflection surfaces are inclined towards the sensor 10. With this arrangement can be sideways or already behind the level radiation sources of the sensor 10 from two opposite ones Edge areas "Y" of the lens shade 13 be recorded.
  • the one incident to the right of sensor 10 Beam 19 strikes that to the left of sensor 10 located beam splitter element 18 'and throws the Reflection radiation on the sensor or on the left of Sensor 10 incident rays 20 falls on the Beam splitter element located to the right of the sensor 10 18, which throws its reflection radiation onto the sensor.
  • Fig. 2 From Fig. 2 it can also be seen that from the middle Area "X" of the lens screen incident infrared radiation falls directly on the sensor 10 or on a beam splitter element 18, 18 'strikes and the transmission radiation this beam splitter element the sensor falls. 2, the beam falls 21, without hitting a beam splitter element, directly on the sensor, while the beam 22 initially hits and be on the beam splitter element 18 Transmission portion falls on the sensor 10.
  • This Arrangement can change the number of surveillance areas of the Motion detector can be increased and the detection angle in the azimuth range can be expanded to approx. 220 ° to 230 °.
  • FIG. 3 A similar embodiment is shown in FIG. 3. It becomes a angular beam splitter 23 consisting of two beam splitter elements 24,24 ', the tip of which is used Sensor 10 is directed.
  • the execution 2 hits that incident to the right of the sensor 10 Beam 25 on the right of the sensor located beam splitter element 24, the reflection radiation is redirected to the sensor.
  • the beam splitter element As well strikes the beam splitter element to the left of the sensor 10 26 to the one on the left of sensor 10 Beam splitter element 24 ', whose reflection radiation falls on the sensor 10.
  • the middle of the middle area the lens shade 13 is in this arrangement covered by the beam splitter 23. All in this Beams 27 incident on the area initially hit on the beam splitter 23, penetrate it and hit then on the sensor 10. In this case too Loss due to reflection compensated with "sharper" lenses 14 become.
  • a beam 29,30 becomes a beam splitter with a symmetrical one Arrangement of two beam splitter elements 32,32 'used.
  • the beam splitter elements 32, 32 ' are in one plane in front of the sensor, and coaxial with it, arranged.
  • the beam splitter elements 32, 32 ' are arranged with such an inclined position that they with their effective reflector surfaces towards the sensor 10 are inclined. The inclination is determined from the sine law the optics.
  • this is to the right of the sensor 10 incident beams 29 first on the Beam splitter element located to the right of the sensor 10 32, whose transmission radiation on the left of the sensor located beam splitter element 32 'reflected becomes.
  • the reflection radiation of the beam 29 is directed to the sensor 10.
  • This also applies to the left Beams 30 incident from sensor 10 initially the beam splitter element 32 ', whose transmission radiation to the one on the right of sensor 10 Beam splitter element 32 falls.
  • Figures 5 and 6 show examples of all others Versions an execution in which the Monitoring areas of laterally incident beams 35 extend around the sensor 10.
  • This All-round sensitivity is provided by a beam splitter 33 achieved, the beam splitter elements 34 faceted are composed.
  • the beam splitter 33 consists of eight beam splitter elements 34.
  • Each beam splitter element 34 cooperates a lens 14 in the edge region "Y" of the lens shade 13 together. The more interacting beam splitter elements 34 and lenses 14 are present, the more The individual surveillance areas are closer together.
  • each Sensor 10 detects a half field of the lens screen 13. Due to the angular position, the focal lengths are Lenses 14 of the ideal lens screen shown in dashed lines 36 approximated and by a hemispherical or semi-cylindrical lens shade 13. With the two Sensors 10 can be an azimuth monitoring area of more than 180 °. With the beam splitter elements 37, 37 'are the lateral areas by areas extended, which is already behind the sensors 10 lie so that the radiation 38 one right behind the right sensor 10 lying infrared radiation source on the right sensor 10 or the radiation 39 one radiation source lying to the left behind the left sensor 10 can be redirected to the left sensor 10.
  • Radiation emitted from the central area of the lens shade 13 comes, hits as transmission radiation directly to one of the two sensors 10.
  • the reflection losses of this radiation are through an enlargement of the lenses 14 in this area of the lens screen 13 compensated.
  • the beam splitter elements 37, 37 'of the beam splitter 47 are on one between the sensors 10 arranged holder 40 attached.
  • Figures 9 and 10 show the design of the holder 40 and the attachment of the beam splitter elements 37.37 'in detail.
  • the shape of the holder 40 is bow-like. It has a crossbar 41 with at the ends depending locking arms 42. With the locking arms the Holder 40 in unspecified guides one Base 43 inserted, with notches 44 in the end position in not shown locking receptacles of the base 43 intervene positively.
  • the beam splitter elements 37, 37 'are recordings 45 provided in the crosspiece 41, in each case one end of the beam splitter element 37, 37 'inserted and through a fitting 46 is clamped. The connection can be secured with an adhesive.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Burglar Alarm Systems (AREA)
  • Vehicle Body Suspensions (AREA)
  • Eye Examination Apparatus (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Details Of Television Scanning (AREA)

Claims (25)

  1. Détecteur de mouvement à infrarouge, comprenant, en amont d'un capteur à infrarouge (10), un écran de focalisation (13) de forme courbe, dont les lentilles (14) couvrent chacune une zone de surveillance et focalisent sur le capteur à infrarouge le faisceau de rayons émis par une source de lumière infrarouge, située dans la zone de surveillance, les lentilles situées dans la zone centrale (X) de l'écran de focalisation (13) guidant le faisceau incident directement sur le capteur à infrarouge (10), alors que les rayons marginaux incidents sur les bords latéraux sont guidés par réflexion sur le capteur (10),
       caractérisé en ce qu'un dispositif de fractionnement des rayons comprenant au moins un élément de fractionnement des rayons (16, 16', 18, 18' ; 24, 24' ; 34 ; 37, 37') est monté en amont du capteur à infrarouge (10) dans la trajectoire des rayons, ledit dispositif de fractionnement laissant passer en trajectoire directe, sous forme de faisceau de transmission vers le capteur (10), le faisceau incident émis dans la zone centrale (X) de l'écran de focalisation (13) et dévie, sous forme de faisceau de réflexion, sur le capteur (10), les rayons marginaux de bordure incidents émis dans la zone de bordure latérale (Y).
  2. Détecteur de mouvement à infrarouge, comprenant, en amont d'un capteur à infrarouge (10), un écran de focalisation (13) de forme courbe, dont les lentilles (14) couvrent chacune une zone de surveillance et focalisent sur le capteur à infrarouge alors que le faisceau de rayons émis par une source de lumière infrarouge, située dans la zone de surveillance, les lentilles situées dans la zone centrale (X) de l'écran de focalisation (13) guidant les rayons marginaux incident directement sur le capteur à infrarouge (10), alors que les rayons marginaux incidents sur les bords latéraux sont guidés par réflexion sur le capteur (10),
       caractérisé en ce qu'un dispositif de fractionnement des rayons comprenant au moins deux éléments de fractionnement des rayons (32, 32'), situés face à face en position inclinée l'un par rapport à l'autre, est monté dans la trajectoire du faisceau incident émis dans la zone de bordure latérale (Y) de l'écran de focalisation (13), ledit dispositif de fractionnement laissant passer entre les éléments de fractionnement des rayons (32, 32') le faisceau incident émis dans la zone centrale (X) de l'écran de focalisation (13) et laissant passer, sous forme de faisceau de transmission, le faisceau incident marginal émis dans la zone de bordure latérale (Y) à travers l'un des éléments de fractionnement des rayons vers l'élément de fractionnement des rayons opposé, à partir duquel le faisceau est guidé sur le capteur (10) sous forme d'un faisceau de réflexion.
  3. Détecteur de mouvement à infrarouge selon l'une des revendications 1 ou 2, caractérisé en ce que, dans la trajectoire des rayons guidés par chaque lentille (14) dans la zone de bordure (Y) de l'écran de focalisation (13), il est prévu un élément de fractionnement des rayons (16, 16' ; 18, 18' ; 24, 24' ; 34 ; 37, 37'), destiné à dévier sur le capteur (10) les rayons émis dans la zone de bordure.
  4. Détecteur de mouvement à infrarouge selon la revendication 1, caractérisé en ce que le rapport de fractionnement T:R de l'élément de fractionnement des rayons (16, 16', 18, 18' ; 24, 24' ; 34 ; 37, 37') est supérieur à 2:1, T représentant le degré de transmission et R le degré de réflexion.
  5. Détecteur de mouvement à infrarouge selon la revendication 4, caractérisé en ce que le rapport de fractionnement T:R de l'élément de fractionnement des rayons est pratiquement égal à 7:3.
  6. Détecteur de mouvement à infrarouge selon la revendication 2, caractérisé en ce que le rapport de fractionnement T:R de l'élément de fractionnement des rayons (32, 32') est pratiquement égal à 1:1, T représentant le degré de transmission et R le degré de réflexion.
  7. Détecteur de mouvement à infrarouge selon l'une des revendications 1 à 6, caractérisé en ce que le matériau de base de dispositif de fractionnement des rayons est le silicium ou le germanium.
  8. Détecteur de mouvement à infrarouge selon l'une des revendications 1 à 6, caractérisé en ce que le dispositif de fractionnement des rayons est un module de reproduction holographique.
  9. Détecteur de mouvement à infrarouge selon l'une des revendications 1 à 8, caractérisé en ce que le dispositif de fractionnement des rayons comporte plusieurs couches de réflexion.
  10. Détecteur de mouvement à infrarouge selon l'une des revendications 1 à 9, caractérisé en ce que le dispositif de fractionnement des rayons est monté à l'intérieur du boítier du capteur (10).
  11. Détecteur de mouvement à infrarouge selon l'une des revendications 1 à 10, caractérisé en ce que le dispositif de fractionnement des rayons (23) est conçu sous forme d'angle avec une pointe ou un sommet.
  12. Détecteur de mouvement à infrarouge selon la revendication 11, caractérisé en ce que le dispositif de fractionnement des rayons est monté face au capteur (10), en formant un toit à deux versants.
  13. Détecteur de mouvement à infrarouge selon la revendication 12, caractérisé en ce que le dispositif de fractionnement des rayons (23) est monté de manière à diriger sa pointe ou son sommet vers le capteur (10).
  14. Détecteur de mouvement à infrarouge selon l'une des revendications 1 à 13, caractérisé en ce que deux capteurs (10) sont disposés l'un à côté de l'autre, dont uncapteur recevant le faisceau de rayons émis dans un secteur de l'écran de focalisation (13) et à chaque capteur (10) étant associé au moins un élément de fractionnement des rayons (16, 16', 18, 18' ; 24, 24' ; 34 ; 37, 37').
  15. Détecteur de mouvement à infrarouge selon l'une des revendications 1 à 14, caractérisé en ce que le dispositif de fractionnement des rayons (23, 33, 47) est formé par deux éléments séparés (16, 16', 18, 18' ; 24, 24' ; 32, 32' ; 37, 37').
  16. Détecteur de mouvement à infrarouge selon l'une des revendications 1, 14 et 15, caractérisé en ce que, dans la trajectoire des rayons, un élément séparé (37, 37') du dispositif de fractionnement des rayons (47) est situé en amont de chaque capteur (10).
  17. Détecteur de mouvement à infrarouge selon l'une des revendications 1 à 16, caractérisé en ce que le dispositif de fractionnement des rayons (23, 33) est formé par plusieurs éléments séparés (16, 16', 18, 18' ; 24, 24' ; 32, 32' ; 34 ; 37, 37') assemblés sous forme de facettes.
  18. Détecteur de mouvement à infrarouge selon l'une des revendications 1 à 17, caractérisé en ce gue les éléments de fractionnement des rayons (16, 16', 18, 18' ; 24, 24' ; 32, 32' ; 34 ; 37, 37') du dispositif de fractionnement des rayons (23, 33, 47) sont fixés contre un support (40).
  19. Détecteur de mouvement à infrarouge selon la revendication 18, caractérisé en ce que le support (40) est conçu en forme d'étrier et comporte des bras de blocage (42).
  20. Détecteur de mouvement à infrarouge selon la revendication 19, caractérisé en ce que le support (40) est inséré avec les bras de blocage (42) dans des logements réalisés dans un socle (43).
  21. Détecteur de mouvement à infrarouge selon l'une quelconque des revendications 18 à 20, caractérisé en ce que les éléments de fractionnement des rayons (37, 37') sont fixés contre une traverse (41) du support (40).
  22. Détecteur de mouvement à infrarouge selon la revendication 21, caractérisé en ce que la traverse (41) comporte des logements (45) réservés aux éléments de fractionnement des rayons (37, 37').
  23. Détecteur de mouvement à infrarouge selon la revendication 22, caractérisé en ce que les éléments de fractionnement des rayons (37, 37') sont bloqués dans leur position par une cale d'ajustage (46) passant au-dessus des logements (45).
  24. Détecteur de mouvement à infrarouge selon la revendication 22 ou 23, caractérisé en ce que les éléments de fractionnement des rayons (37, 37') sont insérés latéralement dans les logements (45).
  25. Détecteur de mouvement à infrarouge selon l'une des revendications 1 à 24, caractérisé en ce que plusieurs capteurs (10) sont disposés l'un par rapport à l'autre dans une position angulaire, de telle sorte qu'au moins un capteur (10) soit situé dans la trajectoire des rayons du faisceau de transmission issu du dispositif de fractionnement des rayons (23, 33, 47) et au moins un autre capteur (10) est situé dans la trajectoire des rayons du faisceau de réflexion issu du dispositif de fractionnement des rayons.
EP94106652A 1993-05-07 1994-04-28 Détecteur de mouvement Expired - Lifetime EP0623905B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4315183A DE4315183A1 (de) 1993-05-07 1993-05-07 Bewegungsmelder
DE4315183 1993-05-07

Publications (3)

Publication Number Publication Date
EP0623905A2 EP0623905A2 (fr) 1994-11-09
EP0623905A3 EP0623905A3 (fr) 1996-10-02
EP0623905B1 true EP0623905B1 (fr) 1999-09-15

Family

ID=6487456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94106652A Expired - Lifetime EP0623905B1 (fr) 1993-05-07 1994-04-28 Détecteur de mouvement

Country Status (3)

Country Link
EP (1) EP0623905B1 (fr)
AT (1) ATE184722T1 (fr)
DE (2) DE4315183A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4337953A1 (de) * 1993-11-06 1995-05-11 Abb Patent Gmbh Vorrichtung zur Erfassung von Lichtstrahlen
DE4445197A1 (de) * 1994-12-17 1996-06-20 Abb Patent Gmbh Passiv-Infrarot-Bewegungsmelder mit Sammellinsen zu einer Rundumerfassung von 360 DEG
DE4445196A1 (de) * 1994-12-17 1996-06-20 Abb Patent Gmbh Bewegungsmelder zur Erfassung der aus einem zu überwachenden Raumbereich kommenden Strahlung
DE19502521A1 (de) * 1995-01-27 1996-08-01 Abb Patent Gmbh Passiv-Infrarot-Melder mit einer Optik, die von einem Strahlungsobjekt emittierte Wärmestrahlung auf einen Infrarotsensor fokussiert
DE29503532U1 (de) * 1995-03-03 1995-05-18 REV Ritter GmbH, 63776 Mömbris Bewegungsmelder
DE29503531U1 (de) * 1995-03-03 1995-05-18 REV Ritter GmbH, 63776 Mömbris Bewegungsmelder mit Infrarotsensor
KR0166870B1 (ko) * 1995-07-13 1999-03-20 구자홍 적외선 센서를 이용한 인체의 위치판별장치
DE19632514A1 (de) * 1996-08-13 1998-02-19 Abb Patent Gmbh Bewegungsmelder mit mindestens einer Sammellinse
DE19639318C1 (de) * 1996-09-25 1997-12-18 Andreas Toeteberg Mehrfach-Passiv-Infrarot-(PIR)-Bewegungsmelder
DE19805622A1 (de) * 1998-02-12 1999-08-19 Thomson Brandt Gmbh Bewegungsmelder zum Ein- und/oder Ausschalten von einem elektronischen Gerät
DE10019999A1 (de) * 2000-04-22 2001-10-25 Abb Patent Gmbh Passiv-Infrarot-Bewegungsmelder
DE20202336U1 (de) * 2002-02-14 2002-05-08 Steinel GmbH & Co KG, 33442 Herzebrock-Clarholz Spiegeloptik für einen Bewegungsmelder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958118A (en) * 1975-02-03 1976-05-18 Security Organization Supreme-Sos-Inc. Intrusion detection devices employing multiple scan zones
DE3381729D1 (de) * 1983-01-05 1990-08-16 Zueblin Marcel Optisches bauelement zum umlenken optischer strahlen.
DE3942830C2 (de) * 1989-12-23 1999-03-04 Asea Brown Boveri Passiv-Infrarot-Bewegungsmelder
GB9100791D0 (en) * 1991-01-15 1991-02-27 Smiths Industries Plc Detector assemblies

Also Published As

Publication number Publication date
EP0623905A2 (fr) 1994-11-09
ATE184722T1 (de) 1999-10-15
DE59408738D1 (de) 1999-10-21
EP0623905A3 (fr) 1996-10-02
DE4315183A1 (de) 1994-11-10

Similar Documents

Publication Publication Date Title
EP3350615B1 (fr) Capteur lidar
EP0050751B1 (fr) Arrangement optique pour un détecteur d'intrusion à infrarouge
EP0623905B1 (fr) Détecteur de mouvement
DE2653110C3 (de) Infrarotstrahlungs-Einbruchdetektor
EP0652422B1 (fr) Dispositif pour recevoir des rayons lumineux
DE3534019A1 (de) Optische bahnueberwachungsvorrichtung
DE2851444A1 (de) Lichtgitter
DE2754139B2 (de) Rauchdetektor
DE4220993A1 (de) Optisches abtastsystem mit selbstaetiger fokussierung
DE4137560C1 (fr)
DE3812969A1 (de) Infrarot-bewegungsmelder
DE2951388C2 (de) Strahlungsdetektor
DE69722551T2 (de) Spektrometer mit einem orientiert-geformten Schlitz
DE3707986C2 (fr)
EP1290629B1 (fr) Dispositif pour evaluer des caracteristiques d'authenticite presentant une structure de diffraction
DE1297006C2 (de) Reflex-Lichtschranke
DE3500860A1 (de) Optische anordnung an passiv-infrarot-bewegungsmeldern
DE2645040B2 (de) Strahlungsdetektor
DE3513192C2 (de) Vorrichtung zum optischen Abtasten eines Bildes
DE1957494C3 (de) Lichtelektrische Abtastvorrichtung
EP0717292A2 (fr) Détecteur passif de mouvement à infrarouge muni d'une lentille à collimation pour détecter omnidirectionnel à 360 degrés
EP0825574B1 (fr) Détecteur de mouvement avec au moins une lentille convergente
EP1131774B1 (fr) Dispositif pour lire un code a barres
EP1548459A1 (fr) Dispositif de détection optoélectronique
DE102005059363B4 (de) Optischer Sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IE LI NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GEBRUEDER MERTEN GMBH & CO. KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IE LI NL PT SE

17P Request for examination filed

Effective date: 19961024

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981118

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990915

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990915

REF Corresponds to:

Ref document number: 184722

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: CH

Ref legal event code: EP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHLOTT, HARALD, DR.

Inventor name: SCHLECHTINGEN, PETER

Inventor name: GRINGMANN, KLAUS

Inventor name: ERBSE, KARL ULRICH

Inventor name: BOST, WERNER R.

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59408738

Country of ref document: DE

Date of ref document: 19991021

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991215

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000719

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

26N No opposition filed
BERE Be: lapsed

Owner name: GEBRUDER MERTEN G.M.B.H. & CO. K.G.

Effective date: 20000430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

EUG Se: european patent has lapsed

Ref document number: 94106652.4

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001101

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030408

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030425

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030522

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL