EP0613961B1 - Bande galvanisée d'acier allié - Google Patents
Bande galvanisée d'acier allié Download PDFInfo
- Publication number
- EP0613961B1 EP0613961B1 EP94103185A EP94103185A EP0613961B1 EP 0613961 B1 EP0613961 B1 EP 0613961B1 EP 94103185 A EP94103185 A EP 94103185A EP 94103185 A EP94103185 A EP 94103185A EP 0613961 B1 EP0613961 B1 EP 0613961B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- less
- steel sheet
- hot dip
- dip galvanized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 15
- 239000008397 galvanized steel Substances 0.000 title claims description 15
- 229910000831 Steel Inorganic materials 0.000 claims description 53
- 239000010959 steel Substances 0.000 claims description 53
- 238000007747 plating Methods 0.000 claims description 37
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 8
- 239000011701 zinc Substances 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 238000005275 alloying Methods 0.000 description 15
- 238000000227 grinding Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- 230000009467 reduction Effects 0.000 description 8
- 229910018084 Al-Fe Inorganic materials 0.000 description 7
- 229910018192 Al—Fe Inorganic materials 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 238000005246 galvanizing Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 229910000640 Fe alloy Inorganic materials 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
Definitions
- the present invention relates to an alloyed hot dip galvanized steel sheet which is used for external vehicle body plates having excellent pressing workability and plating separation resistance.
- the characteristics demanded for the plating layer of GA steel sheets are that the plating layer must not exhibit 1) “powdering” in which the structure thereof is powdered and separated because it cannot follow the deformation of the steel sheet during processing, and 2) “flaking” in which the structure is separated in the form of scales when it is ironed by means of pressing dies. If such phenomena occur, separated plated particles are collected in the pressing dies, thereby causing highly undesirable indentations on the surface of steel sheets. Also, the corrosion resistance of the plating itself may be lost.
- the plating layer of GA steel sheet is said to be composed of three Zn-Fe alloy phases ⁇ , ⁇ 1 , ⁇ from the viewpoint of low percentage content of Fe.
- the reason for powdering is believed to originate from the ⁇ phase and the reason for flaking is believed to originate from the ⁇ phase.
- GA steel sheet is produced by hot-dip galvanizing the C, N, P, S reduced material, the ductility and r value are satisfied.
- alloying in the grain boundary of the steel sheet is excessively accelerated and increases the amount of ⁇ phase formation, thereby reducing powdering resistance.
- an object of the present invention to obtain an alloyed hot dip galvanized steel sheet in which the powdering resistance and flaking resistance can be satisfied at the same time by using a steel sheet obtained by reducing the content of C, N, P, S contained in the steel plate.
- an alloyed hot dip galvanized steel sheet having excellent press workability and plating separation resistance, wherein an alloyed hot dip galvanized zinc base layer which contains about 9 weight % or more and about 12 weight % or less of Fe, about 0.3 weight % or more and about 1.5 weight % or less of Al, about 0.1 weight % or less of Pb is formed on the surface of a steel sheet which contains about 0.0015 weight % or less of C, about 0.1 weight % or less of Si, about 0.03 weight % or more and about 0.3 weight % or less of Mn, about 0.01 weight % or more and about 0.1 weight % or less of Al, about 0.01 weight % or less of P, about 0.005 weight % or less of S, about 0.005 weight % or less of 0, about 0.005 weight % or less of N and further contains at least one of about 0.03 weight % or less of Ti or about 0.03 weight % or less of Nb in the range in which C/12 ⁇ Ti
- the steel sheet having the aforementioned composition may contain about 0.001 weight % or less of B.
- Fig. 1 is a schematic, explanatory drawing of a bead type pulling testing apparatus.
- the components contained in steel sheet which is to be used as the material for plating are determined as follows in order to satisfy necessary properties and achieve efficient economic production.
- C is an element which directly determines the strength of steel. To obtain an extremely high workability (high El, r value) which is an object of the present invention, a smaller content thereof is better. The content thereof should be about 0.0015 weight % or less.
- N, P and S are in the structure of steel to reduce the El and r values. As in the case of C, a smaller content of these elements is better. It is considered that N, P and S must be about 0.005 weight % or less, about 0.01 weight % or less, and about 0.005 weight % or less, respectively.
- O is precipitated as an oxide if it is excessively contained in steel, thereby reducing the El and r values. Therefore, the content thereof must be about 0.005 weight % maximum.
- Mn If Mn is added into steel, it is combined with S and then precipitated to become non-effective. Thus, when a small amount of Mn is added, there is no remarkable effect from the viewpoint of the material. However, if the content thereof exceeds about 0.3 weight %, the El and r values decrease gradually. Thus, the content of Mn must be about 0.03 weight % or more and about 0.3 weight % or less.
- Si As in the case of Mn, a large amount of Si contained in steel reduces the El and r values and blocks the wettability of plating. Thus, the amount of Si is about 0.1 weight % maximum.
- Ti and Nb are combined with C and precipitated in the form of TiC and NbC, thereby improving workability.
- the atomic ratio of Ti and Nb with respect to C needs to be more than about 1.
- the maximum atomic ratio is about 6.
- it is desirable that the maximum amount of each component is about 0.03 weight %.
- Ti is more likely to be combined with N or S than C, it is necessary to determine the amount of Ti so that it is minus N and S equivalents.
- Al The amount of Al needs to be about 0.01 weight % or more to prevent Ti and Nb from being oxidized and lost when Ti and Nb are added. Al is combined with N and S contained in steel, thereby eliminating the effects thereof. However, if the amount of added Al exceeds about 0.1 weight %, the effect is saturated, so that excessive addition of Al is economically meaningless.
- B In the steel sheet according to the present invention, besides the basic composition described above, it is preferable that the amount of B is less than about 0.001 weight %. The reason is that B is effective in strengthening the grain boundary and improving spot weldability and secondary processing brittleness. Thus, the maximum amount is about 0.001 weight %.
- the alloyed hot dip galvanized steel sheet is produced by immersing a steel sheet in a molten zinc bath and then heating the steel sheet to diffuse Fe contained in the steel sheet into plated layers, thereby forming a Zn-Fe alloy layer. Consequently, the corrosion resistance, chemical conversion treatment property and spot weldability thereof are markedly better than ordinary galvanized steel plates.
- These functions are preferably achieved by adjusting the content of Fe to about 9 weight % or more. Additionally, the amount of Fe needs to be about 9 weight % or more to prevent a ⁇ phase layer from growing.
- the content of Fe exceeds about 12 weight %, a hard, brittle ⁇ phase layer is developed even if the content of Al in the plating layer is controlled in a range described later, thereby blocking press workability.
- the content of Fe contained in the plating layer must be about 9-12 weight % or less.
- the content of Al contained in the plating layer affects the phase composition of the Zn-Fe alloy which is formed at the time of alloying. If the amount of Al is less than about 0.3 weight %, the ⁇ phase layer is developed so that undesirable powdering becomes likely. If the amount of Al exceeds about 1.5 weight %, insufficient alloying is achieved. Thus, the amount of Al contained in the plating layer is about 0.3 weight % - about 1.5 weight %.
- Pb contained in the plating layer is restricted to about 0.2 weight % or less because it badly affects the corrosion resistance of the plating layer.
- the amount of the plating layer applied needs to be about 25g/m 2 from the viewpoint of corrosion resistance. However, if the plating layer is too thick, the layer cannot follow the deformation of the steel sheet when pressing is performed, thereby resulting in powdering. Thus, the maximum amount of plating applied to the steel plate is determined to be about 70g/cm 2 .
- Molten steel which is adjusted to the aforementioned composition is processed into a slab by means of a continuous casting method.
- the slab is then processed into cold finished steel plates through hot rolling and cold rolling.
- hot rolling it is desirable that the finishing temperature is about 850°C - 920°C which is near the Ar 3 transformation point to obtain high processing properties. It is desirable that the winding temperature is about 600°C or more. Further, in the cold rolling step, it is desirable that the rolling reduction is about 50% or more.
- the surface of a steel sheet is purified before annealing reduction is performed. Degreasing, pickling or burning are permissible methods.
- the steel sheet is then subjected to annealing reduction. It is appropriate to use an H 2 atmosphere containing between several % and several tens % of N 2 . It is also desirable that the dew point be 0°C or less.
- the annealing reduction temperature needs to be higher than the recrystallization temperature to secure a preferred material, it is desirable that the annealing reduction temperature is about 780°C or more.
- the steel sheet After annealing reduction is performed, the steel sheet is cooled in reducing gas and introduced to a hot dip galvanizing bath.
- the components and the temperature of the bath are determined as follows.
- Concentration of Al in the bath One purpose of the present invention is to secure powdering resistance and flaking resistance by controlling the amount of the Al-Fe alloy layer generated in the galvanizing bath to achieve alloying of mainly ⁇ 1 phase.
- the amount of the Al-Fe alloy layer should be adjusted so that the amount of Al contained in the alloy is 0.15g/m 2 or more for this purpose.
- the amount of Al in the bath needs to be about 0.13 weight % or more.
- the amount of the Al-Fe layer is increased so that the amount of Al exceeds about 0.5g/m 2 , alloying is excessively restricted, so that productivity may be blocked. Namely, in the plating layer after alloying is performed, it is desirable that the amount of Al including Al contained in layers other than the Al-Fe layer is about 1.5 weight % at most.
- the maximum concentration of Al contained in the bath is about 0.2 weight %.
- Concentration of Pb in the bath Unlike Al, Pb in the bath is not concentrated on the plating during hot dipping. However, if the concentration of Pb in the plating layer exceeds about 0.1 weight %, corrosion resistance may drop. Thus, the upper limit of the concentration of Pb in the bath is about 0.1 weight %.
- the steel sheet of the present invention can be used for various applications including automobiles, household electric appliances, construction materials, and the like in bare condition and/or in a condition which undergoes pre-coating, post-coating, laminating, chromate treatment, phosphate treatment or the like. Moreover, if the top layer of the alloyed hot dip galvanized plating layer is further coated with a plating layer containing at least one of Fe, Zn and Ni, the corrosion resistance is further improved.
- the steel sheet After the steel sheet is immersed in the plating bath, it is subjected to alloying processing to obtain a GA steel sheet in which the degree of alloying (Fe) is 9 - 12%.
- alloyed hot dip galvanized steel sheet which has excellent press processing and plating separation resistance can be obtained.
- a specimen of steel sheet was softened by means of a vacuum melting furnace, and hot rolled and cold rolled to adjust the thickness of the sheet to 0.7 mm.
- the sheet was subjected to electrolytic degreasing and pickling with hydrochloric acid before it was inserted into a plating apparatus.
- the hot rolling finish temperature was 900°C. After temporary cooling, the sheet was equally heated at 700°C for an hour according to the heat history obtained after it was coiled. The sheet was then cold rolled under a rolling reduction of 75% after it was cooled and pickled with acid.
- Table 1 shows the components of the specimen steel sheet, the condition for plating and the composition of a plated layer provided before alloying treatment.
- Table 2 shows the characteristics of the plated steel sheet after the alloying treatment was performed.
- the material of the steel sheet was obtained by heat treatment according to CGL(Continuous Galvanizing Line) in an alloyed hot dip galvanizing cycle after which cold rolling was performed.
- the steel sheet was then annealed at 850°C for 20 seconds and cooled at 500°C for 30 seconds.
- Table 1 shows the components of the steel sheet as well.
- the measurement of the amount of Al-Fe shown in Table 2 was performed by immersing a plated steel sheet before it was subjected to alloying processing in fuming nitric acid to remove zinc ( ⁇ ) phase, solving the Al-Fe alloy layer which was left unsolved in the passive state in hydrochloric acid and then measuring the amount of Al according to the atomic absorption method.
- the elongation percentage (El) and r values of the steel sheet were obtained by tensile testing to evaluate the characteristics of the plated steel sheet. Powdering resistance and flaking resistance were obtained to investigate the characteristics of the plated layer. Powdering resistance was evaluated according to a five-step evaluation system by bending a plated steel sheet which had been subjected to alloying processing at 90 degrees, restoring it, and collecting separated plating particles using a preliminarily attached cellophane tape to measure the amount thereof. "1" indicated acceptable and "5" indicated unacceptable in the test.
- Flaking resistance was measured by means of the bead type drawing test apparatus shown in Fig. 1 by using 10 mm wide cut pieces of the steel sheet which had undergone alloying processing.
- a test piece 2 was drawn through a bent path between an indented member 1 and a protruded member 3.
- the test piece coated with no oil was drawn under the condition in which the pressing load was 100kgf and that the drawing velocity was 500mm/min. Separated plated particles were collected using a cellophane tape to visually recognize whether flaking had occurred according to a two-level (yes/no) evaluation system.
- the present invention has succeeded in realizing production of alloyed hot dip galvanized steel sheet which has high workability and excellent plating separation resistance. Consequently, according to the present invention, it is possible to produce an alloyed hot dip galvanized steel sheet which has high workability and excellent plating separation resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
Claims (2)
- Tôle d'acier plaquée d'un alliage par immersion à chaud ayant d'excellentes propriétés d'usinage à la presse et de résistance à la séparation du placage, dans laquelle une couche alliée à base de zinc plaquée par immersion à chaud contient 9 % en poids ou plus et 12 % ou moins de Fe, 0,3 % ou plus et 1,5 % ou moins de Al, et 0,1 % ou moins de Pb est formée à la surface d'une tôle d'acier contenant 0,0015 % en poids ou moins de C, 0,1 % en poids ou moins de Si, 0,03 % en poids ou plus et 0,3 % en poids ou moins de Mn, 0,01% en poids ou plus et 0,1 % en poids ou moins de Al, 0,01 % en poids ou moins de P, 0,005 % en poids ou moins de S, 0,005 % en poids ou moins de O, 0,005 % en poids ou moins de N, et au moins un parmi 0,03 % en poids ou moins de Ti ou 0,03 % en poids ou moins de Nb dans la plage C/12≤Ti*/48 + Nb/93≤C/2, la couche ayant une épaisseur de 25 g/m2 ou plus et de 70 g/m2 ou moins ; où Ti* est Ti - (48N/14 + 48S/32) lorsque Ti - (48N/14 + 48s/32)≥0 et Ti* est 0 quand Ti - (48N/14 + 48S/32)<0.
- Tôle d'acier plaquée d'un alliage galvanisé obtenu par immersion à chaud selon la revendication 1, dans laquelle ladite tôle d'acier contient en outre 0,001 % en poids ou moins de B, ladite tôle d'acier ayant d'excellentes propriétés d'usinage à la presse et de résistance à la séparation du placage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04312293A JP3318385B2 (ja) | 1993-03-04 | 1993-03-04 | プレス加工性と耐めっき剥離性に優れた合金化溶融亜鉛めっき鋼板 |
JP43122/93 | 1993-03-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0613961A1 EP0613961A1 (fr) | 1994-09-07 |
EP0613961B1 true EP0613961B1 (fr) | 1997-07-23 |
Family
ID=12655038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94103185A Revoked EP0613961B1 (fr) | 1993-03-04 | 1994-03-03 | Bande galvanisée d'acier allié |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0613961B1 (fr) |
JP (1) | JP3318385B2 (fr) |
KR (1) | KR100261522B1 (fr) |
CN (1) | CN1125188C (fr) |
CA (1) | CA2116984A1 (fr) |
DE (1) | DE69404338T2 (fr) |
TW (1) | TW380165B (fr) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010056280A (ko) * | 1999-12-14 | 2001-07-04 | 이구택 | 크레이터 결함을 감소시키는 합금화 용융아연 도금방법 |
TW536557B (en) * | 2000-09-12 | 2003-06-11 | Kawasaki Steel Co | High tensile strength hot dip plated steel sheet and method for production thereof |
WO2005021823A1 (fr) * | 2003-08-29 | 2005-03-10 | Jfe Steel Corporation | Tole d'acier plaquee de zinc par immersion a chaud et procede de production de cette tole |
KR101091442B1 (ko) * | 2003-12-29 | 2011-12-07 | 주식회사 포스코 | 도금부착성이 우수한 합금화 용융아연 도금강판과 그제조방법 |
JP4486518B2 (ja) * | 2005-01-27 | 2010-06-23 | 新日本製鐵株式会社 | プレス成形性とプレス成形時の被膜密着性に優れた合金化溶融亜鉛めっき鋼板 |
WO2007048883A1 (fr) | 2005-10-27 | 2007-05-03 | Usinor | Procede de fabrication d'une piece a tres hautes caracteristiques mecaniques a partir d'une tole laminee et revetue |
CN100519058C (zh) * | 2007-04-20 | 2009-07-29 | 攀枝花钢铁(集团)公司 | 深冲光整热镀锌钢板的生产方法 |
CN100591793C (zh) * | 2008-07-30 | 2010-02-24 | 攀钢集团研究院有限公司 | 热镀锌钢板制造方法 |
CN101948981A (zh) * | 2010-08-25 | 2011-01-19 | 青岛海信电器股份有限公司 | 热镀锌钢板及其制造方法与应用、led液晶电视后壳 |
CN103842541B (zh) * | 2011-09-30 | 2016-03-30 | 新日铁住金株式会社 | 烘烤硬化性优良的高强度热浸镀锌钢板、高强度合金化热浸镀锌钢板以及它们的制造方法 |
CN104372279A (zh) * | 2014-09-17 | 2015-02-25 | 朱忠良 | 一种具有优异的冲压性、耐腐蚀性的热浸镀锌钢板 |
KR102513358B1 (ko) * | 2020-12-17 | 2023-03-24 | 주식회사 포스코 | 이종코팅 강판 및 디스플레이 장치 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4287008A (en) * | 1979-11-08 | 1981-09-01 | Bethlehem Steel Corporation | Method of improving the ductility of the coating of an aluminum-zinc alloy coated ferrous product |
JPS61276962A (ja) * | 1985-05-31 | 1986-12-06 | Kawasaki Steel Corp | 焼付硬化性および耐パウダリング性に優れる深絞り用合金化溶融亜鉛めっき鋼板の製造方法 |
JPS6240353A (ja) * | 1985-08-14 | 1987-02-21 | Sumitomo Metal Ind Ltd | 合金化亜鉛めつき鋼板の製造方法 |
JPS62142755A (ja) * | 1985-12-17 | 1987-06-26 | Nippon Steel Corp | 合金化溶融亜鉛めつき鋼板およびその製造方法 |
JP2695260B2 (ja) * | 1989-12-19 | 1997-12-24 | 川崎製鉄株式会社 | プレス成形性に優れた合金化溶融Znめっき鋼板の製造方法 |
JP2812770B2 (ja) * | 1990-02-06 | 1998-10-22 | 新日本製鐵株式会社 | 焼付硬化性及び耐パウダリング性に優れた深絞り用合金化溶融亜鉛めっき冷延鋼板の製造方法 |
JP2619550B2 (ja) * | 1990-03-20 | 1997-06-11 | 川崎製鉄株式会社 | 合金化溶融亜鉛めっき鋼板の製造方法 |
JPH046260A (ja) * | 1990-04-25 | 1992-01-10 | Sumitomo Metal Ind Ltd | 超深絞り性溶融亜鉛めっき鋼板の製造法 |
JPH07116581B2 (ja) * | 1990-05-22 | 1995-12-13 | 新日本製鐵株式会社 | 加工によるめっき剥離が少なく焼付硬化性に優れた高強度合金化溶融亜鉛めっき鋼板 |
JP2932701B2 (ja) * | 1991-01-09 | 1999-08-09 | 住友金属工業株式会社 | 合金化溶融亜鉛めっき鋼板 |
CN1053268A (zh) * | 1991-01-09 | 1991-07-24 | 河北省冶金研究所 | 钢丝的高耐蚀性的双浸热镀工艺 |
JP3271354B2 (ja) * | 1993-02-16 | 2002-04-02 | ミノルタ株式会社 | 画像処理装置 |
-
1993
- 1993-03-04 JP JP04312293A patent/JP3318385B2/ja not_active Expired - Fee Related
-
1994
- 1994-03-03 DE DE69404338T patent/DE69404338T2/de not_active Revoked
- 1994-03-03 EP EP94103185A patent/EP0613961B1/fr not_active Revoked
- 1994-03-04 CA CA002116984A patent/CA2116984A1/fr not_active Abandoned
- 1994-03-04 KR KR1019940004192A patent/KR100261522B1/ko not_active IP Right Cessation
- 1994-03-04 CN CN94104090A patent/CN1125188C/zh not_active Expired - Lifetime
- 1994-03-08 TW TW083101991A patent/TW380165B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CA2116984A1 (fr) | 1994-09-05 |
DE69404338T2 (de) | 1997-11-13 |
KR940021750A (ko) | 1994-10-19 |
TW380165B (en) | 2000-01-21 |
JP3318385B2 (ja) | 2002-08-26 |
DE69404338D1 (de) | 1997-09-04 |
KR100261522B1 (ko) | 2000-07-15 |
CN1125188C (zh) | 2003-10-22 |
CN1096060A (zh) | 1994-12-07 |
EP0613961A1 (fr) | 1994-09-07 |
JPH06256903A (ja) | 1994-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10287647B2 (en) | Method for producing a steel component having a metal coating protecting it against corrosion, and steel component | |
EP1806421B1 (fr) | Plaque d'acier à module de young élevé, tôle d'acier galvanisé à chaud utilisant celle-ci, alliage de tôle d'acier galvanisé à chaud, tube d'acier à module de young élevé et procédé de fabrication de ceux-ci | |
EP1504134B1 (fr) | Feuille d'acier galvanisee a chaud et feuille d'acier recuite par galvanisation a haute resistance a la traction, etant resistante a la fatigue et a la corrosion et presentant des proprietes de ductilite et d'adherence de revetement apres forte deformation, et procede de fabrication associe | |
RU2603762C2 (ru) | Гальванизированный стальной лист для формовки в горячем состоянии | |
JP4837604B2 (ja) | 合金化溶融亜鉛めっき鋼板 | |
JP2005528519A5 (fr) | ||
CA2831305A1 (fr) | Composant a haute resistance estampe a chaud possedant une excellente resistance a la corrosion apres revetement, et son procede de fabrication | |
JP4631241B2 (ja) | 強度延性バランス、めっき密着性と耐食性に優れた高張力溶融亜鉛めっき鋼板および高張力合金化溶融亜鉛めっき鋼板 | |
EP0613961B1 (fr) | Bande galvanisée d'acier allié | |
JP3598087B2 (ja) | 加工性の優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法 | |
KR960014517B1 (ko) | 양호한 성형성을 갖는 고강도 냉연 강판과 용융 아연 도금의 고강도 냉연 강판 및, 그들의 제조방법 | |
EP0822267B1 (fr) | Tôle en acier galvanisée et procédé de fabrication | |
EP0996750B1 (fr) | Procede de fabrication de t les d'acier laminee a froid, presentant une resistance excellente au vieillissement naturel et une excellente aptitude a la formation de panneaux | |
EP0632141B1 (fr) | TÔle en acier traitée superficiellement et méthode pour sa fabrication | |
EP4215294A1 (fr) | Élément formé à chaud à la presse, tôle d'acier pour formage à chaud à la presse et leurs procédés de production | |
CN114761602B (zh) | 加工性和耐蚀性优异的铝基合金镀覆钢板及其制造方法 | |
JP3382697B2 (ja) | 合金化溶融亜鉛めっき鋼板の製造方法 | |
JP3613129B2 (ja) | 成形性にすぐれた合金化溶融亜鉛めっき高張力鋼板及びその製造方法 | |
JP3309771B2 (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP4846550B2 (ja) | 合金化溶融亜鉛めっき用鋼板及び合金化溶融亜鉛めっき鋼板 | |
JP3016122B2 (ja) | 塗装性に優れた合金化溶融亜鉛めっき鋼板とその製法 | |
JP7568115B2 (ja) | 熱間プレス部材、熱間プレス用鋼板、および熱間プレス部材の製造方法 | |
JP2620444B2 (ja) | 加工性に優れた高強度熱延鋼板およびその製造方法 | |
JP5092858B2 (ja) | 溶融亜鉛めっき用鋼板及び合金化溶融亜鉛めっき鋼板 | |
JPH0466647A (ja) | 密着性に優れたメッキ皮膜を有する深絞り用溶融亜鉛メッキ冷延鋼板及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19950306 |
|
17Q | First examination report despatched |
Effective date: 19960214 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69404338 Country of ref document: DE Date of ref document: 19970904 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980223 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980306 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19980310 Year of fee payment: 5 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: THYSSEN KRUPP STAHL AG Effective date: 19980408 |
|
26 | Opposition filed |
Opponent name: HOOGOVENS STAAL BV Effective date: 19980423 Opponent name: THYSSEN KRUPP STAHL AG Effective date: 19980408 |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19990201 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 990201 |