JP3861426B2 - 半導体装置の保護回路 - Google Patents

半導体装置の保護回路 Download PDF

Info

Publication number
JP3861426B2
JP3861426B2 JP36444697A JP36444697A JP3861426B2 JP 3861426 B2 JP3861426 B2 JP 3861426B2 JP 36444697 A JP36444697 A JP 36444697A JP 36444697 A JP36444697 A JP 36444697A JP 3861426 B2 JP3861426 B2 JP 3861426B2
Authority
JP
Japan
Prior art keywords
region
impurity region
gate electrode
contact
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36444697A
Other languages
English (en)
Other versions
JPH10242401A (ja
Inventor
和丈 松本
和彦 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP36444697A priority Critical patent/JP3861426B2/ja
Priority to US08/996,204 priority patent/US6046480A/en
Priority to KR1019970074002A priority patent/KR100371246B1/ko
Priority to TW086119861A priority patent/TW364212B/zh
Publication of JPH10242401A publication Critical patent/JPH10242401A/ja
Application granted granted Critical
Publication of JP3861426B2 publication Critical patent/JP3861426B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置を静電気等のサージから保護する保護回路に関する。
【0002】
【背景技術及び発明が解決しようとする課題】
図1(A)に、第一従来例の保護回路を示す。この第一従来例では、出力バッファ202を構成するトランジスタ203、204のドレイン領域は、パッド201に直接接続される。またトランジスタ203、204のゲート電極は、内部回路205、206に直接接続される。
【0003】
しかしながら、この第一従来例には、静電気等のサージがパッド201に加えられた場合に、アバランシェブレイクを起こすドレイン領域を有するトランジスタ203、204自身のゲート絶縁膜の静電破壊や特性変動を招くという問題がある。
【0004】
このような第一従来例の問題を解決するものとして、特開平5−275624号公報、特開平2−277265号公報に開示される第二、第三従来例が知られている。
【0005】
第二従来例では図1(B)に示すように、パッド211に対して、出力バッファ212と並列にトランジスタ215が接続される。そしてトランジスタ215のゲート電極には、常時オンになっているトランジスタ216が接続される。この第二従来例では、トランジスタ215を設けることで、出力バッファ212等を保護している。また常時オンになっているトランジスタ216をトランジスタ215のゲート電極に接続することで、トランジスタ215のゲート絶縁膜が静電破壊されるのを防止している。
【0006】
第三従来例では図1(C)に示すように、パッド221に対して、入力バッファ222と並列にトランジスタ224、225が接続される。またトランジスタ224、225のゲート電極には抵抗226、227が接続される。この第三の従来例では、トランジスタ224、225を設けることで、入力バッファ222等を保護している。また抵抗226、227をトランジスタ224、225のゲート電極に接続することで、トランジスタ224、225のゲート絶縁膜が静電破壊されるのを防止している。
【0007】
しかしながら、図1(B)の第二従来例では、出力バッファ212以外に、別のトランジスタ215、216が必要になる。このため、保護回路の占有面積が大きくなり、チップ面積の増大化を招く。
【0008】
また図1(B)の第二従来例では、抵抗成分を有するトランジスタ216がトランジスタ215のゲート電極に接続される。従って、パッド211の電位が急激に変化した場合に、この電位変化に対してトランジスタ215のゲート電極の電位が追従できず、トランジスタ215のゲート絶縁膜が静電破壊されるという問題がある。また図1(C)の第三従来例のようにトランジスタ224、225のゲート電極に抵抗226、227を接続する構成には、パッド221の電位が急激に変化した場合に、この電位変化に対するゲート電極の電位の追従が遅れるという問題がある。
【0009】
本発明は、以上のような課題を解決するためになされたものであり、その目的とするところは、小さな回路規模で半導体装置を十分に保護できる保護回路を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために本発明に係る半導体装置の保護回路は、第一導電型の第一領域に形成され、ゲート電極、ドレイン領域、及び電源電位が与えられるソース領域を有する第二導電型のトランジスタと、前記第一導電型の第一領域に少なくとも一部が重なり合うように形成され、前記電源電位が与えられる第一導電型の第一不純物領域と、前記第一導電型の第一領域に形成され、トランジスタの構成要素とならない第二導電型の第二不純物領域とを含み、前記第二導電型のトランジスタの前記ゲート電極が、前記第二不純物領域に電気的に接続されていることを特徴とする。
【0011】
本発明では、急激な静電気等のサージに対しアバランシェブレイクを起こすドレイン領域を有するトランジスタのゲート電極が、ドレイン領域と同一導電型であり第一領域に存在する第二不純物領域に接続される。従ってドレイン領域のアバランシェブレイクによる第一領域(チャネル領域)の電位変化は、第一領域と第二不純物領域からなるダイオードを介しゲート電極に伝えられることになる。これによりゲート電極とチャネル領域の電位差が瞬時に緩和され、ゲート絶縁膜の破壊や特性変動が防止される。この結果、アバランシェブレイクを起こすドレイン領域を有するトランジスタの、静電気などのサージに対する耐性を強めることが可能になる。
【0012】
また本発明は、前記ソース領域と該ソース領域に対向する位置に形成される前記第一不純物領域との間であって、前記ゲート電極を基準として前記ソース領域側の領域に、前記第二不純物領域が形成されていることを特徴とする。このような領域に第二不純物領域を形成することで、空きスペースの有効利用を図れ、効率の良いレイアウトが可能になる。また第二不純物領域をドレイン領域から離すことが可能となり、ドレイン領域、第一領域及び第二不純物領域で構成されるバイポーラがオンしないようにすることが可能となる。
【0013】
また本発明は、前記ゲート電極を前記第一不純物領域側に延長したゲート電極延長部に形成される第二コンタクトと、前記第二コンタクトを介して前記ゲート電極に接続される配線層と、前記配線層と前記第二不純物領域との間を接続する第一コンタクトとを含むことを特徴とする。このようにすることで、第二コンタクトに隣接する領域に作り出される空きスペースを有効でき、効率の良いレイアウトが可能となる。
【0014】
また本発明は、前記ドレイン領域に形成されるドレインコンタクトと前記ソース領域に形成されるソースコンタクトとの間の距離をL1、前記ドレインコンタクトと前記第二不純物領域に形成される第一コンタクトとの間の距離をL2とした場合に、L2がL1よりも長いことを特徴とする。また本発明は、前記ドレイン領域に形成されるドレインコンタクトと前記ソース領域に形成されるソースコンタクトとの間の寄生抵抗をR1、前記ドレインコンタクトと前記第二不純物領域に形成される第一コンタクトとの間の寄生抵抗をR2とした場合に、R2がR1よりも大きいことを特徴とする。このようにすることで、ドレイン領域、第一領域及び第二不純物領域で構成されるバイポーラがオンしないようにすること可能となり、第二不純物領域が電流経路になることを防止できる。これにより、第二不純物領域を、ゲート電極との接続が可能な限り最小の面積で形成することが可能となる。
【0015】
また本発明は、半導体装置を保護する際に、前記ドレイン領域と前記第一領域と前記ソース領域とにより構成される第一バイポーラがオンになり且つ前記ドレイン領域と前記第一領域と前記第二不純物領域とにより構成される第二バイポーラがオンにならないように、前記ドレイン領域、前記ソース領域、前記第一、第二不純物領域をレイアウトすることを特徴とする。このように第一バイポーラがオンになり第二バイポーラがオンにならないようにする手法としては、上記のようにL2>L1、R2>R1とする手法以外にも、例えば第二不純物領域の近くに第一不純物領域を形成する等の種々の手法を考えることができる。
【0016】
また本発明は、前記ゲート電極と前記第二不純物領域とを電気的に接続するための最小寸法の一個の第一コンタクトが、前記第二不純物領域に形成されていることを特徴とする。このようにすることで、最小の占有面積で、ゲート電極を第二不純物領域に電気的に接続することが可能となる。これにより保護回路のレイアウト面積を小さくでき、チップ面積の縮小化を図れる。なお、本発明においては、第二不純物領域が大電流の電流経路にならないように、レイアウトの工夫を行うことが望まれる。
【0017】
また本発明は、前記第二不純物領域の周囲の素子分離膜に重なり合わないように前記第二不純物領域に金属シリサイド層が形成され、前記ゲート電極と前記金属シリサイド層とを電気的に接続するための第一コンタクトが、前記金属シリサイド層に形成されていることを特徴とする。このようにすることで、第一コンタクトでのオーミック接続を実現できると共に、静電気等のサージによる半導体装置の破壊を有効に防止できる。
【0018】
また本発明は、前記ゲート電極及び前記第二不純物領域に与えられる信号の電源電位と、前記第一不純物領域に与えられる電源電位とを、前記第二不純物領域と前記第一領域により形成されるダイオードをオンさせない電位に設定することを特徴とする。このようにすることで、第二不純物領域と第一領域とにより形成されるダイオードがオンしてリーク電流が発生するのを有効に防止できる。
【0019】
この場合、、前記ゲート電極及び前記第二不純物領域に与えられる信号の電源電位を、前記第一不純物領域に与えられる電源電位と同電位にすることが望ましい。
【0020】
また本発明では、パッドに接続される出力バッファ、入力バッファ及び入出力バッファの少なくとも1つを保護することを特徴とする。このようにすることで、静電気等のサージに対する耐性が高く且つレイアウト面積の小さい出力バッファ、入力バッファ、入出力バッファを提供できるようになる。これにより、信頼性の向上を図りながらチップ面積の縮小化を図れるようになる。
【0021】
また本発明は、第一電源系で動作する第一回路ブロックと該第一電源系と異なる第二電源系で動作する第二回路ブロックとの間のインターフェース回路を保護することを特徴とする。このようにすることで第一電源系からのサージにより第二回路ブロックの回路が破壊したり、第二電源系からのサージにより第一回路ブロックの回路が破壊したりする等の事態を防止できるようになる。
【0022】
【発明の実施の形態】
以下、本発明の良好な実施形態について説明する。なお以下では、第一導電型をp型とし、第二導電型をn型として説明する。またトランジスタとしてMOS型トランジスタを用いた場合を例にとり説明する。しかしながら、本発明は、第一導電型がn型であり、第二導電型がp型である場合にも適用できる。またMOS型トランジスタ以外にも、MIS型トランジスタなどの種々のトランジスタに適用できる。
【0023】
1.本実施形態の構成
図2(A)に、本実施形態の保護回路の平面図の一例を示す。また図2(B)に、図2(A)におけるA−B線の断面概念図を示す。
【0024】
図2(A)、(B)において、n型のトランジスタ25は、半導体基板17のp型ウェル16(第一領域)に形成される。またトランジスタ25は、ソース領域2、ポリシリコン等からなるゲート電極3、及びドレイン領域4を有する。ここでソース領域2は接地電位(下側電源電位)に接続される。またドレイン領域3は、図示しないパッドに接続される。
【0025】
p型不純物領域5(第一の不純物領域)は、拡散、イオン注入等の製造プロセスを用いてp型ウェル16に形成される。このp型不純物領域5は、p型ウェル16に電位を与えるためのものである。そしてp型不純物領域5には接地電位が与えられるため、p型ウェル16にも接地電位が与えられることになる。なおp型不純物領域5は、少なくともその一部がp型ウェル16に重なり合うように形成されていればよい。
【0026】
n型不純物領域1(第二不純物領域)は、拡散、イオン注入等の製造プロセスを用いてp型ウェル16に形成される。そして、このn型不純物領域1とp型ウェル16とによりダイオードD1が形成される。なお本実施形態では、n型不純物領域1がトランジスタの構成要素とならないようになっている。
【0027】
そして本実施形態の特徴は、トランジスタ25のゲート電極3が、n型不純物領域1に電気的に接続される点にある。これにより、小さな回路規模で半導体装置を十分に保護できる保護回路を提供できるようになる。
【0028】
なお図2(A)、(B)では、ゲート電極3は、アルミ、銅、チタン、タングステンなどの金属の配線層6やコンタクト7、8を介してn型不純物領域1に接続される。但し、ゲート電極3をn型不純物領域1に電気的に接続する構成はこれに限らず、例えばゲート電極3を、n型不純物領域1に直接接続する構成(スルーホールコンタクト)等、種々の変形実施が可能である。
【0029】
2.本実施形態の動作
次に本実施形態の保護回路の動作について説明する。
【0030】
図3に示すように、パッド21から静電気などのサージ62が加わると、ドレイン領域4とp型ウェル16とにより構成されるダイオードD3がアバランシェブレイクを起こす。これによりゲート電極3の下のチャネル領域64が高電位状態になる。そして、このようにダイオードD3がアバランシェブレークしチャネル領域64が高電位状態になると、p型ウェル16の電位が上昇する。そして、ソース領域2の周囲のp型ウェル16の電位と接地電位との電位差が、ソース領域2とp型ウェル16とにより構成されるダイオードD2の順方向電圧(例えば0.6V)よりも大きくなると、ダイオードD2がオンする。即ちダイオードD3、D2が共にオンし、ドレイン領域4、p型ウェル16及びソース領域2により構成されるnpn型のバイポーラBP1による電流経路が形成される。そして、このnpn型のバイポーラBP1による電流経路により、静電気などのサージ62による注入電荷は接地電位へと放電される。
【0031】
一方、上記のようにダイオードD3がオンしチャネル領域64が高電位状態になりp型ウェル16の電位が上昇すると、n型不純物領域1とp型ウェル16とにより構成されるダイオードD1が、ダイオードD2と同様にオンする。そしてダイオードD1がオンすると、p型ウェル16の電位(正確には、n型不純物領域1の周囲のp型ウェル16の電位からダイオードD1の順方向電圧を引いた電位)がゲート電極3に伝わることになる。これによりゲート電極3とチャネル領域64との間の電位差が低減され、酸化物等で形成されたゲート絶縁膜11が保護されることになる。
【0032】
この場合、ドレイン領域4とp型ウェル16とソース領域2とで構成されるバイポーラBP1がオンになる一方で、ドレイン領域4とp型ウェル16とn型不純物領域1とで構成されるバイポーラBP2がオンにならないように、保護回路の各部分をレイアウトすることが肝要である。このようにすれば、バイポーラBP2の電流経路によりn型不純物領域1に大電流が流れ込むという事態を防止できる。
【0033】
なお本実施形態では、n型のトランジスタのドレイン領域に外部から静電気などのサージが印加される場合について説明した。しかしながら、本発明は、p型のトランジスタのドレイン領域に外部から静電気などのサージが印加される場合にも同様に適用できる。この場合は、静電気などのサージによる注入電荷は、上側電源電位に放電されることになる。
【0034】
3.本実施形態の等価回路図
図4(A)に、本実施形態の等価回路図の一例を示す。パッド51(出力パッド)は、出力バッファ50を構成するp型のトランジスタ52及びn型のトランジスタ53のドレイン領域に接続される。またp型のトランジスタ52のソース領域は上側電源電位56に、p型のトランジスタ52のゲート電極はダイオード54のアノード及び内部回路57にそれぞれ接続される。またn型のトランジスタ53のソース領域は接地電位(下側電源電位)59に、n型のトランジスタ53のゲート電極はダイオード55のカソード及び内部回路58にそれぞれ接続される。
【0035】
パッド51に静電気などの外来サージが加えられると、p型のトランジスタ52又はn型のトランジスタ53のドレイン領域がアバランシェブレイクを起こす。アバランシェブレイクを起こしたトランジスタのチャネル領域は、電位が上昇し高電位状態となる。そしてアバランシェブレイクを起こしたトランジスタのソース領域とウェルとから構成されるダイオードをオンさせる。これによりドレイン領域、p型ウェル(チャネル領域)及びソース領域から構成されるバイポーラによる電流経路が形成される。このようなバイポーラによる電流経路が形成されることで、内部回路57又は内部回路58等が静電気などの外来サージから保護されることになる。
【0036】
一方、ダイオード54又はダイオード55は、アバランシェブレイクにより上昇したウェルの電位をゲート電極へ伝達する機能を果たす。これによりアバランシェブレイクを起こしたトランジスタのチャネル領域とゲート電極との間の電位差が瞬時に低減され、トランジスタのゲート酸化膜が保護される。
【0037】
図4(B)に、内部回路57、58の一例を示す。なお、ここでは内部回路57及び内部回路58を別々に設けた場合について説明した。しかしながら、例えば図4(C)に示すように、p型のトランジスタ52及びn型のトランジスタ53のゲート電極を、1つの内部回路60に接続する構成としてもよい。
【0038】
4.本実施形態の効果
図5に、マシンモデルでのESD耐圧の評価結果の一例を示す。図5には、種々のチャネル幅のトランジスタ(チャネル長は0.35μm)のESD耐圧の評価結果が示されている。ここでA1は、本実施形態を用いた場合の評価結果であり、A2は、従来例である図1(A)の構成を用いた場合の評価結果である。A1、A2を比較すれば明らかなように、本実施形態によれば、図1(A)の従来例に比べてESD性能を大幅に向上できる。
【0039】
このように図1(A)に比べてESD性能を向上できるのは以下の理由による。
【0040】
図3にて既に説明したように、ドレイン領域4にサージ62が印加されると、ドレイン領域4に寄生するダイオードD3がアバランシェブレークする。この時、図6のB1に示すように、ドレイン電圧はVbdになる。その後、バイポーラBP1がオンすると、図6のB2に示すように、ドレイン電圧はVbdからVspに低下する。このようにドレイン電圧が低下する現象はスナップバックと呼ばれる。スナップバック時においては、ドレイン領域4の入力インピーダンスは非常に低くなる。従って、サージ62によりドレイン領域4に注入される電荷を接地電位に容易に放電できるようになる。また例えば200Vの大きさのサージ62が印加されても、ドレイン領域4の電圧をVsp=8V程度に低減できるようになる。図1(A)の保護回路は、このスナップバックを利用して、半導体装置を保護している。
【0041】
しかしながら、素子寸法の微細化が進みゲート絶縁膜11が薄くなるのに伴い、スナップバックを利用してドレイン領域4の電圧をVsp=8V程度に低下させても、ゲート絶縁膜11が静電破壊されてしまうという問題が顕在化してきた。即ち図1(A)の保護回路では、スナップバック時のチャネル領域の高電位状態により、ゲート絶縁膜が静電破壊されてしまう。
【0042】
本実施形態によれば、スナップバックによりチャネル領域64が高電位状態になっても、p型ウェル16(チャネル領域64)の電位がn型不純物領域1を介してゲート電極3に伝えられる。従って、ゲート電極3とチャネル領域64との間の電位差が低減され、ゲート絶縁膜11を保護できるようになる。これによりESD性能を図6のA1に示すように向上できる。
【0043】
出力バッファのゲート電極3に、ほぼフロート状態となるn型不純物領域1を接続することは、通常の回路設計においては好まれる事ではない。n型不純物領域1の存在により回路が誤動作するかもしれないと考えられるからである。本実施形態は、このような、本実施形態を構成する事の妨げとなる事情にあえて反して、ゲート電極3にn型不純物領域1を電気的に接続した点に大きな特徴がある。
【0044】
さて、図7(A)、(B)に、ゲート絶縁膜の静電破壊を防止する保護回路の他の例を比較例として示す。図7(A)では、常時オフ状態となるトランジスタ247のドレイン領域を、トランジスタ244のゲート電極に接続している。図7(B)では、一端が接地電位に接続される抵抗248の他端を、トランジスタ247のゲート電極に接続している。
【0045】
図7(A)、(B)では、トランジスタ247のドレイン領域が、本実施形態のn型不純物領域1の機能を果たすことになる。また図7(B)では、抵抗248を設けることで、トランジスタ247のゲート絶縁膜が静電破壊するのを防止している。
【0046】
しかしながら、これらの比較例には以下のような問題点がある。
【0047】
(1)トランジスタ244を保護するためにトランジスタ247や抵抗248を設ける必要があるため、保護回路の占有面積が大きくなり、チップ面積の増大化を招く。
【0048】
(2)保護回路の構造が複雑になり、寄生容量の増加等の問題を招く。この結果、回路動作に支障を招くおそれがある。
【0049】
(3)例えば図8に示すように、内部回路側からサージ250が回り込んできた場合に、トランジスタ244を保護すべきトランジスタ247のゲート絶縁膜254が静電破壊される。即ちドレイン領域256、p型ウェル258及びソース領域260から構成されるバイポーラBP3が、サージ250によりオンする。そしてチャネル領域262が高電位状態になり、ゲート絶縁膜254が静電破壊される。
【0050】
また図7(B)のようにトランジスタ247のゲート電極に抵抗248を接続する構成には、ドレイン領域256やチャネル領域262の電位が急激に変化した場合に、この電位変化に対するゲート電極の電位の追従が遅れるという問題がある。
【0051】
特に図7(A)、(B)の比較例では、トランジスタ247は、保護すべきトランジスタ244の近くに配置されることになるため、サージ250が周り込んでくる可能性が非常に高い。更にトランジスタ247のサイズはトランジスタ244に比べて非常に小さくなるため、サージ250により容易に静電破壊されてしまう。
【0052】
これに対して、図2(A)、(B)に示す本実施形態では、n型不純物領域1はトランジスタの構成要素とならない。従って、図7(A)、(B)に比べて保護回路の規模を格段に小さくできる。また図8に示すようなバイポーラBP3やゲート絶縁膜254は本実施形態では存在しない。従って、内部回路等からのサージ250の回り込みによる静電破壊という事態が生じない。
【0053】
5.レイアウト
図9(A)に本実施形態の保護回路のレイアウトの一例を示す。図9(A)に示すように本実施形態では、ソース領域2とソース領域2に対向する位置に形成されるp型不純物領域5との間であって、ゲート電極3を基準としてソース領域2側の領域70に、n型不純物領域1が形成される。このため、無駄の無い効率的なレイアウトが可能となる。またドレインコンタクト72とコンタクト7との距離を、ドレインコンタクト72とソースコンタクト74との距離よりも長くできるという効果がある。
【0054】
特に図9(A)では、ゲート電極3をp型不純物領域5側に延長した部分にコンタクト8(第二コンタクト)が形成され、このコンタクト8を介してゲート電極3に配線層6が接続される。そして、この配線層6はコンタクト7(第一コンタクト)を介してn型不純物領域1に接続される。このようなレイアウトにおいては、コンタクト8を形成するために、トランジスタ25とp型不純物領域5との間をある程度離す必要がある。従って領域70は空きスペースとなる。従って、このような空きスペースにn型不純物領域1及びコンタクト7をレイアウトすることで、無駄が無く効率の良いレイアウトが可能となる。これにより保護回路の小規模化、チップ面積の縮小化を図ることが可能となる。
【0055】
一方、図7(A)、(B)の比較例の保護回路では、例えば図9(B)に示すように、トランジスタ247や抵抗248をレイアウトする必要がある。従って、図9(A)に比べて保護回路が大規模化し、チップ面積の増大化を招く。
【0056】
図10(A)に本実施形態のレイアウトの他の例を示す。図10(A)は、1つのドレイン領域4を2つのソース領域2で共有する場合のレイアウト例である。このような場合にも、本実施形態によれば、n型不純物領域1及びコンタクト7を、空きスペースに効率的にレイアウトすることができる。
【0057】
一方、図10(B)は、トランジスタ25の両側にn型不純物領域1及びコンタクト7をレイアウトする例である。このようにレイアウトすることで、p型ウェル(チャネル領域)の電位を、トランジスタ25のゲート電極3に効率的に伝えることができ、ゲート電極とチャネル領域の電位差を迅速に低減できる。
【0058】
6.n型不純物領域への電流の流れ込みの防止
図3において、ダイオードD3がアバランシェブレークを起こした場合に、バイポーラBP2がオンしてしまうと、n型不純物領域1に大電流が流れ込み、n型不純物領域1やコンタクト7が静電破壊されるおそれがある。
【0059】
そこで本実施形態ではこのような大電流の流れ込みを防ぐために次のような対策を施している。
【0060】
例えば図11(A)に示すように、ドレインコンタクト72とソースコンタクト74との距離をL1とする。またドレインコンタクト72とn型不純物領域1のコンタクト7との距離をL2とする。この場合に、本実施形態では、L2がL1よりも常に大きくなるようにデザインルールを定めている。このようにすることで、図11(B)に示すバイポーラBP2がオンしてn型不純物領域1に大電流が流れ込むという事態を防止でき、n型不純物領域1やコンタクト7の静電破壊を防止できる。
【0061】
なお図11(A)では、ソース領域2側にn型不純物領域1をレイアウトしているが、L2>L1の関係が成り立つならば、他の位置にレイアウトすることも可能である。
【0062】
また距離L1、L2ではなく、ドレインコンタクト72とソースコンタクト74との間の寄生抵抗R1、ドレインコンタクト72とコンタクト7との間の寄生抵抗R2に基づき、n型不純物領域1等のレイアウトを決めてもよい。この場合には、R2>R1の関係が成り立つように、n型不純物領域1等をレイアウトする。このようにすることで、n型不純物領域1やコンタクト7の静電破壊を防止できる。
【0063】
また距離L1、L2、寄生抵抗R1、R2以外の他の要因を考慮してn型不純物領域1等をレイアウトするようにしてもよい。即ちサージなどの印加時にバイポーラBP1がオンする一方でバイポーラBP2がオンにならないように、n型不純物領域1、ソース領域2、ドレイン領域4、p型不純物領域5等のレイアウトを決める。このようにするためには、L2>L1、R2>R1とする以外にも、例えば、p型不純物領域5とn型不純物領域1との距離を、p型不純物領域5とソース領域2との距離よりも短くする等の対策が有効である。
【0064】
7.n型不純物領域及びコンタクトのサイズ
上記のようにn型不純物領域1に大電流が流れ込まないように対策することで、n型不純物領域1及びコンタクトをデザインルール上の最小寸法にすることが可能になる。具体的には図12(A)において、コンタクト7のサイズD1や、コンタクト7に対するn型不純物領域1の重なり余裕D2をデザインルール上の最小寸法にできる。
【0065】
このようにすることで、図9(A)、図10(A)、(B)から明らかなように、保護回路のレイアウト面積を小さくできる。即ち、小さな回路面積で高いESD性能を持つ保護回路を得ることができるようになる。
【0066】
8.サリサイドプロセス
近年、半導体装置の素子寸法の微細化に伴い、不純物領域やゲート電極の寄生抵抗が増大化している。このような寄生抵抗の増大化は、回路の動作速度の低下を招く。そして、不純物領域やゲート電極の寄生抵抗を低減する手法として、サリサイドプロセスと呼ばれるものが提案されている。
【0067】
このサリサイドプロセスでは、チタン、コバルト、タングステン、モリブデン、タンタルなどの金属の膜が、不純物領域やゲート電極が形成されるシリコン基板上に全面スパッタリングされ、熱処理が施される。これにより不純物領域のシリコンやゲート電極のシリコンと堆積された金属とが合金化され、金属シリサイド層が形成される。その後、合金化されずに残された金属が除去される。これにより、金属シリサイド層が、ゲート電極や不純物領域に対して自己整合的に形成されることになる。そして、ゲート電極や不純物領域の寄生抵抗を大幅に低減できるようになり、回路の高速動作化を図れるようになる。
【0068】
しかしながら、サリサイドプロセスを用いて形成したトランジスタ、即ちサリサイド構造のトランジスタは、サリサイド構造ではないトランジスタに比べて、ESD性能が低いという問題がある。サリサイド構造のトランジスタでは、不純物領域の寄生抵抗が低くなるため、静電気による放電電流がゲート電極の端部に集中しやすくなるからである。
【0069】
そこで本実施形態では、ESD性能の向上を図るべく、内部回路のトランジスタについてはサリサイド構造にする一方で保護回路のトランジスタについてはサリサイド構造にしないようにしている。但し、保護回路であってもコンタクト領域では金属シリサイド層を形成するようにしている。コンタクト領域において配線層と不純物領域が直接接続されると、オーミックな接続ができなくなるからである。
【0070】
例えば図9(A)において、ドレインコンタクト72やソースコンタクト74の領域においては、金属シリサイド層を介して配線層とドレイン領域4やソース領域2を接続するようにする。
【0071】
更にコンタクト7の領域においても、図12(B)に示すように、金属シリサイド層80を介して配線層6とn型不純物領域1を接続するようにする。
【0072】
そしてこの場合には、金属シリサイド層80を、n型不純物領域1の周囲の素子分離膜26に重なり合わないようにn型不純物領域1の上に形成する。図12(B)のE1やE2において素子分離膜26と金属シリサイド層80が重なると、その重なり部分に静電気の放電電流が集中しその部分が静電破壊されるおそれがあるからである。
【0073】
なお保護回路のレイアウト面積を縮小化するために、コンタクト7のサイズD1、コンタクト7に対する金属シリサイド層の重なり余裕D3、金属シリサイド層80に対するn型不純物領域1の重なり余裕D4を、デザインルール上の最小寸法にすることが望ましい。
【0074】
9.ゲート電極に与える信号の電源電位
本実施形態の保護回路においては、図13(A)に示すように、ゲート電極3に与えられる信号の電源電位とp型ウェル16に与えられる電源電位とが異なる場合に、ダイオードD1がオンとなりリーク電流が発生してしまうという問題がある。例えばゲート電極3に与えられる信号の下側の電源電位が−5V(前段のトランジスタ92の電源電位が−5V)であり、p型ウェル16に与えられる電源電位が−3Vである場合に、p型ウェル16の電位の方がn型不純物領域1の電位よりも2Vほど高くなってしまう。これによりダイオードD1がオンしてしまう。
【0075】
そこでこのような場合には、ゲート電極3及びn型不純物領域1に与えられる信号の電源電位を、p型不純物領域5に与えられる電源電位と同電位にするようにする。より具体的には例えば図13(B)に示すように、−3Vを電源電位とするトランジスタ25の前段に、−3Vを電源電位とするトランジスタ90(バッファ)を設ける。そしてこのトランジスタ90の前段に、−5Vを電源電位とするトランジスタ92を設けるようにする。このようにすることで、ダイオードD1がオンになりリーク電流が発生してしまうという事態を有効に防止できるようになる。
【0076】
なお、ゲート電極3及びn型不純物領域1に与えられる信号の電源電位をV1とし、p型不純物領域5に与えられる電源電位をV2とした場合に、V1とV2は、n型不純物領域1とp型ウェル16により形成されるダイオードD1がオンにならないような電位に設定されていればよい。例えばV1=V2とは限らず、V1>V2であってもよい。また25がp型トランジスタである場合には、V1<V2であってもよい。
【0077】
10.保護回路の変形例
本実施形態の保護回路は種々の変形実施が可能である。
【0078】
例えば図4(A)では、出力バッファ50自体が保護回路を兼ねる構造となっている。しかしながら、図14(A)に示すように、出力バッファ100とは別に、本実施形態の保護回路の構造を有するn型のトランジスタ104、ダイオード108を設けるようにしてもよい。
【0079】
なお、この場合、上側の電源電位にも、本実施形態の保護回路の構造を有するp型のトランジスタ102、ダイオード106を設けるようにしもよい。
【0080】
また本実施形態は、図14(B)に示すように、入力バッファ110の保護回路にも適用可能である。この場合には、入力バッファ110のゲート電極に接続される抵抗118の前段に、本実施形態の保護回路の構造を有するトランジスタ111、112、ダイオード114、116を設けることが望ましい。このような構造にすることで、入力バッファ110のゲート電極の静電破壊を効果的に防止できるようになる。
【0081】
なお図14(A)、(B)に示すように、トランジスタ102、104、111、112を完全にオフさせるために、ダイオード106、108、114、116に対して並列に、抵抗(素子)107、109、115、117を設けることが望ましい。この場合、図14(C)に示すように、抵抗107、109、115、117は、p型不純物領域5(第一の不純物領域)が有する抵抗を利用して形成することが好ましい。このようにすることで、保護回路の占有面積の増大化を防止できる。
【0082】
また本実施形態は、図15(A)に示すように、出力バッファ50及び入力バッファ110により構成される入出力バッファ120にも適用可能である。この場合には、出力バッファ50のトランジスタ52、53、ダイオード54、55自体が保護回路として機能することになる。但し、図14(B)と同様に、抵抗118の前段に、本実施形態の保護回路の構造を有するトランジスタ及びダイオードを設けるようにしてもよい。
【0083】
また本実施形態は、図15(B)に示すように、電源パッド130、132間に設けられる保護回路にも適用できる。この場合には、電源パッド130、132間に、本実施形態の保護回路の構造を有するトランジスタ134、136、ダイオード138、140を設けることになる。このような保護回路を設けることで、電源パッド130、132間に加えられたサージや他のパッドに加えられたサージが内部回路等に回り込んだ場合に、内部回路等を静電破壊から保護できるようになる。
【0084】
また本実施形態の保護回路はパッドに接続されるものに限られるものではない。例えば図16(A)、(B)に示すように、第一電源系で動作する第一回路ブロック150と第二電源系で動作する第二回路ブロック152との間のインターフェース回路154にも本実施形態の保護回路を適用できる。このような保護回路を設けることで、第一電源系からのサージにより第二回路ブロック152の回路が破壊されたり、第二電源系からのサージにより第一回路ブロック150の回路が破壊されたりする事態を防止できるようになる。
【0085】
このような異なる電源系の回路ブロックを有する半導体装置としては、液晶電源系で動作する回路ブロックとコントロール電源系で動作する回路ブロックとを有する液晶駆動用半導体装置を考えることができる。またアナログ電源系で動作する回路ブロックとデジタル電源系で動作する回路ブロックを有するアナログ・デジタル混在の半導体装置も考えることができる。
【0086】
なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。
【0087】
例えば本発明に係る保護回路のレイアウトは、図9(A)、図10(A)、(B)に示すものが特に望ましいが、これに限らず種々の変形実施が可能である。
【0088】
またソースコンタクト、ドレインコンタクト、第二不純物領域、第二不純物領域に形成されるコンタクトの関係は、図11(A)、(B)で説明したものが特に望ましいが、本発明はこれに限られるものではない。
【0089】
またゲート電極と第二不純物領域とを電気的に接続するためのコンタクトは図12(A)に示すように最小寸法であり、コンタクトの数も1つであることが特に望ましいが、本発明はこれに限られるものではない。例えばコンタクトの大きさを最小寸法よりも若干大きめにしたり、コンタクトの数を2以上にすることも可能である。
【0090】
また本発明に係る保護回路は、図14(A)〜図16(B)に示したもの以外にも、種々の変形実施が可能である。
【0091】
【図面の簡単な説明】
【図1】図1(A)、(B)、(C)は、従来例の保護回路の一例を示す図である。
【図2】図2(A)は本実施形態の保護回路の平面図であり、図2(B)は、図2(A)のA−B線での断面概念図である。
【図3】本実施形態の保護回路のデバイス構造を示す図である。
【図4】図4(A)、(B)、(C)は、本実施形態の保護回路の等価回路図を示す図である。
【図5】ESD耐圧の評価結果の一例を示す図である。
【図6】スナップバックについて説明するための図である。
【図7】図7(A)、(B)は、比較例について説明するための図である。
【図8】比較例のデバイス構造を示す図である。
【図9】図9(A)は、本実施形態のレイアウトの一例を示す図であり、図9(B)は、比較例のレイアウトの一例を示す図である。
【図10】図10(A)、(B)は、本実施形態のレイアウトの他の例を示す図である。
【図11】図11(A)、(B)は、ソースコンタクト、ドレインコンタクト、n型不純物領域、n型不純物領域に形成されるコンタクトの関係について説明するための図である。
【図12】図12(A)、(B)は、n型不純物領域、n型不純物領域に形成されるコンタクト等のサイズについて説明するための図である。
【図13】図13(A)、(B)は、ゲート電極に与える信号の電源電位がp型ウェルの電源電位と異なる場合の回路の工夫について説明するための図である。
【図14】図14(A)、(B)、(C)は、本実施形態の保護回路の種々の変形例を示す図である。
【図15】図15(A)、(B)も、本実施形態の保護回路の種々の変形例を示す図である。
【図16】図16(A)、(B)も、本実施形態の保護回路の種々の変形例を示す図である。
【符号の説明】
1 n型不純物領域
2 ソース領域
3 ゲート電極
4 ドレイン領域
5 p型不純物領域
6 配線層
7、8 コンタクト
10 配線層
11 ゲート絶縁膜
16 p型ウェル領域
17 半導体基板
18 n型不純物領域1とソース領域2との距離
19 配線層
21 パッド
25 トランジスタ
50 出力バッファ
51 パッド
52 p型のトランジスタ
53 n型のトランジスタ
54、55 ダイオード
56 上側電源電位
57、58 内部回路
59 接地電位(下側電源電位)
60 内部回路
62 サージ
64 チャネル領域
72 ドレインコンタクト
74 ソースコンタクト
80 金属シリサイド層
110 入力バッファ
120 入出力バッファ
150 第一回路ブロック
152 第二回路ブロック
154 インターフェース回路

Claims (10)

  1. 第一導電型の第一領域に形成され、ゲート電極、ドレイン領域、及び電源電位が与えられるソース領域を有し、前記ドレイン領域にパッドが接続される第二導電型のトランジスタと、
    前記第一導電型の第一領域に少なくとも一部が重なり合うように形成され、前記電源電位が与えられる第一導電型の第一不純物領域と、
    前記第一導電型の第一領域に形成され、トランジスタの構成要素とならない第二導電型の第二不純物領域とを含み、
    前記第二導電型のトランジスタの前記ゲート電極が、前記第二不純物領域に電気的に接続され、
    前記パッドからのサージに対して、前記第二不純物領域と前記第一領域とにより構成されるダイオードにより、前記ゲート電極のゲート酸化膜を保護することを特徴とする半導体装置の保護回路。
  2. 請求項1において、
    前記ソース領域と該ソース領域に対向する位置に形成される前記第一不純物領域との間であって、前記ゲート電極を基準として前記ソース領域側の領域に、前記第二不純物領域が形成されていることを特徴とする半導体装置の保護回路。
  3. 請求項2において、
    前記ゲート電極を前記第一不純物領域側に延長したゲート電極延長部に形成される第二コンタクトと、
    前記第二不純物領域に形成される第一コンタクトと、
    前記第二コンタクト及び前記第一コンタクトを介して、前記ゲート電極延長部と前記第二不純物領域との間を接続する配線層とを含むことを特徴とする半導体装置の保護回路。
  4. 請求項1乃至3のいずれかにおいて、
    前記ドレイン領域に形成されるドレインコンタクトと前記ソース領域に形成されるソースコンタクトとの間の距離をL1、前記ドレインコンタクトと前記第二不純物領域に形成される第一コンタクトとの間の距離をL2とした場合に、L2がL1よりも長いことを特徴とする半導体装置の保護回路。
  5. 請求項1乃至3のいずれかにおいて、
    前記ドレイン領域に形成されるドレインコンタクトと前記ソース領域に形成されるソースコンタクトとの間の寄生抵抗をR1、前記ドレインコンタクトと前記第二不純物領域に形成される第一コンタクトとの間の寄生抵抗をR2とした場合に、R2がR1よりも大きいことを特徴とする半導体装置の保護回路。
  6. 請求項1乃至3のいずれかにおいて、
    前記パッドからのサージが前記ドレイン領域に印加された場合に、前記ドレイン領域と前記第一領域と前記ソース領域とにより構成される第一バイポーラトランジスタがオンになり且つ前記ドレイン領域と前記第一領域と前記第二不純物領域とにより構成される第二バイポーラトランジスタがオンにならないようにすることで、前記第二不純物領域を保護することを特徴とする半導体装置の保護回路。
  7. 請求項1乃至6のいずれかにおいて、
    前記ゲート電極と前記第二不純物領域とを電気的に接続するための最小寸法の一個の第一コンタクトが、前記第二不純物領域に形成されていることを特徴とする半導体装置の保護回路。
  8. 請求項1乃至7のいずれかにおいて、
    前記第二不純物領域の周囲の素子分離膜に重なり合わないように前記第二不純物領域に金属シリサイド層が形成され、
    前記ゲート電極と前記金属シリサイド層とを電気的に接続するための第一コンタクトが、前記金属シリサイド層に形成されていることを特徴とする半導体装置の保護回路。
  9. 請求項1乃至8のいずれかにおいて、
    前記保護回路は、前記ドレイン領域が前記パッドに接続される出力バッファであり、
    前記ゲート電極及び前記第二不純物領域に与えられる信号の電源電位と、前記第一不純物領域に与えられる電源電位とを、前記第二不純物領域と前記第一領域により形成されるダイオードをオンさせない電位に設定することを特徴とする半導体装置の保護回路。
  10. 請求項9において、
    前記ゲート電極及び前記第二不純物領域に与えられる信号の電源電位を、前記第一不純物領域に与えられる電源電位と同電位にすることを特徴とする半導体装置の保護回路。
JP36444697A 1996-12-27 1997-12-18 半導体装置の保護回路 Expired - Fee Related JP3861426B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP36444697A JP3861426B2 (ja) 1996-12-27 1997-12-18 半導体装置の保護回路
US08/996,204 US6046480A (en) 1996-12-27 1997-12-22 Protection circuit for semiconductor devices
KR1019970074002A KR100371246B1 (ko) 1996-12-27 1997-12-26 반도체장치의보호회로
TW086119861A TW364212B (en) 1996-12-27 1997-12-27 A protection circuit for semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-350195 1996-12-27
JP35019596 1996-12-27
JP36444697A JP3861426B2 (ja) 1996-12-27 1997-12-18 半導体装置の保護回路

Publications (2)

Publication Number Publication Date
JPH10242401A JPH10242401A (ja) 1998-09-11
JP3861426B2 true JP3861426B2 (ja) 2006-12-20

Family

ID=26579144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36444697A Expired - Fee Related JP3861426B2 (ja) 1996-12-27 1997-12-18 半導体装置の保護回路

Country Status (4)

Country Link
US (1) US6046480A (ja)
JP (1) JP3861426B2 (ja)
KR (1) KR100371246B1 (ja)
TW (1) TW364212B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292046B1 (en) * 1998-09-30 2001-09-18 Conexant Systems, Inc. CMOS electrostatic discharge protection circuit with minimal loading for high speed circuit applications
US6456099B1 (en) * 1998-12-31 2002-09-24 Formfactor, Inc. Special contact points for accessing internal circuitry of an integrated circuit
JP2001077305A (ja) * 1999-08-31 2001-03-23 Toshiba Corp 半導体装置
JP3617425B2 (ja) 2000-07-28 2005-02-02 株式会社デンソー 半導体集積回路装置の入力インターフェイス回路
US7250650B2 (en) * 2002-11-21 2007-07-31 Infineon Technologies Ag Field-effect transistor structure and associated semiconductor memory cell
DE10254415A1 (de) * 2002-11-21 2004-08-05 Infineon Technologies Ag Feldeffekttransistorstruktur, zugehörige Halbleiter-Speicherzelle sowie zugehöriges Herstellungsverfahren
US6952027B2 (en) * 2002-11-29 2005-10-04 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device and electronic card using the same
KR101532424B1 (ko) * 2008-09-12 2015-07-01 페어차일드코리아반도체 주식회사 정전기 방전 다이오드
US10283511B2 (en) * 2016-10-12 2019-05-07 Ememory Technology Inc. Non-volatile memory

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277265A (ja) * 1989-04-18 1990-11-13 Nec Corp 半導体集積回路の入力保護回路
JPH05275624A (ja) * 1992-03-25 1993-10-22 Sony Corp 半導体保護回路
TW289153B (ja) * 1994-09-26 1996-10-21 Ibm

Also Published As

Publication number Publication date
KR19980064668A (ko) 1998-10-07
US6046480A (en) 2000-04-04
TW364212B (en) 1999-07-11
JPH10242401A (ja) 1998-09-11
KR100371246B1 (ko) 2003-04-11

Similar Documents

Publication Publication Date Title
JP2638462B2 (ja) 半導体装置
US6545321B2 (en) ESD protection circuit for a semiconductor integrated circuit
US5780905A (en) Asymmetrical, bidirectional triggering ESD structure
US7791148B2 (en) Semiconductor device
US6049119A (en) Protection circuit for a semiconductor device
US20050133839A1 (en) Semiconductor device
JPH0621263U (ja) 改良された静電放電(esd)保護のためのmosコンデンサを持つ集積回路
JP3861426B2 (ja) 半導体装置の保護回路
US6075271A (en) Semiconductor device inhibiting parasitic effects during electrostatic discharge
US6455898B1 (en) Electrostatic discharge input protection for reducing input resistance
JP2822915B2 (ja) 半導体装置
JP3345296B2 (ja) 保護回路および絶縁物上半導体素子用回路
US6414360B1 (en) Method of programmability and an architecture for cold sparing of CMOS arrays
JP3320872B2 (ja) Cmos集積回路装置
JP2002324842A (ja) 半導体保護回路
KR100497755B1 (ko) 반도체장치
JP3472911B2 (ja) 半導体装置
JP3559075B2 (ja) Cmos技術の集積電子回路用の極性反転保護装置
US5739571A (en) Semiconductor device having protection device for preventing the electrostatic breakdown of output buffer MOSFETs
US6534834B1 (en) Polysilicon bounded snapback device
JPH06236965A (ja) 半導体装置
JP3036448B2 (ja) 半導体装置
JPH07263633A (ja) 半導体装置の対静電気放電保護装置
US5432369A (en) Input/output protection circuit
JP3442331B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees