EP0620598B1 - Eingangs-/ausgangsschutzschaltung - Google Patents

Eingangs-/ausgangsschutzschaltung Download PDF

Info

Publication number
EP0620598B1
EP0620598B1 EP93923654A EP93923654A EP0620598B1 EP 0620598 B1 EP0620598 B1 EP 0620598B1 EP 93923654 A EP93923654 A EP 93923654A EP 93923654 A EP93923654 A EP 93923654A EP 0620598 B1 EP0620598 B1 EP 0620598B1
Authority
EP
European Patent Office
Prior art keywords
input
diode
electrode
transistor
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93923654A
Other languages
English (en)
French (fr)
Other versions
EP0620598A4 (de
EP0620598A1 (de
Inventor
Yoshiaki Oki Electric Industry Co. Ltd. Katakura
Yasuhiro Oki Electric Industry Co. Ltd. Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Publication of EP0620598A1 publication Critical patent/EP0620598A1/de
Publication of EP0620598A4 publication Critical patent/EP0620598A4/de
Application granted granted Critical
Publication of EP0620598B1 publication Critical patent/EP0620598B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Definitions

  • the present invention relates to an input protection circuit for protecting an internal input circuit or to an output protection circuit for protecting an internal output circuit (collectively called an i/o protection circuit hereinafter) when an excessive input voltage is applied to an external electrode of a semiconductor device.
  • a diode and resistors are arranged on the side of the input electrode relative to an input protection MOS transistor for lengthening a rise time of voltage surge input thereto to'cope with an abrupt surge of voltage by way of the time constant of the junction capacitance of the diode and the resistances of the resistors.
  • the output circuit is substantially identical to the i/o protection circuit for protecting the input circuit which is described above.
  • an output MOS transistor itself serves as the output protection MOS transistor. Since the output MOS transistor generally occupies a large area, the protection diode serving as a capacitor is not used.
  • the conventional input or output protection circuit reacts as a delay element also to normal signals since it is equipped with a protection diode and protection resistors for lengthening the rise time of input voltage. As a result, the transmission of signal in the input or output circuit is delayed so that speeding up device operation as a whole is prevented. Particularly elements are miniaturized and the speeding up a device operation is in progress nowadays, so that it is not negligible as a factor preventing the speeding up.
  • JP-A-62 76676 disclose providing a protection circuit at an input terminal and at an output terminal to prevent distruction due to electrostatic. Also this document discloses a transistor T1 (or T3) and a diode D1 (or D2) constitute such protecting circuits.
  • the transistor T1 (or T3) has a gate electrode connected to a source electrode which is grounded, and a drain electrode connected to an input terminal (or to an output terminal).
  • JP-A-62 76676 further discloses that one end of the diode D1 is connected to the drain electrode of the transistor T1, and that one end of the diode D2 is connected to the output terminal.
  • Patent Abstracts of Japan vol. 3, 111 and JP-A-54 89586 disclose that a diode 43 constitutes a protection circuit, and that one end of the diode 43 is connected to an external connecting member 44 and the other end of the diode 43 is grounded.
  • the European Patent Application 0 215 493 discloses a protected MOS transistor circuit having P-type semiconductor substrate, power terminal, input MOS transistor, resistor connected to the gate electrode of transistor and MOS transistor which has a gate electrode connected to terminal and a current pass connected between power terminal and the junction of resistor and the gate electrode of input MOS transistor.
  • Fig. 1 is a circuit diagram of an i/o protection circuit according to a first embodiment of the present invention
  • Fig. 2 shows a pattern layout of the i/o protection circuit in Fig. 1
  • Fig. 3 is a cross-sectional view of Fig. 2 taken along line X1 - X2
  • Fig. 4 is a view for explaining the operation of the i/o protection circuit in Fig. 1
  • Fig. 5 shows a pattern layout of the i/o protection circuit according to a second embodiment of the present invention
  • Fig. 6 is a cross-sectional view of Fig. 5 taken along line Y1 - Y2
  • Fig. 7 shows a pattern layout for explaining the i/o protection circuit according to a third embodiment of the present invention.
  • Fig. 1 is a circuit diagram of the i/o protection circuit 100 according to a first embodiment of the present invention.
  • i/o protection circuit 100 illustrated in Fig. 1 serving as an input protection circuit Denoted at 23 is a terminal connected to an input electrode and an input circuit, 30 is an input protection MOS transistor, 40 is an input protection diode, 51 and 52 are parasitic resistors and 60 is a parasitic bi-polar transistor.
  • the cathode of the input protection diode 40, the drain 30D of the input protection MOS transistor 30 and the emitter of the parasitic bi-polar transistor 60 are connected to the terminal 23.
  • the anode of the input protection diode 40 is connected to a ground potential V ss by way of the parasitic resistors 51 and 52.
  • the gate 30G and source 30S of the input protection MOS transistor 30 are connected to the ground potential V ss .
  • the base of the parasitic bi-polar transistor 60 is connected to a node between the parasitic resistors 51 and 52 and the collector thereof is connected to the ground potential V ss .
  • Fig. 2 shows a pattern layout of the i/o protection circuit 100 in Fig. 1 and Fig. 3 is a cross-sectional view of Fig. 2 taken along line X1 - X2.
  • the input protection MOS transistor 30 and input protection diode 40 are formed in a region surrounded by a field insulating film 21 for separating elements on a p-type substrate 20. That is, the input protection MOS transistor 30 comprises the source 30S and drain 30D each formed of n-type diffusion layer spaced away from each other by a given distance.
  • the gate 30G made of polycide etc. is formed on the p-type substrate between the source 30S and drain 30D by way of a gate insulating film 31.
  • the input protection diode 40 is made of a p-type diffusion layer 40P which is lower in density then the drain 30D and an n-type n-type diffusion layer 40N connected to the p-type diffusion layer 40P.
  • the diffusion layer 40N is connected to the drain 30D.
  • An insulating film 22 are formed over the input protection MOS transistor 30, input protection diode 40 and field insulating film 21.
  • Metal wirings 24 and 25 of Al or Al alloy etc. are formed on the insulating film 22.
  • the metal wiring 24 is connected to the drain 30D by way of a contact 26.
  • the metal wiring 24 is also connected to the input electrode and input circuit. That is, the terminal 23 in Fig. 1 corresponds to the metal wiring 24 (or the contact 26).
  • the metal wiring 25 is connected to the gate 30G by way of a contact 27 and to the source 30S by way of a contact 28.
  • the metal wiring 25 is also connected to the ground potential V SS.
  • the base input of the parasitic bipolar transistor 60 is the p-type substrate on which the input protection MOS transistor 30 is formed, the emitter thereof is the source 30S and the emitter thereof is the drain 30D, while the parasitic resistors 51 and 52 are formed on the p-type substrate. Denoted at A and B in Fig. 3 are portions having low breakdown voltage.
  • the secondary breakdown voltage of the input protection MOS transistor 30 (the breakdown voltage between the collector and emitter of the parasitic bi-polar transistor 60) is BV and that between the source and drain of the input protection MOS transistor 30 is BV SD .
  • the breakdown voltage of the input protection diode 40 is BV D .
  • the p-type diffusion layer 40P and n-type diffusion layer 40N which constitute the input protection diode 40 are designed in density and in the widths W n and W p thereof to meet the following inequality: BV ⁇ BV D ⁇ BV SD .
  • the impurity density of the input protection MOS transistor 30 is 8 ⁇ 10 16 ions/cm 3
  • the thickness of the gate insulating film 31 thereof is 200 ⁇ and the gate length thereof is 0.8 ⁇ m
  • BV SD ⁇ 13 V and BV ⁇ 9 V are established.
  • the impurity density of each of the n-type diffusion layer 40N and p-type diffusion layer 40P which constitute the input protection diode 40 is 5 ⁇ 10 17 ions/cm 3
  • BV D ⁇ 11 V is established in case W n , W p > 0.25 ⁇ m so that the above condition can be met.
  • Fig. 4 is a view for explaining the operation of the i/o protection circuit 100 according to the present invention, wherein Fig. 4 (a), Fig. 4 (b) and Fig. 4 (c) show the breakdown state of the input protection diode 40, the operating state of the parasitic bi-polar transistor 60 and the conductive state of the input protection MOS transistor 30 respectively.
  • Fig. 4 (a) when an excessive voltage such as electrostatic surge etc. is input to the input electrode, the input voltage is applied to the drain 30D by way of the metal wiring 24 and contact 26.
  • the portion A illustrated in Fig. 3 of the input protection diode 40 having low breakdown voltage breaks down so that electric current starts flowing therethrough The current flows to the source 30S or the ground electrode by way of the p-type substrate 20.
  • the current raises the voltage of the base (which corresponds to the p-type substrate 20) of the parasitic bi-polar transistor 60 by way of the parasitic resistors 51 and 52 as illustrated in Fig. 4 (b).
  • current flows between the source and drain of the input protection MOS transistor 30 due to the amplifying operation of the parasitic bi-polar transistor 60.
  • the input protection MOS transistor 30 When current flows between the source and drain of the input protection MOS transistor 30, the input protection MOS transistor 30 consequently becomes conductive at a source-drain voltage lower than the source-drain breakdown voltage BV SD thereof.
  • the conductive state of the input protection MOS transistor 30 causes the drop of the source-drain voltage as low as the secondary breakdown voltage BV. As a result, the input electricity consumes its power therein.
  • the input protection diode 40 is provided in such a way as to be connected to the drain 30D of the input protection MOS transistor 30 adjacent thereto, the input protection diode 40 is free from the increase of junction capacitance due to the pattern thereof. Moreover, if an excessive voltage is input, the input protection diode 40 breaks down prior to the input protection MOS transistor 30 to lower the voltage at which the input protection MOS transistor 30 starts to conduct, so that it is possible to lower the voltage applied to an input circuit 2 inside the element. As a result, certain input protection is possible without obstructing the speed-up of operation of elements.
  • the input protection circuit in Fig. 1 is applicable to the output protection circuit, so that an internal output circuit can be protected certainly by applying the input circuit to the output MOS transistor.
  • Fig. 5 shows the pattern layout of the input protection circuit according to a second embodiment of the present invention
  • Fig. 6 is a cross-sectional view of Fig. 5 taken along line Y1 - Y2.
  • the n-type diffusion layer 40N that was one of the constituents of the input protection diode 40 in the first embodiment is omitted and the drain 30D of the input protection MOS transistor 30 is used in place of that.
  • a p-type diffusion layer 40P is formed by providing an element separating region 29 made of field insulating film having a given width of d ⁇ m between the drain 30D and itself.
  • the p-type diffusion layer 40P and the n-type diffusion layer of the drain 30D form the input protection diode 40.
  • the width d ⁇ m is set also in this example so that the breakdown voltage BV D of the input protection diode 40 may meet the following inequality: BV ⁇ BV D ⁇ BV SD .
  • the voltage of the node between the parasitic resistors 51 and 52 i.e., the voltage applied to the base of the parasitic bi-polar transistor 60 can faster reach the breakdown voltage BV between the collector and emitter thereof so that the parasitic bi-polar transistor 60 can operate more easily.
  • the p-type diffusion layer 40P which forms the input protection diode 40 is formed in such a way as to surround the drain 30D and source 30S which form the input protection MOS transistor 30 so as to be of low impedance as illustrated in Fig. 7 and a resistor element made of diffusion resistors etc. is formed instead of the parasitic resistor 52.
  • the p-type substrate is used in the above embodiment, it is also possible to provide p-type well regions in an n-type substrate and form i/o protection MOS transistor and i/o protection diode therein.
  • the ground potential is applied to the n-type diffusion layer used as a source.
  • the p-type well regions are floating so that the parasitic resistance becomes infinite, the parasitic bi-polar transistors is easily operable.
  • n-type diffusion layers forming the source and drain of the input protection MOS transistor, the p-type well layer and the n-type substrate form a parasitic bi-polar transistor also in this case to contribute to the input protection particularly at the parasitic bi-polar transistor formed on the source side, causing the further improvement of the protecting ability.
  • an input protection diode in which the breakdown voltage BV D thereof meets the inequality BV ⁇ BV D ⁇ BV SD has one end thereof connected to the drain of an input protection MOS transistor connected to an external electrode and the other end thereof connected to a constant potential by way of a resistor together with the source of the input protection MOS transistor. Consequently there is no increase of junction capacitance due to the pattern of the input diode. Moreover, when an excessive voltage is input thereto, the input protection diode breaks down prior to the i/o protection circuit to reduce the voltage value at which the input protection MOS transistor starts to conduct. As a result, it is possible to lower the voltage applied to the input circuit inside the element. As a result, certain input protection is possible without obstructing the speed up of operation of elements.
  • the input protection circuit is applicable to an output protection circuit so as to certainly protect internal output circuit by applying the input protection circuit to an output MOS transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Amplifiers (AREA)

Claims (5)

  1. Eingangs/Ausgangsschutzschaltung (100), um interne Schaltungen vor einer Überspannung zu schützen, die von einer externen Elektrode angelegt ist, umfassend:
    einen Anschluß (23) (23), der mit der externen Elektrode und den internen Schaltungen verbunden ist;
    einen Transistor (30) mit einer ersten Elektrode (30D), die mit dem Anschluß (23) verbunden ist, einer geerdeten zweiten Elektrode (30S) und mit einer geerdeten Steuerelektrode (30G); und
    eine Diode (40), die ein Ende unmittelbar verbunden mit der ersten Elektrode (30D) des Transistors (30) aufweist, wobei die Diode (40) umgekehrt bezüglich der Spannung angeordnet ist, die an den Anschluß (23) (23) angelegt ist; wobei
    die erste Elektrode (30D) und die zweite Elektrode (30S) des Transistors (30) gebildet sind in einem Substrat (20) von einem ersten leitfähigen Typ als erste bzw. als zweite Diffusionslage von einem zweiten leitfähigen Typ, wobei die ersten und zweiten Diffusionslagen voneinander beabstandet sind; und wobei
    ein parasitärer Transistor aus den ersten und zweiten Diffusionslagen und dem Substrat gebildet ist;
    dadurch gekennzeichnet, daß
    das andere Ende der Diode (40) geerdet ist; daß
    die Diode (40), die in dem Substrat (20) gebildet ist, aus einer dritten Diffusionslage (40P) des ersten leitfähigen Typs gebildet ist, eine geringere Dichte aufweisend als das Substrat (20); daß
    ein Elementseparationsbereich (29) zwischen der dritten Diffusionslage (40P) und der ersten Elektrode (30D) vorgesehen ist; daß
    ein Isolationsfilm (22) an dem Substrat (20) über der ersten und der dritten Diffusionslage und der Steuerelektrode gebildet ist; und daß
    die dritte Diffusionslage und der Elementseparationsbereich (29) bezüglich Dichte und Breite in solch einer Weise eingestellt sind, daß die Durchbruchspannung BVD der Diode geringer ist als die Durchbruchspannung BVSD des Transistors, und daß die Durchbruchspannung BV des parasitären Transistors geringer ist als BVD.
  2. Eingangs/Ausgangsschutzschaltung (100) nach Anspruch 1, dadurch gekennzeichnet, daß die erste Diffusionslage (30D) des Transistors und die dritte Diffusionslage (40P) der Diode (40) miteinander verbunden sind.
  3. Eingangs/Ausgangsschutzschaltung (100), um interne Schaltungen vor einer Überspannung zu schützen, die von einer externen Elektrode angelegt ist, umfassend:
    einen Anschluß (23) (23), der mit der externen Elektrode und den internen Schaltungen verbunden ist;
    einen Transistor (30) mit einer ersten Elektrode (30D), die mit dem Anschluß (23) verbunden ist, einer geerdeten zweiten Elektrode (30S) und mit einer geerdeten Steuerelektrode (30G); und
    eine Diode (40), die ein Ende unmittelbar verbunden mit der ersten Elektrode (30D) des Transistors (30) aufweist, wobei die Diode (40) umgekehrt bezüglich der an den Anschluß (23) (23) angelegten Spannung angeordnet ist; wobei
    die erste Elektrode (30D) und die zweite Elektrode (30S) des Transistors (30) gebildet sind in einem Substrat (20), von einem ersten leitfähigen Typ als erste bzw. als zweite Diffusionslage vom zweiten leitfähigen Typ, wobei die ersten und zweiten Diffusionslagen voneinander beabstandet sind; und wobei
    ein parasitärer Transistor aus den ersten und zweiten Diffusionslagen und dem Substrat gebildet ist;
    dadurch gekennzeichnet, daß
    das andere Ende der Diode (40) geerdet ist; daß
    die Diode (40), die in dem Substrat (20) gebildet ist, aus einer dritten Diffusionslage (40P) des ersten leitfähigen Typs gebildet ist, eine geringere Dichte aufweisend als das Substrat (20), sowie aus einer vierten Diffusionslage (40N) des zweiten leitfähigen Types, eine niedrigere Dichte aufweisend als die erste Diffusionslage; daß ein Isolationsfilm (22) an dem Substrat (20) über den ersten und dritten Diffusionslagen und der Steuerelektrode gebildet ist; und daß
    die dritten und vierten Diffusionslagen bezüglich Dichte und Breite in solch einer Weise eingestellt sind, daß die Durchbruchspannung BVD der Diode geringer ist als die Durchbruchspannung BVSD des Transistors, und daß die Durchbruchspannung BV des parasitären Transistors geringer ist als BVD.
  4. Eingangs/Ausgangsschutzschaltung (100) nach Anspruch 1 oder 3, gekennzeichnet durch:
    eine erste Metallverdrahtung, die an dem Isolationsfilm gebildet ist, und die mit der ersten Diffusionslage über den Isolationsfilm verbunden ist; und
    eine zweite Metallverdrahtung, die an dem Isolationsfilm gebildet ist, und die mit der Steuerelektrode und der zweiten Diffusionslage über den Isolationsfilm verbunden ist.
  5. Eingangs/Ausgangsschutzschaltung (100) nach Anspruch 4, dadurch gekennzeichnet, daß das Erdungspotential an die zweite Metallverdrahtung angelegt ist.
EP93923654A 1992-10-29 1993-10-28 Eingangs-/ausgangsschutzschaltung Expired - Lifetime EP0620598B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP291713/92 1992-10-29
JP29171392 1992-10-29
PCT/JP1993/001557 WO1994010705A1 (en) 1992-10-29 1993-10-28 Input/output protective circuit

Publications (3)

Publication Number Publication Date
EP0620598A1 EP0620598A1 (de) 1994-10-19
EP0620598A4 EP0620598A4 (de) 1995-01-25
EP0620598B1 true EP0620598B1 (de) 1999-03-24

Family

ID=17772439

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93923654A Expired - Lifetime EP0620598B1 (de) 1992-10-29 1993-10-28 Eingangs-/ausgangsschutzschaltung

Country Status (5)

Country Link
US (1) US5432369A (de)
EP (1) EP0620598B1 (de)
KR (1) KR100291540B1 (de)
DE (1) DE69324130T2 (de)
WO (1) WO1994010705A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060158812A1 (en) * 2005-01-14 2006-07-20 Harris Richard A Transient blocking unit having shunt for over-voltage protection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489586A (en) * 1977-12-27 1979-07-16 Nec Corp Mos type semiconductor device
JPS61166073A (ja) * 1985-01-18 1986-07-26 Hitachi Ltd 半導体集積回路装置
JPS6271275A (ja) * 1985-09-25 1987-04-01 Toshiba Corp 半導体集積回路
JPS6276676A (ja) * 1985-09-30 1987-04-08 Toshiba Corp Mos型半導体集積回路装置
IT1213411B (it) * 1986-12-17 1989-12-20 Sgs Microelettronica Spa Struttura mos di potenza con dispositivo di protezione contro le sovratensioni e processo per lasua fabbricazione.
JPH05121670A (ja) * 1991-10-25 1993-05-18 Nec Corp 半導体入力保護装置

Also Published As

Publication number Publication date
EP0620598A4 (de) 1995-01-25
DE69324130D1 (de) 1999-04-29
US5432369A (en) 1995-07-11
DE69324130T2 (de) 1999-07-22
KR100291540B1 (ko) 2001-09-17
EP0620598A1 (de) 1994-10-19
WO1994010705A1 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
JP2638462B2 (ja) 半導体装置
US5548134A (en) Device for the protection of an integrated circuit against electrostatic discharges
US20060232898A1 (en) ESD protection circuit with SCR structure for semiconductor device
US6239958B1 (en) Electrostatic damage protection circuit and dynamic random access memory
US5181092A (en) Input protection resistor used in input protection circuit
JP2822915B2 (ja) 半導体装置
US5561312A (en) Protection device for a CMOS integrated circuit apparatus
EP0371663B1 (de) Ausgangspuffer einer integrierten Schaltung mit einem verbesserten ESD-Schutz
JP3559075B2 (ja) Cmos技術の集積電子回路用の極性反転保護装置
JP3464340B2 (ja) 半導体集積回路装置
JP3861426B2 (ja) 半導体装置の保護回路
US6833590B2 (en) Semiconductor device
KR100817972B1 (ko) 반도체 장치
EP0202646B1 (de) Eingangsschutzanordnung
EP0620598B1 (de) Eingangs-/ausgangsschutzschaltung
US7843009B2 (en) Electrostatic discharge protection device for an integrated circuit
US6583475B2 (en) Semiconductor device
JPH06236965A (ja) 半導体装置
US6163058A (en) Differential devices and differential transceiver
KR100347397B1 (ko) 반도체 집적회로용 입출력 보호 장치
JP3185723B2 (ja) 半導体装置
JPH05267586A (ja) 出力保護回路
JPH0590522A (ja) 半導体装置
JP3135277B2 (ja) 過電圧保護装置
KR20000060692A (ko) 이에스디(esd) 보호회로 및 그의 제조 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR NL

A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR NL

17Q First examination report despatched

Effective date: 19960820

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR NL

REF Corresponds to:

Ref document number: 69324130

Country of ref document: DE

Date of ref document: 19990429

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: A REQUEST FOR RESTORATION TO THE PRIOR STATE (ART. 23 OF THE PATENTS ACT 1995) HAS BEEN FILED ON 30.10.2000.

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: A REQUEST FOR RESTORATION TO THE PRIOR STATE AS PROVIDED FOR IN ARTICLE 23 OF THE PATENTS ACT 1995 (SEE PUBLICATION IN HEADING XE OF THE PATENT BULLETIN OF 02.01.2001) HAS BEEN REJECTED.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021008

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021031

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST