EP0613498A1 - Rezeptorderivate mit bindungsstellen für humane rhinoviren - Google Patents

Rezeptorderivate mit bindungsstellen für humane rhinoviren

Info

Publication number
EP0613498A1
EP0613498A1 EP93915793A EP93915793A EP0613498A1 EP 0613498 A1 EP0613498 A1 EP 0613498A1 EP 93915793 A EP93915793 A EP 93915793A EP 93915793 A EP93915793 A EP 93915793A EP 0613498 A1 EP0613498 A1 EP 0613498A1
Authority
EP
European Patent Office
Prior art keywords
gly
ser
leu
asp
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93915793A
Other languages
English (en)
French (fr)
Inventor
Franz Hofer
Heinrich Kowalski
Martin Gruenberger
Herwig Machat
Manfred Huettinger
Donscho Kerjaschki
Ernst Kuechler
Dieter Blaas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Original Assignee
Boehringer Ingelheim International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4222385A external-priority patent/DE4222385A1/de
Priority claimed from DE19924227892 external-priority patent/DE4227892A1/de
Priority claimed from DE19934305063 external-priority patent/DE4305063A1/de
Application filed by Boehringer Ingelheim International GmbH filed Critical Boehringer Ingelheim International GmbH
Publication of EP0613498A1 publication Critical patent/EP0613498A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention describes receptor derivatives with binding sites for human rhinoviruses of the "small rhinovirus receptor group", their use and DNA coding for the receptor derivatives.
  • Human rhinoviruses represent a large genus within the Picoravirus family and include about 115 different serotypes (Melnick, J.L. (1980) Prog. Med. Virol. 26, 214-232). These RNA viruses affect the respiratory tract of humans and cause acute infections which lead to colds.
  • the human rhinoviruses can be divided into two groups if the competition criteria for binding sites on the surface of human cell culture cells, such as e.g. HeLa cells. Competition experiments show that - with one exception (serotype 87) - there are two different receptors on the cell surface. So far, 91 serotypes of the "large rhinovirus receptor group” and 10 serotypes of the "small rhinovirus receptor group” have been assigned (Abraham and Colonno RJ (1984) J. Virol. 5] _, 340-345; Uncapher et al. (1991) Virology 180, 814-817).
  • the "large rhinovirus receptor group” receptor was purified and identified as ICAM-1, a protein belonging to the immunoglobulin superfamily that functions as a cell adhesion molecule (Tomassini et al. (1989) Proc. Natl. Acad. Sci. USA 86, 4907 -4911; Staunton et al. (1989) Cell 56, 849-853; Greve et al. (1989) Cell 56, 839- 847).
  • ICAM-1 was the receptor for the majority of rhinoviruses are (Greve et al. (1989) loc.
  • the receptor binding site of human rhinovirus serotype 14, a member of the "large rhinovirus receptor group”, is located in a so-called “canyon", a deepening of the virus surface (Rossmann et al. (1985) Nature 317, 145-153).
  • the amino acids in this "canyon” are relatively well preserved, while the surrounding amino acids are variable and represent binding sites for neutralizing antibodies. According to this "Canyon hypothesis", viruses can accept mutations in the hypervariable antibody binding sites and thus escape the natural immune response. In this way, a constant receptor binding site is retained which is not accessible to antibodies (Rossmann and Palmen ⁇ berg (1988) Virology 164, 373-382).
  • the receptor of the "small rhinovirus receptor group” mediates the uptake of about 10 serotypes of the human rhinoviruses in the corresponding host cells.
  • This membrane-bound receptor was isolated by various purification steps, the binding activity in the different fractions being detected by means of a filter binding assay (Mischak et al. (1988) J. Gen. Virol., 69, 2653-2656).
  • the apparent molecular weight of the native receptor in the presence of nonionic detergents corresponds to approximately 450 kD, that of the denatured form approximately 120 kD, although a number of other forms were also found (Mischak (1988) loc. Cit.).
  • the natural receptor is for inhibiting the uptake of rhinoviruses of the "small rhinovirus receptor group" due to the low solubility of this membrane protein in polar, e.g. aqueous solution systems such as aqueous buffer solutions, less suitable.
  • the identity of the receptors of the LDL receptor family with the receptors of the rhinoviruses of the "small rhinovirus receptor group” now surprisingly allows poly- To provide peptides, in particular soluble polypeptides, which have at least one binding site for rhinoviruses of the "small rhinovirus receptor group”.
  • a functional derivative is accordingly a component with the biological activity which essentially corresponds to the biological activity of the native receptor of the "small rhinovirus receptor group”. This biological activity relates to the binding capacity of the receptor for rhinoviruses of the "small rhinovirus receptor group”.
  • the term “functional derivatives” is intended to include “variants” and “chemical derivatives”.
  • the term derivative refers to any polypeptide which, measured on the native receptor protein, is a reduced form and has at least one binding site for rhinoviruses of the "small rhinovirus receptor group”.
  • a “variant” comprises the molecules which are essentially derived in function and structure from the native receptor molecule, such as allelic forms. Accordingly, the term “variant” contains molecules which can bind rhinoviruses of the "small rhinovirus receptor group", but e.g. have an altered amino acid sequence.
  • a “chemical derivative” includes additional chemical groups that are not normally part of this molecule. These groups can improve molecular solubility, absorption, biological half-life, etc., or alternatively reduce toxicity or undesirable side effects. Groups that mediate such effects are known (Remington's Pharmaceutical Sciences (1980)).
  • the biological activity of the receptor derivatives according to the invention or the chemical derivatives obtained after modification can be checked using methods known from the prior art, for example using the method described by Mischak et al. described filter binding assay (Mischak et al. (1988) J. Gen. Virol. 69, 2653-2656 and Mischak et al. (1988) Virology 163. 19-25):
  • the polypeptide can be applied to a suitable membrane, for example nitrocellulose.
  • the mixture is then saturated with a detergent mixture.
  • the membrane pretreated in this way is then incubated to check the specific binding with labeled rhinovirus, for example with HRV2 labeled with ⁇ S-methionine. After washing and drying the membrane, a specific binding can then be made visible using autoradiography.
  • receptor derivatives which are in the form of extracellular, soluble polypeptides and are removed from the receptor-carrying cells, for example, into the medium. are given. These receptor derivatives are extremely suitable for inhibiting the binding of rhinoviruses to their receptors. They can thus be used for the therapeutic or prophylactic treatment of the human body or for the production of pharmaceutical preparations. In particular, they can be used as an antiviral, preferably antirhinoviral, agent.
  • the phenomenon of the delivery of a soluble receptor derivative has been described for many receptor proteins, for example for the interleukin-4 and interleukin-7 receptor (Mosley et al. (1989) Cell 59, 335-348; Goodwin et al. (1990) Cell. 60, 941-951).
  • soluble receptor derivatives can also be formed by enzymatic, in particular proteolytic or chemical, cleavage.
  • B. receptor-carrying cell lines can be used, which are implemented with enzymes such as papain, trypsin, etc.
  • the amino acid sequence of the receptor molecule is known, the person skilled in the art can of course selectively produce extracellular derivatives by selecting suitable proteases.
  • the binding capacity of such derivatives can be checked with the filter binding assay described above, so that in this way specifically reduced receptor derivatives which can bind rhinoviruses of the "small rhinovirus receptor group" are produced.
  • Another aspect of this invention is the formation of soluble derivatives by enzymatic or chemical cleavage of native receptor molecules.
  • a native receptor protein for example by reaction with proteases or by chemical cleavage (as described above) the native receptor protein can be cleaved and the reduced, rhinovirus-binding region e.g. can be identified and isolated by the filter binding assay.
  • Suitable proteases can be derived from the respective amino acid sequence of the receptor protein.
  • cyanogen bromide or splitting of the receptor protein by reductive treatment e.g. with dithiothreitol.
  • the present invention includes the following aspects:
  • the LDL family of receptors is formed from three structurally related cell surface receptors, which manage the endocytosis of lipoproteins and other plasma proteins (Brown et al. (1991) Curr. Opin. Lipidology 2, 65-72).
  • the receptors have the following common features: cysteine-rich repeats, which are responsible for ligand binding, cysteine-rich repeats of the EGF ("epidermal growth factor") type, YWTD repeats, a single region spanning the membrane and at least an NPXY internalization signal (Willnow et al. (1992) J. Biol. Chem. 267, 26172-21180).
  • All members of this receptor family can thus be used for the formation of functional derivatives with binding properties for rhinoviruses of the "small rhinovirus receptor group".
  • the path taken in Example 3 can be followed for the isolation of soluble LDL receptor derivatives released into the medium.
  • the purification of a binding protein released into the cell culture supernatant is described here.
  • the receptor derivative is an LDL receptor derivative (Example 4).
  • the receptor derivative is purified here by means of ion exchange chromatography (anionic), affinity chromatography (lens culinaris lectin and jacalin agarose) and ammonium sulfate precipitation. Binding activity was checked using the filter binding assay (Mischak et al. (1988) 163, 19-25). This production method can also be applied to the other two proteins of the LDL receptor family.
  • the isolation of the native receptor proteins is known and has been described by Yamamoto et al. (1984) Cell 39, 27-38; Goldstein et al. (1985) Annu. Rev. Cell Biol. 1, 1-39; Mischak et al. (1988) Virology 163, 19-25; Kowal et al. (1989) Proc. Natl. Acad. Be. USA 86, 5810-5814 and Willnow et al. (1992) loc. cit.).
  • the native proteins can then be converted into the functional, soluble ones by means of enzymatic and chemical cleavages Derivatives are transferred. Since the amino acid sequence of the LDL receptor (FIG. 1), the 0C2MR / LRP (FIG. 2) and at least partially for the gp330 (FIG. 3) are known, proteolytically active enzymes or chemicals can be specifically selected, in particular to to release the respective extracellular receptor region.
  • the present invention therefore also relates to polypeptides which are derived from the amino acid sequences of the LDL receptor, o MR / LRP and gp330 and, in particular in their soluble form, are capable of rhinoviruses of the "small rhino virus" Receptor group ".
  • These polypeptides are preferably derived from the amino acid sequences which correspond to the human proteins of the LDL receptor family, although, as set out in Examples 1 and 2, corresponding receptors from mammals and amphibians are also suitable.
  • Receptor derivatives can be used in the form in which they are released from eukaryotic cells into the cell supernatant.
  • the receptor derivatives of the present invention can, however, also correspond to the membrane-bound members of the LDL receptor family in which the part of the protein which is responsible for the binding of the protein to the membrane is missing or has lost its function.
  • Receptor derivatives which consist essentially of domains 1, 2 and 3 of the receptor protein, 1 and 2 or only of domain 1 according to FIG. 4 are particularly preferred.
  • Domain 1 then comprises the N-terminal, cysteine-rich receptor part which binds the various ligands
  • domain 2 comprises a region with high homology to the EGF precursor protein
  • domain 3 comprises a relatively short, O-glycosylated peptide region
  • domain 4 the transmembrane region
  • domain 5 the cytoplasmic part of the receptor molecule.
  • Polypeptides consisting essentially of domains 1, 1 and 2 as well as 1, 2 and 3 can be obtained from the culture supernatant of eukaryotic cells (Example 3) or by recombinant DNA techniques known per se, such as, for example by Davis et al. (1987) Nature 326, 760-765 for the LDL receptor.
  • the human LDL receptor is the preferred starting compound.
  • the invention comprises functional receptor derivatives which essentially contain amino acids 1 to 750 (domains 1 and 2) and 1-322 (domain 1) ( Fig. 1) include.
  • the C-terminus of these polypeptides can be shortened to the extent that the binding capacity for rhinoviruses of the "small rhinovirus receptor group" is retained.
  • the preferred receptor derivatives thus essentially have the following amino acid sequences:
  • polypeptides according to the invention can be present as dimers, trimers, tetramers or multimers.
  • the methods for the production of the receptor derivatives, enzymatic or chemical treatment of the native receptor molecules, isolation of the derivatives released by cells and methods for the recombinant production are also part of the invention.
  • Another aspect of the invention is DNA molecules which code for the polypeptides according to the invention.
  • the starting molecules are accessible to the person skilled in the art by known methods.
  • the cloning of the corresponding cDNA has been described for all three members (Yamamoto et al. (1984) loc. Cit .; Goldstein et al. (1985) loc. Cit .; Pietromonaco et al. (1990) Proc. Natl. Acad. Sei USA 87, 1811-1815; Herz et al. (1988) loc. Cit.).
  • the DNA molecules with knowledge of the amino acid sequence can also be prepared synthetically (for example according to Edge et al. (1981) Nature 292, 756-762) or by means of the PCR method (Sambrook et al. (1 89) "A Laboratory Manual ", Cold Spring Harbor Laboratory Press).
  • the invention also relates to DNA sequences that include modifications that are easily obtained by mutation, deletions, rearrangement, or addition by methods known to those skilled in the art.
  • Each DNA sequence which codes for a polypeptide according to the invention and the correspondingly degenerate forms of the DNA sequences are included.
  • the invention includes DNA vectors that contain the DNA sequences described above.
  • these can be vectors in which the DNA molecules described are functionally linked to a control sequence which allows the expression of the corresponding polypeptides.
  • These are preferably plasmids which can be replicated and / or expressed in prokaryotes such as E. coli and or in eukaryotic systems such as yeasts or mammalian cell lines.
  • the invention also includes appropriately transformed host organisms.
  • DNA sequences according to the invention can be expressed as fusion polypeptides or as intact, native polypeptides.
  • Fusion proteins can advantageously be produced in large quantities. They are generally more stable than the native polypeptides and are easy to clean.
  • the expression of these fusion proteins can be controlled by normal E. coli DNA sequences.
  • the DNA sequences according to the invention can be cloned as lacZ fusion genes and brought to expression.
  • a large number of vector systems are available to the person skilled in the art, for example the pUR vector series (Rüther, U. and Müller-Hill, B. (1983), EMBO J. 2, 1791).
  • the bacteriophage promoter IpR in the form, for example, of the vectors pEX-1 to -3 can also be used for the expression of large amounts of Cro- ⁇ -galactosidase fusion protein (Stanley, KK and Luzio, JP (1984) EMBO J. 3, 1429).
  • the tac promoter inducible with IPTG can also be used in an analogous manner, for example in the form of the pROK vector series (CLONTECH Laboratories).
  • the prerequisite for the production of intact, native polypeptides by E. coli is the use of a strong, regulatable promoter and an effective ribosome binding site.
  • the promoters here can be, for example, the temperature-sensitive bacteriophage ⁇ pL promoter, the tac promoter inducible with IPTG or the T7 promoter.
  • plasmids with suitable promoter structures with efficient ribosome binding sites have been described, such as, for example, pKC30 ( ⁇ pL; Shimatake and Rosen ⁇ berg (1981) Nature 292, 128, pKK173-3 (tac, Amann and Brosius (1985) Gene 40, 183) or pET-3 (T7 promoter (Studier and Moffat (1986) J. Mol Biol 189, 113).
  • E. coli strains which are specifically tailored to the respective expression vector are known to the person skilled in the art (Sambrook et al. (1989), loc. Cit.)
  • yeast for example, the plasmid YRp7 (Stinchcomb et al. Natur 282, 39 (1979); Kingsman et al, Gene 7, 141 (1979); Tschumper et al, Gene K), 157
  • the plasmid YRp7 contains the TRPl gene, which is a selection marker for a Mutant yeast (eg ATCC No. 44076) which is unable to grow in trypthophane-free medium.
  • the presence of the TRP1 defect as a characteristic of the yeast strain used then represents an effective tool for detecting transformation if cultivation is carried out without tryptophan.
  • the situation is similar for the plasmid YEpl3, which contains the yeast gene LEU 2, which can be used to supplement a LEU-2 minus mutant.
  • yeast hybrid vectors preferably also contain a start of replication and a marker gene for a bacterial host, in particular E. coli, so that the construction and cloning of the hybrid vectors and their precursors can take place in a bacterial host.
  • Further expression control sequences suitable for expression in yeast are, for example, those of the PHO3 or PHO5 gene.
  • yeast vectors include the 5 'flanking region of the genes of ADH I (Ammerer, Methods of Enzymology 1 _ 192-201 (1983)), 3-phosphoglycerate kinase (Hitzeman et al, J. Biol. Chem.
  • glycolytic enzymes such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose -6-phosphate isomerase, phosphoglucose isomerase and glucokinase.
  • the termination sequences associated with these genes can also be inserted into the expression vector at the 3 'end of the sequence to be expressed, in order to enable polyadenylation and termination of the mRNA.
  • promoters are the promoter regions of the alcohol dehydrogenase-2, isocytochrome C, acid phosphatase, and enzyme genes responsible for the metabolism of maltose and gralactose.
  • Promoters that are regulated by the yeast mating type locus for example promoters of the genes BARI, MF ⁇ l, STE2, STE3, STE5 can be used in temperature-regulated systems by using temperature-dependent sir mutations. (Rhine Ph.D. Thesis, University of Oregon, Eugene, Oregon (1979), Herskowitz and Oshima, The Molecular Biology of the Yeast Saccharomyces, part I, 181-209 (1981), Cold Spring Harbor Labo ⁇ ratory).
  • any vector which contains a yeast-compatible promoter, original replication and termination sequences is suitable.
  • hybrid vectors containing sequences homologous to the yeast 2 ⁇ plasmid DNA can also be used. be applied.
  • Such hybrid vectors are incorporated by recombination already existing 2 ⁇ plasmids or replicate autonomously.
  • yeasts In addition to yeasts, other eukaryotic systems can of course also be used to express the polypeptides according to the invention. Since post-translational modifications such as disulfide bridge formation, glycosylation, phosphorylation and / or oligomerization are often necessary for the expression of biologically active eukaryotic proteins by means of recombinant DNA, the expression of the DNA according to the invention in mammalian cell lines but also in insect cell lines is also suitable.
  • the functional requirements of the corresponding vector systems include, in particular, suitable promoter, termination and polyadenylation signals, and elements which enable replication and selection in mammalian cell lines.
  • Vectors which can be replicated both in mammalian cells and in prokaryotes such as E. coli are particularly suitable for the expression of the DNA molecules according to the invention.
  • Vectors derived from viral systems such as SV40, Epstein-Barr virus, etc. are, for example, pTK2, pSV2-dhfv, pRSV-neo, pKO-neo, pHyg, p205, pHEBo, etc. (Sambrook et al. 1989, loc. cit.).
  • CHO cells After transformation into suitable host cells, e.g. CHO cells can be obtained with the aid of selectable markers (thymidine kinase, dehydrofolate reductase, etc.) and transformed cells and the corresponding polypeptides can be isolated after expression.
  • suitable host cells e.g. CHO cells
  • selectable markers thymidine kinase, dehydrofolate reductase, etc.
  • transformed cells and the corresponding polypeptides can be isolated after expression.
  • the host cells suitable for the vectors are known, as are the techniques for transformation (microinjection, electroporation, calcium phosphate method, etc.) (e.g. Sambrook et al., 1989).
  • the selected vector is cut with a restriction endonuclease and, optionally after modification of the linearized vector thus formed, an expression control sequence provided with corresponding restriction ends is introduced.
  • the expression control sequence contains at the 3 'end (in the direction of translation) the recognition sequence of a restriction endonuclease, so that the vector already containing the expression control sequence can be digested with said restriction enzyme and the DNA molecule according to the invention provided with suitable ends can be used.
  • the invention comprises methods for producing the vectors described, in particular expression vectors.
  • These vectors are characterized in that in a vector DNA cut with restriction endonucleases which contains the expression control sequences described by way of example, a DNA provided with corresponding ends which is suitable for a functionally new derivative of the receptor of the "small rhinovirus receptor group" encoded, so that the expression control sequences regulate the expression of the inserted DNA.
  • polypeptides according to the invention which are obtained by expression of recombinant DNA or from the native receptor molecule, can of course also be derivatized by chemical or enzymatic methods.
  • the expression of the LDL receptor is explained in Example 6.
  • expression takes place in a eukaryotic system.
  • HRV2 human rhinovirus serotype 2
  • the polypeptides according to the invention can be obtained, for example, by deleting DNA sequences in the expression plasmid.
  • the method of Davis et al. (1987) Nature 326, 760-765 which describes the deletion of the entire EGF domain.
  • soluble forms of the receptor can be formed by introducing a stop codon in front of the cytoplasmic or transmembrane domain (Yokade et al. (1992) J. Cell. Biol U7, 39).
  • the invention furthermore comprises hybrid cell lines which specifically secrete monoclonal antibodies against one of the polypeptides or functional derivatives according to the invention. These monoclonal antibodies are able to neutralize the action of the polypeptides in whole or in part or to bind specifically to one of the said polypeptides. The monoclonal antibodies can then be used for the qualitative and / or quantitative determination or for the purification of the polypeptides according to the invention.
  • the invention naturally also includes test systems which contain the monoclonal antibodies mentioned.
  • the method for producing the monoclonal antibodies is characterized in that host animals are immunized with one of the polypeptides and B-lymphocytes of these host animals are fused with myeloma cells become; the hybrid cells which secrete the corresponding monoclonal antibodies can then be subcloned and cultivated (Harlow, G. and Lane, D .: “Antibodies. A Laboratory Manual” (1988) Cold Spring Harbor Laboratory Press, USA).
  • physiological ligands of the LDL receptor family for the production of medicaments for inhibiting the binding of rhinoviruses of the "small rhinovirus receptor group".
  • the physiological ligands include the substances that are bound and / or internalized by the LDL receptor family.
  • LDL low density lipoprotein
  • Other natural ligands of the LDL receptor family are e.g. by Willnow et al. (1992) J. Biol. Chem. 267, 26172-26180.
  • the 39 kDa receptor-associated protein can reduce the yield of rhinoviruses of the "small rhinovirus receptor group" (Example 7).
  • RAP is known per se. Its isolation and binding to members of the LDL receptor family is described, for example, by Kounnas et al. (1992) J. Biol. Chem. 267, 21162-21166.
  • the native receptors of the LDL receptor family, the LDL receptor, ⁇ 2MR LRP and gp330, such as the receptor derivatives according to the invention, can also be used for inhibition.
  • rhinovirus material of the "small rhinovirus receptor group” can also be used to inhibit the binding of physiological LDL ligands.
  • This rhinovirus material can e.g. be derived from human rhinovirus serotype 2 (HRV2).
  • HRV2 human rhinovirus serotype 2
  • Inactivated rhinovirus, rhinovirus covering material or rhinovirus peptides with binding activity to a receptor of the LDL receptor family can preferably be used as rhinovirus material.
  • Rhinoviruses of the "small rhinovirus receptor group” are available from the "American Type Culture Collection”.
  • Corresponding virus material can be provided using known methods (e.g. Putnak and Phillips (1981) Microbiol Reviews 45, 287-315 and Palmenberg (1990) Annu. Rev. Microbiol 44, 603-623 and the literature cited therein).
  • the invention naturally also includes the pharmaceutically tolerable salts of the polypeptides according to the invention and the pharmaceutically tolerable adducts and covalent compounds between the polypeptides and an inert carrier for prophy- lactic and / or therapeutic treatment of the human or animal body.
  • the adducts or covalent compounds can be formed, for example, with polyethylene glycol.
  • the polypeptides according to the invention and the native receptor proteins, the physiological ligands of the LDL receptor family, such as, for example, LDL and the RAP, can be used for the production of pharmaceutical preparations for the therapeutic and / or prophylactic treatment of the human or animal body.
  • polypeptides can serve as competitive substances for inhibiting the binding of viruses, in particular rhinoviruses, to the native receptor and / or physiological LDL ligands.
  • viruses in particular rhinoviruses
  • the polypeptides and natural ligands, in particular the extracellular, soluble form of the receptor, can be used above all as antiviral, preferably antirhinoviral, agents.
  • the substances described can e.g. are administered nasally, providing a quantity which is sufficient for suppression or competitive interaction or for inhibition of the rhinovirus binding to the natural receptor.
  • the dose should generally be between 0.01 pg / kg patient weight and 1 mg / kg patient weight, although larger or smaller amounts can also be used.
  • the rhinovirus material which can be used to inhibit the binding of physiological LDL ligands can be used in suitable pharmaceutical compositions in the concentration ranges given for the polypeptides.
  • the receptor derivatives according to the invention and their pharmacologically acceptable salts can be converted in a known manner into the customary formulations - such as tablets, tablets, pills, granules, aerosols, syrups, emulsions, suspensions and solutions, using inert pharmaceutically suitable excipients or solvents.
  • the proportion of the pharmaceutically active compound (s) should in each case be in the range from 0.5 to 90% by weight of the total composition, i.e. in amounts sufficient to reach the dosage range indicated above.
  • the formulations are prepared, for example, by stretching the active ingredients with solvents and / or carriers, if appropriate using emulsifiers and / or dispersants, where, for example, if water is used as the diluent, organic solvents may optionally be used as solubilizers or auxiliary solvents can be used.
  • auxiliaries include water, pharmaceutically acceptable organic solvents such as paraffins, oils of vegetable origin, monofunctional or polyfunctional alcohols, carriers, such as natural rock powders, synthetic rock powders, sugar, emulsifiers and lubricants.
  • the application is carried out in the usual way, preferably nasally.
  • the tablets can of course also contain additives, such as e.g. Contain sodium citrate, calcium carbonate and dicalcium phosphate together with various additives such as starch, preferably potato starch, gelatin and the like.
  • Lubricants such as magnesium stearate, sodium lauryl sulfate and talc can also be used for tableting.
  • the active ingredients can be mixed with various flavor enhancers or colorants.
  • the invention also includes methods for isolating substances which inhibit the binding of ligands to the LDL receptor.
  • these methods include incubating the LDL receptor protein or an LDL receptor derivative with a potentially inhibitory substance. This procedure can be done in the presence of labeled rhinovirus material. The extent of the binding of labeled rhinovirus material then provides information about the effect of the tested substance. The provision of rhinovirus material with different binding activities is shown in Example 9.
  • the invention comprises methods for the determination of LDL receptors, in that a substance derived from virus material of the "small rhinovirus receptor group” with binding activity to the LDL receptor is labeled, incubated with a corresponding sample and the extent of the binding is detected.
  • Another method is used to deliver therapeutically active substances, in which virus material of the "small rhinovirus receptor group” with binding activity to the LDL receptor is coupled with the therapeutic substance and the said conjugate is added to the LDL receptor-carrying cell material and by binding and internalization the therapeutically active substance is introduced into the cell.
  • Fig. 1 Amino acid sequence of the "Low Density Lipoprotein Receptors" (LDL, Yamamoto et al (1984) Cell 31, 27-38).
  • Fig. 2 Amino acid sequence of the "Low Density Lipoprotein Receptor Related Protein” (LRP, Herz et al. (1988) EMBO J. 7, 4119-4127).
  • Figure 3 Part of the amino acid sequence of the "Heymann Nephritis Antigen gp330 (Pietromonaco et al (1990) Proc. Natl. Acad. Sci. U.S.A 87, 1811-1815).
  • Fig. 4 Schematic representation of a receptor of the LDL receptor family (according to Yamamoto et al. (Loc. Cit.).
  • the receptor comprises five domains: Domain 1 comprises the N-terminal, cysteine-rich receptor part, which is presumably responsible for ligand binding Domain 2 with homology to EGF-
  • Precursor protein joins domain 3, some of whose amino acids are O-glycosylated. Domain 4 forms the membrane-bound part of the receptor, domain 5 the cytoplasmic part.
  • Figure 6 Binding of [ 35 S] -labeled HRV2 to c ⁇ MR / LRP and gp330.
  • Membrane extracts were separated electrophoretically and transferred to nitrocellulose. Detection was performed with [ 3 ⁇ S] -labeled HRV2 (lanes 1 and 2) with ⁇ ⁇ MR / LRP antiserum (lane 3 or with gp330 antiserum (lane 4).
  • Fig. 7 Gel electrophoretic analysis of the purified HRV2 binding protein.
  • the purified HRV2 binding protein was electrophoresed in a 7.5% SDS gel under reducing (lane 1) and under non-reducing conditions (lane 2) and visualized by silver staining. A molecular weight of approx. 120 kDa, a molecular weight of 160 kDa under reducing conditions.
  • b) Ligand blots of a gel as described under a (lane 2), developed with [ 35 S] -HRV2 (lane 1) according to Mischak et al. (1988) Virology 163, 19-25.
  • Lane 2 shows the development with an antibody specific for the human LDL receptor (IgG-C7, Beisiegel et al. (1982) J. Biol. Chem. 257, 13150-13156).
  • Buffer A dest. Water / 0.06% TFA; Buffer B: 80% acetonitrile 0.052% TFA; Flow rate: 0.5 ml / min; Gradient: 2% B to 37.5% B from 0 to 60 min,
  • Fig. 10 Rechromatography of fraction 29. The experimental conditions are listed in the legend to Fig. 9.
  • Fig. 11 Rechromatography of fraction 38. The experimental conditions are listed in the legend to Fig. 9.
  • Fig. 12 Sequences of the peptides analyzed
  • Fig. 15 Reduction of virus yield by RAP, given in p.f.u./ml (infectious particles per milliliter).
  • Fig. 16 Inhibition of HRV2 infection of HeLa cells by human LDL.
  • Fig. 17 Sequence comparison for determining the positions in or on the edge of the canyon, which are conserved in the rhinoviruses of the small group.
  • Fig. 18 Binding behavior of HRV2j i4gp : G and ⁇ HRV23 i82R: T on HeLa cells ⁇ HRV2H48P-G
  • the cells were then washed twice with PBS, 10000 cpm [- ⁇ Sj- labeled HRV2 in 0.5 ml PBS containing 2% BSA and 30 mM MgCl2, added and incubated for 60 min at 34 ° C (Mischak et al. (1988) Virology 163, 19-25). After removal of HRV2 bound to the surface with 10 ⁇ g / ml trypsin, 25 mM EDTA in PBS, the cells were washed again and then the bound radioactivity was determined. The data shown are mean values from four experiments each. The radioactivity values of the cell pellets from normal fibroblasts (normally around 1900 cpm) grown without steroids minus background radioactivity were set equal to 100%.
  • the background activity was determined either with HRV2 which had been heated to 56 ° C. for 30 min (Mischak et al. (1988) loc. Cit.) Or by incubation with a 1000-fold excess of unlabelled HRV2. It was between 40 and 50 cpm for both methods.
  • the data obtained from four individual experiments are shown in FIG. 5a.
  • Normal fibroblast cells were grown as described under a) (without the addition of cholesterol and 25-hydroxycholesterol). The cells were cultured with approximately 1.4 x 10 ⁇ cpm 125 I-labeled LDL (250 cpm / ng; Huettinger et al. (1992) J. Biol Chem., 267, 18551-7) with (+) and without (- ) addition of 100 Pfu ( "plaque forming units, etc., equivalent to about 2400 to 24,000 virus particles; Abraham & Colonno (1984) J. Virol 5, 340-345) per cell of purified unlabeled HRV2 or about 10,000..
  • Plasma membranes were isolated from mouse LM fibroblasts and renal epithelial microvilli (Malathi et al. (1979) Biochem. Biophys. Acta, 554, 259-263; Fomistal et al. (1991) Infect. Immun. 59, 2880-2884 and Kerjaschki and Farquhar (1982) Proc. Natl. Acad. Sci. USA 79, 5557-5561). Proteins from the membrane extracts were separated using an SDS gradient polyacrylamide electrophoresis and transferred to nitrocellulose.
  • Example 3 Purification of a binding protein for the rhinoviruses of the "small rhino virus receptor group"
  • HeLa cell culture supernatant (Computer Cell Culture Center, Mons, Belgium) was concentrated to 20 l by means of ultrafiltration and dialyzed against 250 l of distilled water (with 0.02% NaN 3 ). The buffer concentration was then increased to 20 mM N-methylpiperazine, pH 4.5, adjusted, centrifuged at 4000 rpm in the Beckman J6B centrifuge, filtered through a 0.8 mm prefilter and the filtrate loaded onto an anion exchange column (0.5 1 Makroprep 50 Q; biorad). Bound material was eluted with 20 mM N-methylpiperazine, pH 4.5, 0.5 M NaCl.
  • the eluate was adjusted to a pH of 7.2 with 1 M Tris-HC1, pH 8.0 and loaded onto a lens culinaris lectin column (100 ml; Pharmacia); bound protein was eluted with 0.5 M ⁇ - [D] methylglucose in PBS, the eluted protein was precipitated at 50% saturation with ammonium sulfate, pH 7.2, the precipitate with 50% saturated ammonium sulfate solution, pH 7.2 , washed and taken up in 200 ml of PBS.
  • the protein solution was loaded onto a jacalin agarose column (40 ml; Vector-Labs) and eluted with 120 ml of 100 mM ⁇ - [D] methyl-galactopyranoside in PBS.
  • the eluted protein was precipitated with ammonium sulfate as described above, washed, taken up in 20 mM methylpiperazine, pH 4.5 and desalted using a PDIO column (Pharmacia).
  • the desalted material was loaded in 5 1 ml aliquots onto a Mono Q anion exchange column (HR5 / 5; Pharmacia) and eluted with a gradient of 0 to 0.5 M NaCl, 20 mM methylpiperazine, pH 4.5.
  • the gel pieces were decolorized in 0.25 M Tris-HCl, 0.25 M EDTA, pH 9.0 and the protein was electrophoresed in 50 mM N-ethylmorpholine acetate, pH 8.5. An aliquot was again checked for activity using the filter binding assay. The protein was then gel electrophoresed under reducing conditions, eluted and lyophilized.
  • Example 4 Tryptic digestion and sequence analysis of the binding protein for the rhinoviruses of the "small rhinovirus receptor group"
  • the purified and lyophilized protein (Example 3) was taken up in 30 ml of 6 M guanidine-HCl, 0.4 M ammonium hydrogen carbonate, pH 7.6 and mixed with 3 ⁇ l of 45 mM dithiothreitol and incubated at 56 ° C. for 15 min. After cooling to room temperature, 3 ml of 100 mM iodoacetamide were added and incubated for a further 15 minutes at room temperature.
  • Fractions 20 and 33 were sequenced directly with the aid of a gas phase sequencer, while fractions 23 to 27 and fractions 29 and 38 were re-chromatographed under the conditions specified in the figures (C18 "reversed-phase” column, Merck; FIG. 9 , 10 and 11).
  • the peptides designated in the figures with "A”, “D” and “F” or the fractions 33 and 20 were selected for sequencing in the gas phase sequencer.
  • the result is summarized in Fig. 12.
  • the sequences obtained were compared with the protein sequences available in the "SwissProt" database. The comparison showed complete agreement with corresponding peptide sequences of the human LDL receptor:
  • the following table shows the sequences of the isolated tryptic peptides and the position in the sequence of the human LDL receptor (FIG. 1).
  • fraction 33 gave two amino acids per degradation step. On the basis of the LDL sequence and the ratio of the amounts of amino acids present in each degradation step from approximately 40% to 60%, fraction 33 could be identified as a mixture of two peptides. The sequences of these two peptides also correspond to sequences of the human LDL receptor.
  • Example 5 Expression of the human LDL receptor in COS-7 cells
  • the plasmid pTZl which contains the entire coding sequence of the human LDL receptor from the plasmid pLDLR2 (Yamamoto et al., Loc. Cit.) was converted into competent E. coli 5K using known methods (Sambrook et al., Loc. Cit.) introduced and amplified. After extraction and purification of the plasmid DNA, it was digested with the restriction enzyme Hind TU and the fragments separated in a 0.8% agarose gel. After elution of the fragment coding for the LDL receptor, it was precipitated with ethanol, taken up in TE buffer and partially filled in with Klenow fragment using dATP and dGTP.
  • the eukaryotic expression vector pSVL (Pharmacia) was propagated in E. coli 5K, purified and cut with Xbal. After partial filling with dCTP and dTTP, phenol-chloroform extraction and ethanol precipitation, the plasmid was dephosphorylated with alkaline phosphatase.
  • the cells were sown in 6-well dishes and cultivated for a further 24 hours in RPMI / 10% HiFCS and 12 ⁇ g / ml cholesterol and 2 ⁇ g / ml 25-hydroxycholesterol.
  • the cells were washed with PBS / 2% BSA and then incubated for 1 hour at 34 ° C. with about 10000 cpm / well [ 35 S] -labeled HRV2 in PBS / 2% BSA. After washing several times, the cells were lysed in PBS / 2% SDS and the amount of bound [ 3 ⁇ S] -HRV2 was determined by counting in a liquid scintillation counter.
  • the addition of fetal calf serum, cholesterol and 25-hydroxycholesterol suppresses the endogenous LDL receptors (Davis et al, 1987, Nature 326, 760), so that only the LDL receptors expressed by transfection are detected in the subsequent binding test.
  • the amount of bound HRV2 is twice as high compared to untransfected control cells if the cells with the sense construct pSVL- LDLR + were transfected. Transfection with pSVL-LDLR- shows no difference in binding compared to control cells.
  • Example 6 Inhibition of [35s] -labeled rhinovirus serotype 2 (HRV2) by Jacalin
  • trace A or in the presence (trace B) of 0.1 mg / ml Jacalin (Vector Labs) with radioactively labeled rhinovirus (Mischak et al, 1988, loc. Cit.) incubated, washed, dried and exposed on X-ray film (Hofer et al, 1992, loc.cit.). As shown in FIG. 13, the binding of the virus to the LDL receptor is completely inhibited under the specified conditions.
  • FH cells (see Example 1) were seeded in 24-well plates (Nunc) in RPMI with 10% fetal calf serum and grown overnight to a cell density of about 5x10 ⁇ cells per well. The cells were washed once with PBS and treated with RPMI / 2% fetal calf serum / 30mM MgCl2. Human recombinant RAP was as described in Kunnas et al., Loc. cit. given and cleaned and added to the medium in concentrations of 0.5 ⁇ g / ml, 5 ⁇ g / ml, 10 ⁇ g / ml and 20 ⁇ g / ml and the cells incubated at 4 ° C. for 2 hours.
  • HRV2 was added in a moi of 100 to each test batch and incubated for a further 2 hours at 4 ° C.
  • the cells were then washed 3 times with PBS, treated with RPMI / 2% fetal calf serum / 30 mM MgCl2 and incubated at 34 ° C. overnight.
  • the next day the cells were broken up by freezing / thawing three times. Cell fragments removed by centrifugation at 100,000 g and the number of infectious virus particles in the supernatant determined using a plaque test (Neubauer et al, loc. Cit.). 15 shows that the yield of HRV2 decreases with increasing concentration of RAP and is reduced to approx. 5% of the comparison value without RAP at a RAP concentration of 20 ⁇ g ml.
  • Example 8 Inhibition of HRV2 infection of HeLa cells by human LDL
  • HeLa cells were seeded in 24-well plates (Nunc) in MEM with 10% fetal calf serum and grown overnight to a cell density of approximately 2x10 ⁇ cells per well. The cells were washed once with PBS and treated with RPMI / 2% fetal calf serum / 30mM MgCl2. Purified LDL (Huettinger et al, loc. Cit.) was added in concentrations of 0.1 mg / ml, 0.3 mg / ml, 0.5 mg / ml and 1 mg / ml and the cells at 34 ° for 30 min C incubated.
  • HRV2 or HRV14 (a virus from the large group of receptors, used as a control) were added in a m.o.i of 100 to each test batch and incubated at 34 ° C. for a further 45 min. The cells were then washed 3 times with PBS, mixed with RPMI / 2% fetal calf serum / 30 mM MgCl2 and incubated at 34 ° C. for 60 hours. The medium was aspirated and intact cells stained with crystal violet.
  • Fig. 16 shows that in the presence of LDL at a concentration of 1 mg / ml the infection of HeLa cells by HRV2 is prevented (all cells are intact). No effect was observed in the case of HRV14 (cells completely lysed).
  • 17 shows a sequence comparison for determining the positions in or at the edge of the canyon which are conserved in the rhinoviruses of the small group in contrast to the rhinoviruses in the large group. They include the basic residues at position 1081 (HRV2 numbering: Blaas et al. (1987) Proteins 2, 263-272) and 3182, Ile or Leu at position 3229 and the sequence Thr-Glu-Lys (TEK at position 1222- 1224).
  • HRV2 mutants were constructed: at position 1081 (1081K: E) and at 1222-1224 (replacement of TEK by the corresponding sequence derived from HRV14, HRV39, HRV89) in the VP1 protein and the mutants 3182R: T and 3229L: T in VP3.
  • Another mutant (1148P: G) was constructed analogously to HRV14 (1155P: G) (Colonno et al. (1988) Proc. Natl Acad. Sci. U.S.A. 85, 5449-5453).
  • Analysis of the three-dimensional structure of HRVIA - a serotype closely related to HRV2 - showed no signs of steric or electrostatic disturbances from the exchanged amino acid side groups.
  • all side groups are on the surface and accessible to the solvent, so it is quite possible that they are involved in the interaction with the receptor of the small group and that their change leads to a loss of binding capacity and infectivity.
  • Trp Met Gly A ⁇ p Asn Leu Tyr Trp Thr Asp Asp Gly Pro Lys Lys Thr 565 570 575

Description

REZEPTORDERIVATIVE MIT BINDUNGSSTELLEN FOR HUMANE RHINOVIREN
Die vorliegende Erfindung beschreibt Rezeptorderivate mit Bindungsstellen für humane Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe", ihre Verwendung sowie für die Rezeptorderivate kodierende DNA.
Humane Rhinoviren repräsentieren eine große Gattung innerhalb der Familie der Picor- naviren und schließen etwa 115 verschiedene Serotypen ein (Melnick, J. L. (1980) Prog. Med. Virol. 26, 214-232). Diese RNA-Viren befallen den Respirationstrakt des Men¬ schen und verursachen akute Infektionen, die zu Erkältungskrankheiten führen.
Die humanen Rhinoviren können in zwei Gruppen unterteilt werden, wenn als Kriterium der Zuordnung die Kompetition um Bindungsstellen an der Oberfläche humaner Zell¬ kultur-Zellen, wie z.B. HeLa-Zellen, herangezogen wird. Kompetitionsexperimente zeigen, daß - bis auf eine einzige Ausnahme (Serotyp 87) - zwei voneinander ver¬ schiedene Rezeptoren an der Zelloberfläche existieren. Bisher konnten 91 Serotypen der "großen Rhinovirus-Rezeptorgruppe" und 10 Serotypen der "kleinen Rhinovirus- Rezeptorgruppe" zugeordnet werden (Abraham und Colonno R.J. (1984) J. Virol. 5]_, 340-345; Uncapher et al. (1991) Virology 180, 814 - 817).
Der Rezeptor der "großen Rhinovirus-Rezeptorgruppe" wurde gereinigt und als ICAM- 1 identifiziert, einem zur Immunglobulinsuperfamilie gehörigen Protein, das als Zell- adhäsionsmolekül fungiert (Tomassini et al. (1989) Proc. Natl. Acad. Sei. USA 86, 4907-4911; Staunton et al. (1989) Cell 56, 849-853; Greve et al. (1989) Cell 56, 839- 847). Durch den Nachweis einer spezifischen Bindung des gereinigten ICAM-1 an das Virus und durch die Fähigkeit durch Gentransfer die Rhinovirus-Bindungsaktivität auf Zellen zu übertragen, die vor dem Transfer keine entsprechende Aktivität besaßen, konnte eindeutig nachgewiesen werden, daß ICAM-1 der Rezeptor für die Mehrzahl der Rhinoviren ist (Greve et al. (1989) loc. cit.; Staunton et al. (1989) loc. cit). Außerdem konnte gezeigt werden, daß monoklonale Antikörper gegen ICAM-1 die Bindung und Infektion von HeLa-Zellen durch Rhinoviren verhindern (Staunton et al. (1989), loc. cit.). Weiterhin können monoklonale Antikörper, die die Bindung von ICAM-1 zu Leu- kozyten via LFA-1 ("lymphocyte fünetion associated antigen-1") - einem anderen natür¬ lichen Liganden des ICAM-1 - inhibieren, auch die Rhinovirus-Bindung an den Rezeptor blockieren. Die LFA-1 und Rhinovirus-Bindungsstellen müssen also zumindest be¬ nachbart sein. Versuche mit Chimären und mutierten ICAM-1 -Molekülen zeigten zu- sätzlich, daß die Bindungsstelle für die Rhinovirus-ICAM-1 Wechselwirkung nicht mit der Bindungsstelle für LFA-1 zusammenfällt (Staunton et al. (1990) Cell 61, 243-254).
Die Rezeptor-Bindungsstelle des menschlichen Rhinovirus Serotyp 14, einem Vertreter der "großen Rhinovirus- Rezeptorgruppe", liegt in einem sogenannten "Canyon", einer Vertiefung der Virusoberfläche (Rossmann et al. (1985) Nature 317. 145-153). Dabei sind die Aminosäuren, die in diesem "Canyon" liegen, relativ stark konserviert, während die Aminosäuren in der Umgebung variabel sind und Bindungsstellen für neutralisierend wirkende Antikörper darstellen. Nach dieser "Canyon-Hypothese" können Viren Mutationen in den hypervariablen Antikörper-Bindungsstellen akzeptieren und so der natürlichen Immunantwort entgehen. Auf diese Weise bleibt eine konstante Rezeptor- Bindungsstelle erhalten, die für Antikörper nicht zugänglich ist (Rossmann und Palmen¬ berg (1988) Virology 164, 373-382).
Soweit bis heute bekannt, vermittelt der Rezeptor der "kleinen Rhinovirus-Rezeptor¬ gruppe" die Aufnahme von etwa 10 Serotypen der humanen Rhinoviren in die entspre¬ chenden Wirtszellen. Dieser membranständige Rezeptor wurde durch verschiedene Reinigungsschritte isoliert, wobei die Bindungsaktivität in den verschiedenen Fraktionen mittels eines Filterbindungs-Assays nachgewiesen wurde (Mischak et al. (1988) J. Gen. Virol., 69, 2653-2656). Das scheinbare Molekulargewicht des nativen Rezeptors in Gegenwart von nichtionischen Detergentien (mittels Gelchromatographie bestimmt) entspricht etwa 450 kD, das der denaturierten Form etwa 120 kD, wobei jedoch auch eine Reihe anderer Formen gefunden wurde (Mischak (1988) loc. cit.). Außerdem stellte sich heraus, daß ein aus dem Zellkulturüberstand von HeLa-Zellen isoliertes Protein die Fähigkeit besitzt, Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" zu binden (Hofer et al. (1992) J. gen. Virol. 73, 627 - 632).
Der natürliche Rezeptor ist zur Inhibierung der Aufnahme von Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" auf Grund der geringen Löslichkeit dieses Membranpro- teins in polaren, z.B. wäßrigen Lösungssystemen wie wäßrigen Pufferlösungen, weniger geeignet.
Überraschenderweise wurde nun gefunden, daß als Rezeptoren für Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" die Mitglieder der LDL ("low density lipopro- tein")-Rezeptorfamilie dienen.
Die Identität der Rezeptoren der LDL-Rezeptorfamilie mit den Rezeptoren der Rhino¬ viren der "kleinen Rhinovirus- Rezeptorgruppe" erlaubt nun überraschenderweise Poly- peptide, insbesondere lösliche Polypeptide, bereitzustellen, die mindestens eine Bin¬ dungsstelle für Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" besitzen.
Die erfindungsgemäßen Polypeptide selbst werden im folgenden als "funktioneile Deri- vate" der Rezeptorproteine bezeichnet. Ein fünktionelles Derivat ist demnach eine Komponente mit der biologischen Aktivität, die im wesentlichen der biologischen Ak¬ tivität des nativen Rezeptors der "kleinen Rhinovirus-Rezeptorgruppe" entspricht. Diese biologische Aktivität bezieht sich auf das Bindungsvermögen des Rezeptors für Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe". Der Ausdruck "fünktionelle De- rivate" soll "Varianten", und "chemische Derivate" umfassen. Dabei bezieht sich der Ausdruck Derivat auf jedes Polypeptid, das gemessen am nativen Rezeptorprotein, eine verkleinerte Form darstellt und mindestens eine Bindungsstelle für Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" besitzt. Eine "Variante" umfaßt die Moleküle, die im wesentlichen in Funktion und Struktur vom nativen Rezeptormolekül abgeleitet sind, wie zum Beispiel allele Formen. Demnach beeinhaltet der Ausdruck "Variante" Molekü¬ le, die Rhinoviren der "kleinen Rhinoviren-Rezeptorgruppe" binden können, aber z.B. eine veränderte Aminosäuresequenz besitzen.
Ein "chemisches Derivat" schließt zusätzliche chemische Gruppen ein, die normalerweise nicht Teil dieses Moleküls sind. Diese Gruppen können die Moleküllöslichkeit, die Absorption, die biologische Halbwertszeit usw. verbessern oder alternativ die Toxizität oder unerwünschte Nebeneffekte verringern. Gruppen, die solche Effekte vermitteln, sind bekannt (Remington's Pharmaceutical Sciences (1980)).
Die biologische Aktivität der erfindungsgemäßen Rezeptorderivate bzw. die nach Modi¬ fizierung erhaltenen chemischen Derivate kann mit aus dem Stand der Technik bekann¬ ten Methoden überprüft werden, zum Beispiel mit dem von Mischak et al. beschriebenen Filter-Bindungs-Assay (Mischak et al. (1988) J. Gen. Virol. 69, 2653-2656 und Mischak et al. (1988) Virology 163. 19-25): Dabei kann das Polypeptid auf eine geeignete Membran, zum Beispiel Nitrocellulose, aufgetragen werden. Zur Blockierung unspezifi¬ scher Bindung wird anschließend mit einem Detergentiengemisch abgesättigt. Die so vorbehandelte Membran wird dann zur Überprüfung der spezifischen Bindung mit mar¬ kiertem Rhinovirus, zum Beispiel mit -^S-Methionin markiertem HRV2, inkubiert. Nach Waschen und Trocknen der Membran kann dann eine spezifische Bindung mittels Autoradiographie sichtbar gemacht werden.
Ein Aspekt der Erfindung sind die Rezeptorderivate, die in Form extrazellulärer, lösli¬ cher Polypeptide vorliegen und z.B. von Rezeptor-tragenden Zellen in das Medium ab- gegeben werden. Diese Rezeptorderivate sind ausgezeichnet geeignet, die Bindung von Rhinoviren an ihre Rezeptoren zu inhibieren. Damit können sie zur therapeutischen oder prophylaktischen Behandlung des menschlichen Körpers bzw. zur Herstellung pharma¬ zeutischer Präparate verwendet werden. Insbesondere kommt ihre Verwendung als antivirales, bevorzugt antirhinovirales Mittel in Betracht. Das Phänomen der Abgabe eines löslichen Rezeptorderivates ist für viele Rezeptorproteine beschrieben worden, zum Beispiel für den Interleukin-4- und Interleukin-7-Rezeptor (Mosley et al. (1989) Cell 59, 335-348; Goodwin et al. (1990) Cell. 60, 941-951).
Natürlich können lösliche Rezeptorderivate auch durch enzymatische, insbesondere proteolytische oder chemische Abspaltung gebildet werden. Dazu können z. B. Rezep¬ tor-tragende Zellinien eingesetzt werden, die mit Enzymen wie Papain, Trypsin usw. umgesetzt werden. Ist die Aminosäuresequenz des Rezeptormoleküls bekannt, kann der Fachmann natürlich durch Auswahl geeigneter Proteasen gezielt extrazelluläre Derivate herstellen. Das Bindungsvermögen solcher Derivate kann mit dem oben beschriebenen Filterbindungs-Assay überprüft werden, so daß auf diese Weise gezielt verkleinerte Re¬ zeptorderivate, die Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" binden können, hergestellt werden. Neben einer enzymatischen Abspaltung ist ebenfalls die Abspaltung von extrazellulären Rezeptorbereichen durch chemische Methoden möglich, zum Beispiel durch eine Spaltung mit Bromcyan.
Ein weiterer Aspekt dieser Erfindung ist die Bildung von löslichen Derivaten durch en¬ zymatische oder chemische Spaltung von nativen Rezeptormolekülen. Nach Isolierung eines nativen Rezeptorproteins kann zum Beispiel durch eine Umsetzung mit Proteasen oder durch chemische Spaltung (wie oben beschrieben) das native Rezeptorprotein ge¬ spalten und der verkleinerte, Rhinoviren-bindende Bereich z.B. durch den Filter¬ bindungs-Assay identifiziert und isoliert werden. Geeignete Proteasen sind aus der je¬ weiligen Aminosäuresequenz des Rezeptorproteins ableitbar. Für die chemische Spal¬ tungsreaktionen bietet sich auch hier Bromcyan oder auch die Aufspaltung des Rezep- torproteins durch reduktive Behandlung, z.B. mit Dithiothreitol, an.
Im einzelnen umfaßt die vorliegende Erfindung die folgenden Aspekte:
Überraschend wurde festgestellt, daß Proteine der LDL-Rezeptorfamilie Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" binden und internalisieren können. Damit können nun alle Mitglieder der LDL-Rezeptorfamilie herangezogen werden, um funktioneile Derivate herzustellen, die Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" binden können.
Die LDL-Rezeptorfamilie wird aus drei strukturell verwandten Zelloberflächen-Rezep- toren gebildet, die die Endocytose von Lipoproteinen und anderen Plasmaproteinen bewerkstelligen (Brown et al. (1991) Curr. Opin. Lipidology 2, 65-72). Die Rezeptoren haben folgende gemeinsame Merkmale: Cystein-reiche Repeats, die für die Liganden- bindung verantwortlich sind, Cystein-reiche Repeats des EGF ("epidermal growth factor")-Typs, Y-W-T-D-Repeats, eine einzelne, die Membran überspannende Region und wenigstens ein NPXY-Internalisationssignal (Willnow et al. (1992) J. Biol. Chem. 267, 26172-21180).
Überraschenderweise konnte gezeigt werden, daß alle drei Mitglieder dieser Familie - der LDL-Rezeptor, das c^MR/LRP (012 -Macroglobulin/LDL-receptor-related protein) und auch das gp330 (Heymann Nephritis antigen gρ330) - in der Lage sind, Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" zu binden und zu internalisieren (Beispiele 1 bis 2).
Alle Mitglieder dieser Rezeptorfamilie können damit für die Bildung von fünktionellen Derivaten mit Bindungseigenschaften für Rhinoviren der "kleinen Rhinovirus-Rezep¬ torgruppe" herangezogen werden. Zum Beispiel kann für die Isolierung von in das Me¬ dium abgegebener löslicher LDL-Rezeptorderivate der in Beispiel 3 eingeschlagene Weg verfolgt werden. Hier wird die Reinigung eines in den Zellkulturüberstand abgegebenen Bindungsproteins beschrieben.
Überraschenderweise stellte sich heraus, daß es sich um ein LDL-Rezeptorderivat han¬ delt (Beispiel 4). Zur Isolierung wird hier das Rezeptorderivat mittels Ionenaustausch- chromatographie (anionisch), Affinitätschromatographie (Lens culinaris Lectin und Jacalinagarose) und Ammoniumsulfatfällung gereinigt. Die Bindungsaktivität wurde mittels des Filterbindungs- Assays überprüft (Mischak et al. (1988) 163. 19-25). Diese Herstellungsmethode ist auch auf die beiden anderen Proteine der LDL-Rezeptorfamilie übertragbar.
Die Isolierung der nativen Rezeptorproteine ist bekannt und durch Yamamoto et al. (1984) Cell 39, 27-38; Goldstein et al. (1985) Annu. Rev. Cell Biol. 1, 1-39; Mischak et al. (1988) Virology 163, 19-25; Kowal et al. (1989) Proc. Natl. Acad. Sei. U.S.A. 86, 5810-5814 und Willnow et al. (1992) loc. cit.) beschrieben. Die nativen Proteine können dann mittels enzymatischer und chemischer Spaltungen in die fünktionellen, löslichen Derivate überführt werden. Da die Aminosäuresequenz des LDL-Rezeptors (Fig. 1), des 0C2MR/LRP (Fig. 2) und wenigstens teilweise für das gp330 (Fig. 3) bekannt sind, kön¬ nen proteolytisch wirkende Enzyme oder Chemikalien gezielt ausgewählt werden, um insbesondere den jeweiligen extrazellulären Rezeptorbereich freizusetzen.
Die vorliegende Erfindung bezieht sich deshalb auch auf Polypeptide, die aus den Ami¬ nosäuresequenzen des LDL-Rezeptors, o^MR/LRP und des gp330 abgeleitet sind und insbesondere in ihrer löslichen Form in der Lage sind, Rhinoviren der "kleinen Rhino¬ virus-Rezeptorgruppe" zu binden. Bevorzugt werden diese Polypeptide aus den Aminosäuresequenzen abgeleitet, die den humanen Proteinen der LDL-Rezeptorfamilie entsprechen, obwohl, wie in den Beispielen 1 und 2 dargelegt, auch entsprechende Re¬ zeptoren aus Säugetieren und Amphibien geeignet sind.
Rezeptorderivate können in der Form, wie sie aus eukaryontischen Zellen in den Zellüberstand abgegeben werden, Verwendung finden. Die Rezeptorderivate der vor¬ liegenden Erfindung können aber auch den Membran-gebundenen Mitgliedern der LDL- Rezeptorfamilie entsprechen, bei denen der Teil des Proteins, der für die Bindung des Proteins an die Membran verantwortlich ist, fehlt oder seine Funktion verloren hat.
Besonders bevorzugt sind Rezeptorderivate, die im wesentlichen aus den Domänen 1, 2 und 3 des Rezeptorproteins, 1 und 2 oder nur aus der Domäne 1 gemäß Figur 4 beste¬ hen. Danach umfaßt die Domäne 1 den N-terminalen, cysteinreichen Rezeptorteil, der die verschiedenen Liganden bindet, Domäne 2 umfaßt einen Bereich mit hoher Homo¬ logie zum EGF- Vorläuferprotein, Domäne 3 umfaßt einen relativ kurzen, O-glykosylier- ten Peptidbereich, Domäne 4 den Transmembranbereich und Domäne 5 den cytoplas- matischen Teil des Rezeptormoleküls. Polypeptide, die im wesentlichen aus den Domä¬ nen 1, 1 und 2 sowie 1, 2 und 3 bestehen, können aus dem Kulturüberstand eukaryon- tischer Zellen gewonnen (Bsp. 3) oder durch an sich bekannte rekombinante DNA- Techniken wie sie zum Beispiel von Davis et al. (1987) Nature 326, 760-765 für den LDL-Rezeptor beschrieben werden, hergestellt werden. Unter den Proteinen der LDL- Rezeptorfamilie stellt der humane LDL-Rezeptor die bevorzugte Ausgangsverbindung dar. Insbesondere umfaßt die Erfindung funktioneile Rezeptorderivate, die im wesent¬ lichen die Aminosäuren 1 bis 750 (Domänen 1 und 2) und 1-322 (Domäne 1) (Fig. 1) umfassen. Der C-Terminus dieser Polypeptide kann dabei soweit verkürzt werden, wie das Bindungvermögen für Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" erhalten bleibt. Die bevorzugten Rezeptorderivate weisen damit im wesentlichen folgende Aminosäure¬ sequenzen auf:
Domänen 1 und 2 (Aminosäuren 1 bis 750, SEQ.ID.NO.l):
MGP GW LRW TVALL AAAG TAVGDRCERN EFQCQDGKCI SYKWVCDGSA ECQDGSDESQ ETCLSVTCKS GDFSCGGRVN RCIPQFWRCD GQVDCDNGSD EQGCPPKTCS QDEFRCHDGK CISRQFVCDS DRDCLDGSDE ASCPVLTCGP ASFQCNSSTC IPQL ACDND PDCEDGSDE PQRCRGLYVF QGDSSPCSAF EFHCLSGECI HSSWRCDGGP DCKDKSDEEN CAVATCRPDE FQCSDGNCIH GSRQCDREYD CKD SDEVGC VNVTLCEGPN FKCHSGECI TLDKVCNMAR DCRD SDEPI KECGTNECLD NNGGCSHVCN DLKIGYECLC PDGFQLVAQR RCEDIDECQD PDTCSQLCVN LEGGYKCQCE EGFQLDPHTK ACKAVGSIAY LFFTNRHEVR KMTLDRSEYT S IPNLRNW ALDTEVASNR IY SDLSQRM ICSTQLDRAH GVSSYDTVIS RDIQAPDG A VD IHSNIYW TDSVLGTVSV ADTKGVKRKT LFRENGSKPR AIWDPVHGF MY TD GTPA KIKKGGLNGV DIYSLVTENI Q PNGITLDL LSGRLY VDS KLHSISSIDV NGGNRKTILE DEKRLAHPFS AVFEDKVFW TDIINEAIFS ANRLTGSDVN LLAENLLSPE D VLFHNLTQ PRGVNWCERT TLSNGGCQYL CLPAPQINPH SPKFTCACPD GMLLARDMRS CLTEAEAAVA TQETSTVRLK VSSTAVRTQH TTTRPVPDTS
Domäne 1 (Aminosäure 1 bis 322, SEQ.ID.NO.2):
MGPWGWKLRW TVALLLAAAG TAVGDRCERN EFQCQDGKCI SYKWVCDGSA ECQDGSDESQ ETCLSVTCKS GDFSCGGRVN RCIPQFWRCD GQVDCDNGSD EQGCPPKTCS QDEFRCHDGK CISRQFVCDS DRDCLDGSDE ASCPVLTCGP ASFQCNSSTC IPQLWACDND PDCEDGSDEW PQRCRGLYVF QGDSSPCSAF EFHCLSGECI HSSWRCDGGP DCKDKSDEEN CAVATCRPDE FQCSDGNCIH GSRQCDREYD CKDMSDEVGC VNVTLCEGPN KFKCHSGECI TLDKVCNMAR DCRDWSDEPI KECGTNECLD NN.
Die erfindungsgemäßen Polypeptide können dabei als Dimer, Trimer, Tetramer oder Multimer vorliegen.
Die Verfahren zur Herstellung der Rezeptorderivate, enzymatische oder chemische Be¬ handlung der nativen Rezeptormoleküle, Isolierung der durch Zellen freigesetzten De¬ rivate und Verfahren zur rekombinanten Herstellung sind ebenfalls Teil der Erfindung. Ein weiterer Aspekt der Erfindung sind DNA Moleküle, die für die erfindungsgemäßen Polypeptide kodieren.
Die Ausgangsmoleküle sind dem Fachmann durch bekannte Methoden zugänglich. Die Klonierung der entsprechenden cDNA ist für alle drei Mitglieder beschrieben (Yamamoto et al. (1984) loc. cit.; Goldstein et al. (1985) loc. cit.; Pietromonaco et al. (1990) Proc. Natl. Acad. Sei. U.S.A. 87, 1811-1815; Herz et al. (1988) loc. cit.). Außerdem können die DNA-Moleküle mit Kenntnis der Aminosäuresequenz auch syn¬ thetisch (z.B. nach Edge et al. (1981) Nature 292, 756-762) oder mittels der PCR- Methode hergestellt werden (Sambrook et al.(1 89) "A Laboratory Manual", Cold Spring Harbor Laboratory Press).
Die Erfindung bezieht sich auch auf DNA-Sequenzen, die Modifikationen umfassen, die einfach und durch dem Fachmann bekannte Methoden durch Mutation, Deletionen, Umlagerung oder Addition erhalten werden. Jede DNA- Sequenz, die für ein Polypeptid gemäß der Erfindung kodiert, und die entsprechend degenerierten Formen der DNA Se¬ quenzen, sind eingeschlossen.
Zusätzlich beeinhaltet die Erfindung DNA- Vektoren, die die oben beschriebenen DNA- Sequenzen enthalten. Insbesondere kann es sich dabei um Vektoren handeln, in denen die beschriebenen DNA-Moleküle in fünktioneller Weise mit einer Kontrollsequenz ver¬ knüpft sind, die die Expression der entsprechenden Polypeptide erlaubt. Dabei handelt es sich bevorzugt um Plasmide, die in Prokaryonten wie E. coli und oder in eukaryon- tischen Systemen wie Hefen oder auch Säugetierzellinien replizierbar und/oder expri- mierbar sind.
Die Erfindung umfaßt ebenfalls entsprechend transformierte Wirtsorganismen.
Für die Expression in Prokaryonten kommt neben anderen, aus dem Stand der Technik bekannten Organismen, insbesondere E. coli, in Frage. Dabei können die erfindungs¬ gemäßen DNA-Sequenzen als Fusionspolypeptide oder als intakte, native Polypeptide exprimiert werden.
Fusionsproteine können vorteilhafterweise in großen Mengen hergestellt werden. Sie sind im allgemeinen stabiler als die nativen Polypeptide und auf einfache Weise zu rei¬ nigen. Die Expression dieser Fusionsproteine kann durch normale E. coli DNA-Sequen¬ zen gesteuert werden. Zum Beispiel können die erfindungsgemäßen DNA-Sequenzen als lacZ-Fusionsgene kloniert und zur Expression gebracht werden. Dem Fachmann stehen dazu eine Vielzahl von Vektorsystemen zur Verfügung, beispielsweise die pUR- Vektorserie (Rüther, U. und Müller-Hill, B. (1983), EMBO J. 2, 1791). Auch der Bakteriophagen Promotor IpR in Form z.B. der Vektoren pEX-1 bis -3 kann für die Expression großer Mengen an Cro-ß-Galaktosidase Fusionsprotein genutzt werden (Stanley, K.K. und Luzio, J.P. (1984) EMBO J. 3, 1429). In analoger Weise ist auch der mit IPTG induzierbare tac- Promotor anwendbar, zum Beispiel in Form der pROK- Vektorserie (CLONTECH La¬ boratories).
Voraussetzung für die Herstellung intakter, nativer Polypeptide durch E. coli ist die Verwendung eines starken regulierbaren Promotors und einer effektiven Ribosomen- bindungsstelle. Als Promotoren können hier beispielsweise der temperatursensitive Bakteriophagen λpL-Promotor, der mit IPTG induzierbare tac-Promotor oder der T7- Promotor dienen.
Zahlreiche Plasmide mit geeigneten Promotorstrukturen effizienten Ribosomen- bindungsstellen sind beschrieben, wie zum Beispiel pKC30 (λpL ; Shimatake und Rosen¬ berg (1981) Nature 292, 128, pKK173-3 (tac, Amann und Brosius (1985) Gene 40, 183) oder pET-3 (T7-Promotor (Studier und Moffat (1986) J. Mol Biol 189, 113).
Eine Vielzahl weiterer Vektorsysteme für die Expression der erfindungsgemäßen DNA in E. coli sind aus dem Stand der Technik bekannt und werden zum Beispiel in Sam¬ brook et al (1989) loc. cit.) beschrieben.
Geeignete E. coli-Stämme, die spezifisch auf den jeweiligen Expressionsvektor zuge¬ schnitten sind, sind dem Fachmann bekannt (Sambrook et al. (1989), loc. cit.)
Die experimentelle Durchführung der Klonierungsexperimente, die Expression der Poly- peptide in E. coli sowie die Aufarbeitung und Reinigung der Polypeptide sind bekannt und zum Beispiel in Sambrook et al. (1989, loc. cit.) dargestellt. Neben Prokaryonten können auch eukaryontische Mikroorganismen, wie z.B. Hefe, verwendet werden.
Zur Expression in Hefe wird beispielsweise das Plasmid YRp7 (Stinchcomb et al. Natur 282, 39 (1979); Kingsman et al, Gene 7, 141 (1979); Tschumper et al, Gene K), 157
(1980)) und das Plasmid YEpl3 (Bwach et al, Gene 8, 121-133 (1979)) verwendet.
Das Plasmid YRp7 enthält das TRPl-Gen, das eine Selektionierungsmarkierung für eine Hefemutante, (z.B. ATCC Nr. 44076) die unfähig ist, in trypthophanfreiem Medium zu wachsen, bereitstellt.
Das Vorhandensein des TRP1 Defekts als Charakteristikum des verwendeten Hefe- Stammes stellt dann ein wirksames Hilfsmittel dar, um Transformation nachzuweisen, wenn ohne Tryptophan kultiviert wird. Ahnlich verhält es sich bei dem Plasmid YEpl3, das das Hefe-Gen LEU 2, das zur Ergänzung einer LEU-2-minus-Mutante verwendet werden kann, enthält.
Weitere geeignete Markierungsgene für Hefe sind z.B. das URA3- und HIS3-Gen. Vor¬ zugsweise enthalten Hefe-Hybridvektoren weiterhin einen Replikationsstart und ein Markierungsgen für einen bakteriellen Wirt, insbesondere E. coli, damit die Konstruk¬ tion und die Klonierung der Hybridvektoren und ihrer Vorstufen in einem bakteriellen Wirt erfolgen kann. Weitere für die Expression in Hefe geeignete Expressionskontroll- sequenzen sind beispielsweise diejenigen des PHO3- oder PHO5-Gens.
Andere geeignete Promotor-Sequenzen für Hefe Vektoren beinhalten die 5'-flankierende Region der Gene des ADH I (Ammerer, Methods of Enzymology 1 _ 192-201 (1983)), 3-Phosphoglycerat-Kinase (Hitzeman et al, J. Biol. Chem. 251, 2073 (1980)) oder andere glykolytische Enzyme (Kawaski und Fraenkel, BBRC 108, 1107-1112 (1982)) wie Enolase, Glycerinaldehyd-3-phosphat-Dehydrogenase, Hexokinase, Pyruvat-Decar- boxylase, Phosphofructokinase, Glucose-6-Phosphat-Isomerase, Phosphoglucose-Iso- merase und Glucokinase. Bei der Konstruktion geeigneter Expressionsplasmide können die mit diesen Genen assoziierten Terminationssequenzen ebenfalls in den Expressions- Vektor am 3'-Ende der zu exprimierenden Sequenz eingesetzt werden, um Polyadeny- lierung und Termination der mRNA zu ermöglichen.
Andere Promotoren sind die Promotor-Regionen der Gene für Alkohol-Dehydrogenase- 2, Isocytochrom C, saure-Phosphatase, und Enzyme, die für den Metabolismus von Maltose und Gralaktose verantwortlich sind. Promotoren, die durch den Hefe Mating Typ Locus reguliert werden, beispielsweise Promotoren der Gene BARI, MFαl, STE2, STE3, STE5 können bei temperaturregulierten Systemen durch die Verwendung von temperaturabhängigen sir Mutationen eingesetzt werden. (Rhine Ph.D. Thesis, Univer- sity of Oregon, Eugene, Oregon (1979), Herskowitz and Oshima, The Molecular Biolo- gy of the Yeast Saccharomyces, part I, 181-209 (1981), Cold Spring Harbor Labo¬ ratory). Generell ist jedoch jeder Vektor, der einen Hefe-kompatiblen Promotor, ori¬ ginäre Replikations- und Terminationssequenzen enthält, geeignet. So können auch Hybridvektoren, die der Hefe-2μ-Plasmid-DNA homologe Sequenzen enthalten, ver- wendet werden. Solche Hybridvektoren werden durch Rekombination innerhalb der Zelle bereits vorhandenen 2μ-Plasmiden einverleibt oder replizieren autonom.
Neben Hefen können natürlich auch andere eukaryontische Systeme zur Expression der erfindungsgemäßen Polypeptide dienen. Da für die Expression biologisch aktiver eu- karyontischer Proteine mittels rekombinanter DNA oftmals posttranslationale Modi¬ fikationen wie Disulfidbrückenbildung, Glykosylierung, Phosphorylierung und/oder Oli- gomerisierung notwendig sind, bietet sich auch die Expression der erfindungsgemäßen DNA in Säugetierzellinien aber auch in Insektenzellinien an.
Funktionelle Voraussetzungen der entsprechenden Vektorsysteme umfassen vor allem geeignete Promotor-, Terminations- und Polyadenylierungssignale sowie Elemente, die die Replikation und Selektion in Säugetierzellinien ermöglichen. Für die Expression der erfindungsgemäßen DNA-Moleküle kommen vor allem Vektoren in Frage, die sowohl in Säugetierzellen als auch in Prokaryonten wie E. coli replizierbar sind.
Vektoren, abgeleitet von viralen Systemen wie SV40, Epstein-Barr- Virus, usw., sind zum Beispiel pTK2, pSV2-dhfv, pRSV-neo, pKO-neo, pHyg, p205, pHEBo, etc. (Sambrook et al. 1989, loc. cit.).
Nach Transformation in geeignete Wirtszellen, z.B. CHO-Zellen, können mit Hilfe selektierbarer Marker (Thymidin-Kinase, Dehydrofolat-Reduktase usw.) entsprechend transformierte Zellen gewonnen und die entsprechenden Polypeptide nach Expression isoliert werden. Die für die Vektoren geeigneten Wirtszellen sind, wie die Techniken zur Transformation (Mikroinjektion, Elektroporation, Calciumphosphatmethode usw.) be¬ kannt (z.B. Sambrook et al., 1989).
Für die Klonierung entsprechender DNA-Fragmente in prokaryontischen oder eukaryontischen Systemen wird beispielsweise der ausgewählte Vektor mit einer Restriktionsendonuklease geschnitten und, gegebenenfalls nach Modifikation des so gebildeten linearisierten Vektors, eine mit entsprechenden Restriktionsenden versehene Expressionskontrollsequenz eingeführt. Die Expressionskontrollsequenz enthält am 3'- Ende (in Translationsrichtung) die Erkennungssequenz einer Restriktionsendonuclease, so daß der die Expressionskontrollsequenz bereits enthaltende Vektor mit besagtem Restriktionsenzym verdaut und das mit passenden Enden versehene, erfindungsgemäße DNA-Molekül eingesetzt werden kann. Vorteilhaft ist es, den die Expressionskontroll¬ sequenz bereits enthaltenden Vektor noch mit einer zweiten Restriktionsendonuclease innerhalb der Vektor-DNA zu spalten und in das entstandene Vektor-Fragment das mit den entsprechend richtigen Enden versehene DNA-Molekül einzusetzen. Die dazu not¬ wendigen Arbeitstechniken werden z.B. durch Sambrook et al (1989, loc. cit.) be¬ schrieben.
Neben den erfindungsgemäßen DNA-Molekülen umfaßt die Erfindung Verfahren zur Herstellung der beschriebenen Vektoren, insbesondere von Expressionsvektoren. Diese Vektoren sind dadurch gekennzeichnet, daß man in eine mit Restiktionsendonukleasen geschnittene Vektor-DNA die die beispielhaft beschriebenen Expressions-kontroll- sequenzen enthält, eine mit entsprechenden Enden versehene DNA, die für ein fünktio- neues Derivat des Rezeptors der "kleinen Rhinovirus-Rezeptorgruppe" kodiert, so ein¬ fügt, daß die Expressionskontrollsequenzen die Expression der eingefügten DNA regu¬ liert.
Die erfindungsgemäßen Polypeptide, die durch Expression rekombinanter DNA oder aus dem nativen Rezeptormolekül erhalten werden, können natürlich auch durch che¬ mische oder enzymatische Verfahren derivatisiert werden.
Die Expression des LDL-Rezeptors wird in Beispiel 6 erläutert. Hier findet beispielhaft eine Expression in einem eukaryontischen System statt. Es wird eindeutig gezeigt, daß der zur Expression gebrachte LDL-Rezeptor eine Bindung von radioaktiv markiertem humanem Rhinovirus Serotyp 2 (HRV2) bewirkt (Fig. 5). Die erfindungsgemäßen Poly¬ peptide sind beispielsweise durch Deletion von DNA-Sequenzen im Expressionsplasmid erhältlich. Dazu kann zum Beispiel die Methode von Davis et al. (1987) Nature 326. 760-765, der die Deletion der gesamten EGF Domäne beschreibt, verwendet werden. Weiterhin können lösliche Formen des Rezeptors durch Einführung eines Stop-Codons vor die cytoplasmatische oder Transmembran-Domäne gebildet werden (Yokade et al. (1992) J. Cell. Biol U7, 39).
Weiterhin umfaßt die Erfindung Hybridzellinien, die monoklonale Antikörper spezifisch gegen eines der erfindungsgemäßen Polypeptide bzw. fünktionellen Derivate sezernie- ren. Diese monoklonalen Antikörper sind in der Lage, die Wirkung der Polypeptide ganz oder teilweise zu neutralisieren oder spezifisch an eines der besagten Polypeptide zu binden. Die monoklonalen Antikörper können dann zur qualitativen und/oder quantita¬ tiven Bestimmung bzw. zur Reinigung der erfindungsgemäßen Polypeptide eingesetzt werden. Die Erfindung schließt natürlich auch Testsysteme ein, die die erwähnten monoklonalen Antikörper enthalten. Das Verfahren zur Herstellung der monoklonalen Antikörper ist dadurch gekennzeichnet, daß Wirtstiere mit einem der Polypeptide immunisiert werden und B-Lymphozyten dieser Wirtstiere mit Myelomzellen fusioniert werden; die die entsprechenden monoklonalen Antikörper ausscheidenden Hybridzelli- nien können dann subkloniert und kultiviert werden (Harlow, G. und Lane, D.: "Antibodies. A Laboratory Manual" (1988) Cold Spring Harbor Laboratory Press, USA).
Ein weiterer Aspekt der Erfindung ist die Verwendung physiologischer Liganden der LDL-Rezeptorfamilie zur Herstellung von Arzneimitteln zur Inhibition der Bindung von Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe". Dabei umfassen die physiolo¬ gischen Liganden die Substanzen, die durch die LDL-Rezptorfamilie gebunden und/oder internalisiert werden. Zum Beispiel inhibiert LDL (low density lipoprotein) die Auf¬ nahme von Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" (Beispiel 9). Andere natürliche Liganden der LDL-Rezeptorfamilie werden z.B. durch Willnow et al. (1992) J. Biol. Chem. 267, 26172-26180 beschrieben.
So kann zum Beispiel das 39 kDa Rezeptor-assoziierte Protein (RAP) die Ausbeute von Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" reduzieren (Beispiel 7). RAP ist an sich bekannt. Seine Isolierung und Bindung an Mitglieder der LDL-Rezeptorfamilie ist zum Beispiel von Kounnas et al. (1992) J. Biol. Chem. 267, 21162-21166 beschrieben worden.
Auch können natürlich die nativen Rezeptoren der LDL-Rezeptorfamilie, der LDL- Rezeptor, α2MR LRP und gp330 wie die erfindungsgemäßen Rezeptorderivate zur Inhibition verwendet werden.
Natürlich kann auch umgekehrt Rhinovirusmaterial der "kleinen Rhinovirus-Rezeptor¬ gruppe" zur Inhibition der Bindung physiologischer LDL-Liganden eingesetzt werden. Dieses Rhinovirusmaterial kann z.B. vom humanen Rhinovirus Serotyp 2 (HRV2) ab¬ geleitet sein. Bevorzugt kann als Rhinovirusmaterial inaktivierter Rhinovirus, Rhino- virushüllmaterial oder Rhinoviruspeptide mit Bindungsaktivität zu einem Rezeptor der LDL-Rezeptorfamilie verwendet werden. Rhinoviren der "kleinen Rhinovirusrezeptor- gruppe" sind über die "American Type Culture Collection" erhältlich. Entsprechendes Virusmaterial kann mit bekannten Methoden bereitgestellt werden (z.B. Putnak und Phillips (1981) Microbiol Reviews 45, 287-315 und Palmenberg (1990) Annu. Rev. Microbiol 44, 603-623 sowie die dort zitierte Literatur).
Die Erfindung schließt natürlich auch die pharmazeutisch tolerierbaren Salze der erfin¬ dungsgemäßen Polypeptide sowie die pharmazeutisch tolerierbaren Addukte und kova- lenten Verbindungen zwischen den Polypeptiden und einem inerten Träger zur prophy- laktischen und/oder therapeutischen Behandlung des menschlichen oder tierischen Kör¬ pers ein. Die Addukte bzw. kovalenten Verbindungen können z.B. mit Polyethylen-gly- kol gebildet werden. Die erfindungsgemäßen Polypeptide sowie die nativen Rezeptor¬ proteine, die physiologischen Liganden der LDL-Rezeptorfamilie, wie z.B. LDL und das RAP, können zur Herstellung pharmazeutischer Präparate zur therapeutischen und/oder prophylaktischen Behandlung des menschlichen oder tierischen Körpers verwendet werden. Insbesondere können die Polypeptide als kompetitiv wirkende Substanzen zur Inhibierung der Bindung von Viren, insbesondere von Rhinoviren an den nativen Rezep¬ tor und/oder physiologischer LDL-Liganden dienen. Dabei können die Polypeptide und natürlichen Liganden, insbesondere die extrazelluläre, lösliche Form des Rezeptors, vor allem als antivirale, bevorzugt antirhinovirale Mittel eingesetzt werden.
Zur Behandlung viraler Infektionen können die beschriebenen Substanzen z.B. nasal verabreicht werden, wobei eine so große Menge zur Verfügung gestellt wird, die zur Unterdrückung, oder kompetitiven Wechselwirkung oder zur Inhibition der Rhinovirus- bindung an den natürlichen Rezeptor ausreichend ist. Die Dosis sollte, im allgemeinen, zwischen 0,01 pg/kg Patientengewicht bis 1 mg/kg Patientengewicht liegen, obwohl größere oder kleinere Mengen ebenfalls eingesetzt werden können. Das zur Inhibition der Bindung physiologischer LDL-Liganden einsetzbare Rhinovirusmaterial kann in ge- eigneten pharmazeutischen Zusammensetzungen in den für die Polypeptide angegebenen Konzentrationsbereichen eingesetzt werden.
Die erfindungsgemäßen Rezeptorderivate sowie ihre pharmakologisch unbedenklichen Salze können in bekannter Weise in die üblichen Formulierungen - wie Tabletten, Dra- gees, Pillen, Granulate, Aerosole, Siruppe, Emulsionen, Suspensionen und Lösungen unter Verwendung inerter pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel überführt werden. Hierbei soll der Anteil der pharmazeutisch wirksamen Verbindung(en) jeweils im Bereich von 0,5 bis 90 Gew.-% der Gesamtzusammensetzung liegen, d.h. in Mengen, die ausreichend sind, um den oben angegebenen Dosierungsbereich zu errei- chen.
Die Formulierungen werden zum Beispiel durch Verstrecken der Wirkstoffe mit Lö¬ sungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emul¬ giermitteln und/oder Dispergiermitteln hergestellt, wobei beispielsweise bei der Verwen- dung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Lösungsvermittler bzw. Hilfslösungsmittel eingesetzt werden können. Als Hilfsstoffe seien beispielsweise Wasser, pharmazeutisch unbedenkliche organische Lösungsmittel, wie Paraffine, Öle pflanzlichen Ursprungs, mono- oder polyfunktionelle Alkohole, Trägerstoffe, wie z.B. natürliche Gesteinsmehle, synthetische Gesteinsmehle, Zucker, Emulgiermittel und Gleitmittel erwähnt.
Die Applikation erfolgt in üblicher Weise, vorzugsweise nasal. Im Falle der oralen An¬ wendung können die Tabletten selbstverständlich außer den genannten Trägerstoffen auch Zusätze, wie z.B. Natriumeitrat, Calciumcarbonat und Dicalciumphosphat zusam¬ men mit verschiedenen Zuschlagstoffen, wie Stärke, vorzugsweise Kartoffelstärke, Ge- latine und dergleichen enthalten. Weiterhin können Gleitmittel, wie Magnesiumstearat, Natriumlaurylsulfat und Talkum zum Tablettieren mitverwendet werden. Im Falle wä߬ riger Suspensionen können die Wirkstoffe außer den obengenannten Hilfsstoffen mit verschiedenen Geschmacksaufbesserern oder Farbstoffen versetzt werden.
Daneben umfaßt die Erfindung auch Verfahren zur Isolierung von Substanzen die die Bindung von Liganden an den LDL-Rezeptor inhibieren. Diese Verfahren umfassen die Inkubation des LDL-Rezeptorproteins oder eines LDL-Rezeptorderivates mit einer potentiell inhibitorisch wirkenden Substanz. Dieses Verfahren kann in Gegenwart von markiertem Rhinovirusmaterial erfolgen. Das Ausmaß der Bindung von markiertem Rhinovirusmaterial ergibt dann Aufschluß über die Wirkung der geprüften Substanz. Die Bereitstellung von Rhinovirusmaterial mit unterschiedlichen Bindungsaktivitäten ist Bei¬ spiel 9 dargestellt.
Weiterhin umfaßt die Erfindung Verfahren zur Bestimmung von LDL-Rezeptoren, indem eine Substanz, abgeleitet von Virusmaterial der "kleinen Rhinovirus-Rezeptor¬ gruppe" mit Bindungsaktivät zum LDL-Rezeptor markiert, mit einer entsprechenden Probe inkubiert und das Außmaß der Bindung detektiert wird. Ein weiteres Verfahren dient der Zuführung von therapeutisch wirksamen Substanzen, in dem Virusmaterial der "kleinen Rhinovirus-Rezeptorgruppe" mit Bindungsaktivität zum LDL-Rezeptor mit der therapeutischen Substanz gekoppelt wird und das besagte Konjugat zu LDL-Rezeptor tragendem Zellmaterial gegeben wird und durch Bindung und Internalisation die thera¬ peutisch wirksame Substanz in die Zelle eingeführt wird. LEGENDEN ZU DEN FIGUREN
Fig. 1 : Aminosäuresequenz des "Low Density Lipoprotein Receptors" (LDL, Yama- moto et al (1984) Cell 31, 27-38).
Fig. 2: Aminosäuresequenz des "Low Density Lipoprotein Receptor Related Proteins" (LRP, Herz et al. (1988) EMBO J. 7, 4119-4127).
Fig. 3: Teil der Aminosäuresequenz des "Heymann Nephritis Antigens gp330 (Pietromonaco et al (1990) Proc. Natl. Acad. Sei. U.S.A 87, 1811-1815).
Fig. 4: Schematische Darstellung eines Rezeptors der LDL-Rezeptor-Familie (nach Yamamoto et al. (loc. cit.). Der Rezeptor umfaßt fünf Domänen: Die Domäne 1 umfaßt die N-terminalen, cysteinreichen Rezeptorteil, der vermutlich für die Ligandenbindung verantwortlich ist. Die Domäne 2 mit Homologie zum EGF-
Vorläuferprotein schließt sich an Domäne 3 an, deren Aminosäuren zum Teil O-glykosyliert sind. Die Domäne 4 bildet den membranständigen, Domäne 5 den cytoplasmatischen Teil des Rezeptors.
Fig. 5: A) Bindung und Internalisation von markiertem HRV2 an normale humane Fibroblastenzellen beziehungsweise an LDL-Rezeptor defiziente FH Zellen (Beispiel 1). t: hochgezüchtet ohne Zusatz von Cholesterin / 25-Hydroxycholesterin I: hochgezüchtet mit Zusatz von Cholesterin/ 25-Hydroxycholesterin
B) Kompetition von HRV2 und LDL um die Rezeptorbindungsstelle +: mit Zusatz von unmarkiertem HRV2 bzw. LDL -: ohne Zusatz von unmarkiertem HRV2 bzw. LDL.
Fig. 6 : Bindung von [35 S]-markiertem HRV2 an c^MR/LRP und gp330.
Membranextrakte wurden elektrophoretisch aufgetrennt und auf Nitrocellulose transferiert. Die Detektion wurde mit [3^S]-markiertem HRV2 (Spur 1 und 2) mit α^MR/LRP Antiserum (Spur 3 oder mit gp330 Antiserum (Spur 4) durchgeführt.
Spur 1 LM-Extrakte, Spur 2 Rattennieren Mikrovilli-Extrakte, Spur 3 Proteinextrakte wie Spur 1, Spur 4 Proteinextrakte wie Spur 2. Fig. 7 Gelelektrophoretische Analyse des gereinigten HRV2 Bindungsproteins. a) Das gereinigte HRV2 Bindungsprotein wurde in einem 7,5% SDS-Gel unter reduzierenden (Spur 1) und unter nicht-reduzierenden Bedingungen (Spur 2) elektrophoretisiert und durch Silberfärbung sichtbar gemacht Unter nicht-reduzierenden Bedingungen ergibt sich ein Molekulargewicht von ca.120 kDa, unter reduzierenden Bedingungen ein Molekulargewicht von 160 kDa. b) Ligandenblots eines Gels wie unter a (Spur 2) beschrieben, entwickelt mit [35S]-HRV2 (Spur 1) gemäß Mischak et al. (1988) Virology 163, 19-25. Spur 2 zeigt die Entwicklung mit einem Antikörper spezifisch für den human LDL-Rezeptor (IgG-C7, Beisiegel et al. (1982) J. Biol. Chem. 257. 13150-13156).
Fig. 8 Stellt die säulenchromatographische Auftrennung der tryptischen Peptide der aus dem HeLa-Zellüberstand gewonnenen, löslichen Form des
Rezeptors der "kleinen Rhinovirus-Rezeptorgruppe" dar. Die Peptide wurden auf einer μBondapak C 18,250-4 Säule unter folgenden
Bedingungen aufgetrennt:
Puffer A: dest. Wasser/0,06% TFA; Puffer B: 80% Acetonitril 0,052% TFA; Flußrate: 0,5 ml/min; Gradient: 2% B bis 37,5% B von 0 bis 60 min,
37,5% B bis 75% B von 60 bis 90 min, 75% B bis 98% B von 90 bis 105 min; Temperatur: Raumtemperatur; Detektion: photometrisch bei 214 nm,
0,08 AUFS (Papiervorschub: 0,25 cm/min).
Fig. 9: Chromatographische Auftrennung der Fraktionen 23 bis 27 unter folgenden Bedingungen:
Säule: Merck Superspher 4 μm, C18, 125-H; Puffer A: dest. Wasser / 0,1% TFA; Puffer B: Acetonitril/0,1% TFA; Flußrate: 1 ml/min, linearer Gradient von 0% B auf 70% B in 70 min; Temperatur: 30° C; Detektion: photometrisch bei 214 nm, 0,1 AUFS, Papiervorschub 1 cm/min.
Fig. 10: Rechromatographie von Fraktion 29. Die experimentellen Bedingungen sind in der Legende zu Fig. 9 aufgeführt.
Fig. 11: Rechromatographie von Fraktion 38. Die experimentellen Bedingungen sind in der Legende zu Fig. 9 aufgeführt. Fig. 12: Sequenzen der analysierten Peptide
X = Aminosäure nicht identifizierbar; tiefgestellt = Aminosäure nicht eindeutig identifizierbar.
*: Die Sequenzierung der Fraktion 33 (Abb. 9) ergab pro Abbauschritt 2 Aminosäuren; die Peptide B und E konnten aber aufgrund der unterschiedlichen
Mengen zugeordnet werden.
Fig. 13: Inhibition der Bindung von [3^S]-markiertem HRV2 an den an Immobilon ge¬ bundenen LDL-Rezeptor durch Jacalin. A) Filterbindungstest in Abwesenheit von
Jacalin
B) wie A, aber in Gegenwart von 0, 1 mg/ml Jacalin.
Fig. 14: Expression des humanen LDL-Rezeptors in COS-7-Zellen (Beispiel 6). Nachweis von gebundenem [3-^S]-HRV2 an u: untransfektierten COS-7 Zellen +: transformiert mit dem "sense" (pSVL-LDLR+)- Vektor -: transformiert mit dem "antisense" (pSVL-LDLR-)- Vektor
Fig. 15: Reduktion der Virusausbeute durch RAP, angegeben in p.f.u./ml (infektiöse Partikel pro Milliliter).
Fig. 16: Inhibition an der HRV2-Infektion von HeLa-Zellen durch humanes LDL.
Fig. 17: Sequenzvergleich zur Ermittlung der Positionen im oder an Rand des Canyons, die bei den Rhinoviren der kleine Gruppe konserviert sind.
Fig. 18: Bindungsverhalten von HRV2j i4gp:G un^ HRV23 i82R:T an HeLa-Zellen ΔHRV2H48P-G
•HRV2-Wildtyp *HRV23 182R:τ
Fig. 19: Kompetition der Bindung von HRV2u4 p;G und HRV23 ig2R:τ durch HRV14 (■) oder HRV2 (.). BEISPIELE
Beispiele 1: Bindung und Internalisation von [3^S]- markiertem HRV2 durch humane Fibroblastenzellen und Kompetition von HRV2 und LDL um die Rezep¬ torbindungsstelle
a) Bindung und Internalisation von HRV2 Normale humane Fibroblastenzellen beziehungsweise LDL Rezeptor defiziente Zellen (FH Zellen; NTH Sammlung Nr. GM 00486A) wurden auf "6 well Platten" (Nunc) in MEM, das 10 % delipidiertes fötales Kälberserum (Gibco), entweder mit (1) oder ohne (t) Zusatz von 12 μg/ml Cholesterin und 2 μg/ml 25-Hydroxycholesterin, für 24 h ange¬ zogen. Anschließend wurden die Zellen zweimal mit PBS gewaschen, 10000 cpm [-^Sj- markiertes HRV2 in 0,5 ml PBS, das 2 % BSA und 30 mM MgCl2 enthielt, zugegeben und für 60 min bei 34°C inkubiert (Mischak et al. (1988) Virology 163, 19-25). Nach Entfernung von oberflächlich gebundenem HRV2 mit 10 μg/ml Trypsin, 25 mM EDTA in PBS wurden die Zellen erneut gewaschen und anschließend die gebundene Radioak¬ tivität bestimmt. Die gezeigten Daten sind Mittelwerte aus jeweils vier Experimenten. Die Radioaktivitätswerte der Zellpellets aus normalen Fibroblasten (normalerweise etwa 1900 cpm), die ohne Steroide angezogen wurden, minus Hintergrundradioaktivität, wurden gleich 100 % gesetzt. Die Hintergrundaktivität wurde entweder mit HRV2, das für 30 min auf 56°C erhitzt worden war (Mischak et al. (1988) loc. cit.) oder durch In¬ kubation mit einem 1000 fachen Überschuß an unmarkiertem HRV2 bestimmt. Sie be- trug für beide Methoden zwischen 40 und 50 cpm. Die erhaltenen Daten aus jeweils vier Einzelexperimenten zeigt Fig. 5a.
b) Kompetition von HRV2 und LDL um die Rezeptorbindungsstelle
Normale Fibroblastenzellen wurden wie unter a) beschrieben angezogen (ohne Zugabe von Cholesterin und 25-Hydroxycholesterin). Die Zellen wurden mit ungefähr 1,4 x 10^ cpm 125I-markiertem LDL (250 cpm/ng; Huettinger et al. (1992) J. Biol Chem., 267, 18551-7) mit (+) und ohne (-) Zugabe von 100 Pfü ("plaque forming units; entspricht ca. 2400-24000 Viruspartikel; Abraham & Colonno (1984) J. Virol. 5 ., 340-345) pro Zelle an gereinigtem, unmarkiertem HRV2 oder mit ca. 10000 cpm [-^S]- markiertem HRV2 mit (+) oder ohne (-) 80 mg/ml unmarkiertem LDL für 60 min bei 37°C inkubiert. Die Zell-assoziierte Radioaktivität wurde mit einem g-bzw. ß-Zähler bestimmt. Die Ra¬ dioaktivitätswerte für die hochaffine Bindung von 12^1-LDL wurden durch Substraktion der Radioaktivität, die in Gegenwart eines 20-fachen Überschußes von unmarkiertem LDL erhalten wurde (ca. 40000 cpm/mg an gesamtem Zellprotein), von der gesamten LDL-Bindung (150000 cpm/mg) ermittelt. Ohne Kompetitor wurde für die HRV2-Bin- dung normalerweise ein Radioaktivitätswert von 1900 cpm ermittelt. Die maximalen Bindungswerte wurden in jedem Fall gleich 100 % gesetzt. Die ermittelten Daten (Fig. 5b) zeigen das Ergebnis von jeweils zwei Einzelexperimenten.
Beispiel 2: Bindung von [35S]- markiertem HRV2 durch o-^MR/LRP und gp 330
Zum Nachweis der Bindung von Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" an andere Mitglieder der LDL-Rezeptorfamilie wurden Plasma-Membran-Präparationen auf HRV2-Bindung überprüft.
Plasmamembranen wurden aus Maus LM Fibroblasten und Nieren-Epithel-Mikrovilli isoliert (Malathi et al. (1979) Biochem. Biophys. Acta, 554, 259-263; Fomistal et al. (1991) Infect. Immun. 59, 2880-2884 und Kerjaschki und Farquhar (1982) Proc. Natl. Acad. Sei. U.S.A. 79, 5557-5561). Proteine aus den Membranextrakten wurden über eine SDS-Gradienten-Polyacrylamidelektrophorese aufgetrennt und auf Nitrocellulose transferiert.
Die Inkubation der aufgetrennten LM-Extrakte mit [3^S]-markiertem HRV2 zeigte eine Bindung an ein Protein mit einem scheinbaren Molekulargewicht von etwa 500 kDa (Fig. 6, Spur 1). Diese Bande komigriert mit cc2MR/LRP. Dies konnte durch einen iden¬ tischen Blot gezeigt werden, der mit α2MR/LRP-Antiserum (Moestrup und Gliemann (1991) J. Biol. Chem. 266, 14011-14017) entwickelt wurde (Fig. 6; Spur 3).
In Extrakten aus Rattennieren Mikrovilli konnte ein Protein mit einem scheinbaren Molekulargewicht von ebenfalls etwa 500 kDa mit radioaktiv markiertem HRV2 nach¬ gewiesen werden (Fig. 6; Spur 2). Nach Analyse mit einem gp330- Antiserum konnte die Bande als Heymann Nephritis Antigen gp330 identifiziert werden (Fig. 6, Spur 4).
Beispiel 3: Reinigung eines Bindungsproteins für die Rhinoviren der "kleinen Rhino¬ virus- Rezeptorgruppe"
200 1 HeLa-Zellkulturüberstand (Fa. Computer Cell Culture Center, Mons, Belgien) wurde mittels Ultrafiltration auf 20 1 konzentriert und gegen 250 1 destilliertes Wasser (mit 0.02% NaN3) dialysiert. Anschließend wurde die Pufferkonzentration auf 20 mM N-Methylpiperazin, pH 4,5, eingestellt, bei 4000 Upm in der Beckman J6B Zentrifuge abzentrifügiert, über ein 0,8 mm Vorfilter filtriert und das Filtrat auf eine Anionenaus- tauschersäule (0,5 1 Makroprep 50 Q; Biorad) geladen. Gebundenes Material wurde mit 20 mM N-Methylpiperazin, pH 4,5, 0,5 M NaCl eluiert. Das Eluat wurde mit 1 M Tris- HC1, pH 8,0, auf einen pH Wert von 7,2 eingestellt und auf eine Lens culinaris Lectin- Säule (100 ml; Pharmacia) geladen; gebundenes Protein wurde mit 0,5 M α-[D]-Me- thylglucose in PBS eluiert, das eluierte Protein bei 50 % Sättigung mit Ammoniumsulfat, pH 7,2, gefällt, der Niederschlag mit 50% gesättigter Ammoniumsulfatlösung, pH 7,2, gewaschen und in 200 ml PBS aufgenommen. Die Proteinlösung wurde auf eine Jaca- linagarosesäule (40 ml; Vector-Labs) geladen und mit 120 ml 100 mM α-[D]-Methyl- Galactopyranosid in PBS eluiert. Das eluierte Protein wurde mit Ammoniumsulfat wie oben beschrieben gefällt, gewaschen, in 20 mM Methylpiperazin, pH 4,5, aufgenommen und mittels einer PDIO-Säule (Pharmacia) entsalzt. Das entsalzte Material wurde in 5 Aliquots zu je 1 ml auf eine Mono Q-Anionen- austauschersäule (HR5/5; Pharmacia) geladen und mit einem Gradienten von 0 bis 0,5 M NaCl, 20 mM Methylpiperazin, pH 4,5 eluiert. 0,5 ml Fraktionen wurden gesammelt und mittels eines Filterbindungs-Assays auf Bindungsaktivität überprüft (Mischak et al, Virology (1988) 163, 19-25). Die akti¬ ven Fraktionen aus allen 5 Chromatographien wurden in einem Centricon 30 (Amicon) auf 1,5 ml eingeengt und mittels präparativer Gelelektrophorese unter nicht reduzieren- den Bedingungen auf einem 7.5 % Polyacrylamidgel (Laemmli, U.K. (1970) Nature 227. 680 - 685) aufgetrennt. Das Gel wurde mit Kupferchlorid gefärbt (Lee et al. (1987) Anal Biochem. 166. 308 - 312), die dem aktiven Protein entsprechende Bande lokali¬ siert und ausgeschnitten. Die Gelstücke wurden in 0,25 M Tris-HCl, 0,25 M EDTA, pH 9,0, entfärbt und das Protein in 50 mM N-Ethylmorpholinacetat, pH 8,5, elektrophore- tisch eluiert. Ein Aliquot wurde mittels des Filterbindungs-Assays wiederum auf Akti¬ vität überprüft. Das Protein wurde dann unter reduzierenden Bedingungen gelelektro- phoretisch aufgetrennt, eluiert und lyophilisiert.
Beispiel 4: Tryptischer Verdau und Sequenzanalyse des Bindungsproteins für die Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe"
Das gereinigte und lyophilisierte Protein (Beispiel 3) wurde in 30 ml 6 M Guanidin-HCl, 0,4 M Ammonium- hydrogencarbonat, pH 7,6, aufgenommen und mit 3 μl 45 mM Dithiothreitol versetzt und 15 min bei 56°C inkubiert. Nach Abkühlen auf Raumtempe¬ ratur wurden 3 ml 100 mM Jodacetamid zugegeben und weitere 15 min bei Raumtem¬ peratur inkubiert. Danach wurden 84 μl Wasser und 80 μl 0, 1 M Ammoniumhydrogen- carbonat, pH 7,6, zugegeben, die Proteinlösung mit 800 ng Trypsin (in 5 μl) unter den Bedingungen des Herstellers (Promega) versetzt und bei 37°C 18 h inkubiert. Die Lö¬ sung wurde mit 1/10 Volumen an 10 % Trifluoressigsäure (TFA) angesäuert, 5 min zentrifügiert und die Peptide auf einer C-18 "reversed-phase"-Säule (Baker), die mit einer 0,06 % wässrigen TFA-Lösung äquilibriert worden war, mit einem Gradienten bis 80 % Acetonitril, 20 % Wasser, 0,052% TFA eluiert (Fig. 8). Die Fraktionen 20 und 33 wurden direkt mit Hilfe eines Gasphasensequenators sequenziert, während die Fraktio¬ nen 23 bis 27 sowie Fraktion 29 und 38 unter den in den Abbildungen spezifizierten Bedingungen rechromatographiert wurden (C18 "reversed-phase"-Säule, Merck; Fig. 9, 10 und 11). Die in den Abbildungen mit "A", "D" und "F" bezeichneten Peptide bzw. die Fraktionen 33 und 20 wurden zur Sequenzierung im Gasphasensequenator ausgewählt. Das Ergebnis ist in Fig. 12 zusammengefaßt. Die erhaltenen Sequenzen wurden mit den in der "SwissProt"- Datenbank vorhandenen Proteinsequenzen verglichen. Der Ver¬ gleich ergab eine völlige Übereinstimmung mit entsprechenden Peptidsequenzen des humanen LDL-Rezeptors:
Die folgende Tabelle zeigt die Sequenzen der isolierten tryptischen Peptide und die Po¬ sition in der Sequenz des humanen LDL-Rezeptors (Fig. 1).
Die Sequenzierung der Fraktion 33 lieferte pro Abbauschritt zwei Aminosäuren. Unter Zugrundelegung der LDL-Sequenz und dem Verhältnis der in jedem Abbauschritt vor- handenen Aminosäuremengen von etwa 40 % zu 60 % konnte die Fraktion 33 als Ge¬ misch zweier Peptide identifiziert werden. Auch die Sequenzen dieser beiden Peptide entsprechen Sequenzen des humanen LDL-Rezeptors.
Fig. 1 zeigt die Gesamtsequenz des humanen LDL-Rezeptors (Yamamoto et al. (1984) Cell 31, 27 -38). Beispiel 5: Expression des humanen LDL-Rezeptors in COS-7 Zellen
Das Plasmid pTZl, welches die gesamte kodierende Sequenz des humanen LDL-Rezep¬ tors aus dem Plasmid pLDLR2 enthält (Yamamoto et al, loc. cit) wurde mit bekannten Methoden (Sambrook et al, loc. cit.) in kompetente E. coli 5K eingebracht und amplifi- ziert. Nach Extraktion und Reinigung der Plasmid DNA wurde diese mit dem Restrik¬ tionsenzym Hind TU verdaut und die Fragmente in einem 0,8 % Agarosegel aufgetrennt. Nach Elution des für den LDL-Rezeptor kodierenden Fragmentes wurde dieses mit Ethanol gefallt, in TE-Puffer aufgenommen und mit Klenow-Fragment unter Verwen- dung von dATP und dGTP partiell aufgefüllt.
Der eukaryotische Expressionsvektor pSVL (Pharmacia) wurde in E. coli 5K vermehrt, gereinigt und mit Xbal geschnitten. Nach partiellem Auffüllen mit dCTP und dTTP, Phenol-Chloroform Extraktion und Ethanolfällung wurde das Plasmid mit alkalischer Phosphatase dephosphoryliert.
Durch partielles Auffüllen sowohl der Vektor als auch der LDL-Rezeptor-DNA wurden die Restriktionsschnitt- stellen kompatibel gemacht und LDL-Rezeptor kodierende und Vektor-DNA wurden unter Verwendung von T4-Ligase ligiert. Die Transformation kompetenter E. coli Bakterien erfolgte wie beschrieben. Mehrere Kolonien wurden durch Restriktionsverdau mit Xhol auf Orientierung des Inserts bezüglich des SV40 "late promotors" untersucht. Jeweils eine Kolonie mit positiver (sense, pSVL-LDLR+) und negativer (antisense, pSVL-LDLR-) Orientierung des Inserts wurden angezüchtet und Plasmide in größerer Menge gewonnen. Die Transfektion von COS-7 Zellen (ATCC CRL 1651) wurde mittels Lipofektion (Lipofektin-Reagens, BRL) in 9 cm Petrischalen nach Angaben des Herstellers durchge¬ führt. Nach Transfektion wurden die Zellen in 6-well Schalen ausgesät und weitere 24 Stunden in RPMI/10 % HiFCS und 12 μg/ml Cholesterin sowie 2 μg/ml 25- Hydroxycholesterin kultiviert. Die Zellen wurden mit PBS/2 % BSA gewaschen und danach 1 Stunde bei 34°C mit ca. 10000 cpm/well [35S]-markiertem HRV2 in PBS/2 % BSA inkubiert. Nach mehrmaligem Waschen wurden die Zellen in PBS/2 % SDS lysiert und die Menge an gebundenem [3^S]-HRV2 durch Auszählen in einem Liquid Szintilla- tion Counter bestimmt. Der Zusatz von foetalem Kälberserum, Cholesterin sowie 25- Hydroxycholesterin bewirkt eine Unterdrückung der endogenen LDL-Rezeptoren (Davis et al, 1987, Nature 326. 760), so daß im anschließenden Bindungstest aus¬ schließlich die durch Transfektion exprimierten LDL-Rezeptoren detektiert werden. Wie Fig. 14 zeigt, ist die Menge an gebundenem HRV2 im Vergleich zu untransfizierten Kontrollzellen doppelt so hoch, wenn die Zellen mit dem sense-Konstrukt pSVL- LDLR+ transfiziert wurden. Transfektion mit pSVL-LDLR- zeigt keinen Unterschied der Bindung im Vergleich zu Kontrollzellen.
Beispiel 6: Inhibition der Bindung von [35s]-markiertem Rhinovirus Serotyp 2 (HRV2) durch Jacalin
Zwei Aliquots des bis zur Jacalinagarose-Chromatographie gereinigten Proteins (siehe Beispiel 3, jeweils entsprechend einer Ausgangsmenge Zellüberstands von etwa 50 ml) wurden auf ein 7.5 % SDS Polyacrylamidgel (Laemmli, U.K. 1970, Nature 227, 680 - 685) unter nicht-reduzierenden Bedingungen aufgetrennt und auf eine Immobilonmem- bran (Millipore) elektrophoretisch übertragen (Mischak et al, 1988, loc. cit., Hofer et al, 1992, loc. cit.). Eine Spur wurde in Abwesenheit (Fig. 13, Spur A) oder in Gegen¬ wart (Spur B) von 0.1 mg/ml Jacalin (Vector Labs) mit radioaktiv markiertem Rhino- virus (Mischak et al, 1988, loc. cit.) inkubiert, gewaschen, getrocknet und auf Rönt¬ genfilm exponiert (Hofer et al, 1992, loc.cit.). Wie in Figur 13 gezeigt, wird die Bin¬ dung des Virus an den LDL-Rezeptor unter den angegebenen Bedingungen vollständig inhibiert.
Beispiel 7: Reduktion der Virusausbeute durch RAP (receptor associated protein)
FH-Zellen (vgl. Beipiel 1) wurden in 24-well Platten (Nunc) in RPMI mit 10% fötalem Kälberserum ausgesät und über Nacht auf eine Zelldichte von etwa 5x10^ Zellen pro well angezüchtet. Die Zellen wurden einmal mit PBS gewaschen und mit RPMI/2% fötales Kälberserum / 30mM MgCl2 versetzt. Humanes rekombinantes RAP wurde wie in Kunnas et al., loc. cit. angegeben erhalten und gereinigt und in Konzentrationen von 0,5 μg/ml, 5 μg/ml, lOμg/ml sowie 20μg/ml dem Medium zugesetzt und die Zellen 2 Stunden bei 4°C inkubiert. HRV2 wurde in einer m.o.i von 100 zu jedem Versuchs- ansatz zugegeben und weitere 2 Stunden bei 4°C inkubiert. .Anschließend wurden die Zellen 3x mit PBS gewaschen, mit RPMI / 2% fötales Kälberserum / 30mM MgCl2 ver¬ setzt und über Nacht bei 34°C inkubiert. Tags darauf wurden die Zellen durch dreimali¬ ges Frieren/Tauen aufgebrochen. Zellfragmente durch Zentrifugation bei lO.OOOxg ent¬ fernt und die Anzahl der infektiösen Viruspartikel im Überstand mittels Plaquetest (Neubauer et al, loc. cit.) bestimmt. Fig. 15 zeigt, daß die Ausbeute an HRV2 mit stei¬ gender Konzentration von RAP abnimmt und bei einer RAP-Konzentration von 20μg ml auf ca. 5% des Vergleichswertes ohne RAP reduziert wird. Beispiel 8: Inhibition der HRV2-Infektion von HeLa-Zellen durch humanes LDL
HeLa-Zellen wurden in 24- well Platten (Nunc) in MEM mit 10% fötalem Kälberserum ausgesät und über Nacht auf eine Zelldichte von etwa 2x10^ Zellen pro well angezüch- tet. Die Zellen wurden einemal mit PBS gewaschen und mit RPMI / 2% fötales Kälber¬ serum / 30mM MgCl2 versetzt. Gereinigtes LDL (Hüttinger et al, loc. cit.) wurde in Konzentrationen von 0,1 mg/ml, 0,3 mg/ml, 0,5 mg/ml sowie 1 mg/ml zugegeben und die Zellen 30 min bei 34°C inkubiert. HRV2 bzw. HRV14 (ein Virus der großen Rezep¬ torgruppe, diente zur Kontrolle) wurden in einer m.o.i von 100 zu jedem Versuchs- ansatz zugegeben und weitere 45 min bei 34°C inkubiert. Anschließend wurden die Zel¬ len 3x mit PBS gewaschen, mit RPMI / 2% fötales Kälberserum / 30mM MgCl2 ver¬ setzt und 60 Stunden bei 34°C inkubiert. Das Medium wurde abgesaugt und intakte Zellen mit Kristallviolett gefärbt. Fig. 16 zeigt, daß in Gegenwart von LDL bei einer Konzentration von 1 mg/ml die Infektion von HeLa-Zellen durch HRV2 verhindert wird (alle Zellen sind intakt). Im Fall von HRV14 konnte kein Effekt beobachtet werden (Zellen vollständig lysiert).
Beispiel 9: Mutationen der HRV2-Rezeptorbindungsstelle
Unterschiedliche Rezeptorbindungsstellen der Rhinoviren der "kleinen" und der "großen Rhinovirus-Rezeptorgruppe" sollten sich ebenfalls in der für die Wechselwirkung mit dem entsprechenden Rezeptor verantwortlichen "Canyon-Struktur" der viralen Kapside widerspiegeln. Als Canyon wird eine Vertiefung um die 5-zählige Symmetrieachse des viralen Kapsids mit einer Ausdehnung von ungefähr 30 A bezeichnet. Eine Hypothese zu der Canyon-Struktur besagt, daß die Aminosäureseitengruppen in dieser Region unzu¬ gänglich für Immunglobine und damit keinem immunologischen Druck ausgesetzt sind (Rossmann et al. (1985) Nature 317. 145-154). Die verschiedenen rhinoviralen Sero¬ typen einer Rezeptorgruppe könnten auf diese Weise Strukturen, die für die Wechsel- Wirkung mit dem entsprechenden Rezeptor wichtig sind, konservieren und gleichzeitig eine breite serotypische Diversität entwickeln (Rossmann (1989) Viral Immunology 2, 143-161). Weiterhin beinhaltet die Hypothese, daß Differenzen in der Canyon-Struktur zwischen "großer" und "kleiner Rhinovirus- Rezeptorgruppe" für die Verwendung von zwei unterschiedlichen Rezeptoren verantwortlich sind. Dies würde einen Satz von Aminosäureresten beinhalten, der in bestimmten Positionen der Rhinoviren der "großen Rhinovirus-Rezeptorgruppe" und einen zweiten Satz, der in bestimmten Positionen der Rhinoviren der "kleinen Rhinoviren-Rezeptorgruppe" konserviert ist. Fig. 17 zeigt einen Sequenzvergleich zur Ermittlung der Positionen im oder am Rand des Canyons, die bei den Rhinoviren der kleinen Gruppe im Gegensatz zu den Rhino¬ viren der großen Gruppe konserviert sind. Sie umfassen die basischen Reste an Position 1081 (HRV2-Nummerierung: Blaas et al. (1987) Proteins 2, 263-272) und 3182, Ile oder Leu an Position 3229 und die Sequenz Thr-Glu-Lys (TEK an Position 1222-1224).
Folgende HRV2-Mutanten wurden konstruiert: an Position 1081 (1081K:E) und an 1222-1224 (Ersatz von TEK durch die entsprechende Sequenz abgeleitet aus HRV14, HRV39, HRV89) in dem VPl-Protein sowie die Mutanten 3182R:T und 3229L:T in VP3. Eine weitere Mutante (1148P:G) wurde in Analogie zu HRV14 (1155P:G) kon¬ struiert (Colonno et al. (1988) Proc. Natl Acad. Sei. U.S.A. 85, 5449-5453).
Die Präparation der für die Mutagenese benötigten cDNA, die in vitro Herstellung ent¬ sprechender infektiöser RNA sowie die Transfection entsprechender Zellen sind be- schrieben (Duechler et al. (1989) Virology 168, 159-161; Maniatis et al. (1982) "Molecular Cloning: A laboratory manual". Cold Spring Harbour Laboratory, Cold Spring Harbour, New York; Taylor et al (1989) Nucl. Acids. Res. 13, 8764-8785; Ho et al. (1989) Gene 77, 51-59 und Herlitze & Koenen (1990) Gene £1, 143-147.
Die Transfektion mit RNAs, die dem Wildtyp-HRV2 und den Mutanten HRV2j Hgp.G und HRV23i 2 :τ entsprachen, in Heia Zellen ergaben Ausbeuten von ca. 300 Pfü ml. Plaque-Größe und Morphologie des Wildtyps und der beiden Mutanten waren identisch. Fig. 18 zeigt außerdem, daß kein signifikanter Unterschied im Bindungsverhalten dieser Viren an Heia-Zellen auftrat (HRV2wt (•), HRV2ι i4 p:G (Δ) und HRV23 i82R:T (♦); Neubauer et al. (1987) Virology 158. 255-258). Keine lebensfähigen Mutanten wurden von den 1081K:E, 3229L:T oder der Mutante mit dem ausgetauschten TEK-Motiv an Position 1222 erhalten.
Um zu zeigen, ob die Mutanten an den Rezeptor der kleinen Rhinovirusgruppe binden können, wurden Kompetitionsexperimente durchgeführt (Fig. 19). Sobald steigende Mengen von unmarkiertem HRV2 (•) bei der Inkubation von HeLa-Zellen anwesend waren, wurde die Bindung von [3^S] markiertem Virusmaterial der Mutanten reduziert. Zugabe von HRV14 (■) hatte keine Auswirkung auf die Bindung. Offensichtlich ändert sich die Affinität der Viren zum Rezeptor der "kleinen Rhinovirus-Rezeptorgruppe" durch die Mutationen nicht. Diese Daten zeigen, daß das Pro 148 von VPl (äquivalent zu Pro 155 in HRV14) nicht an der Interaktion von HRV2 mit seinem Rezeptor beteiligt ist. - Im Gegensatz zu HRV14, was auf eine wichtige Funktion dieser Aminosäure bei der Wechselwirkung von HRV14 mit ICAM-1 hinweist (Colonno et al (1988) Proc. Natl. Acad. Sei. USA 85, 5449-5453). Keine konservierte Oligopeptidsequenz entspre¬ chend dem TEK-Element konnte in Rhinoviren der großen Gruppe detektiert werden.
Die Mutanten HRV2]ogιK:E, HRV23229L:T un(^ die TEK-Mutante waren nicht lebensfähig. Die Analyse der dreidimensionalen Struktur von HRVIA - ein zu HRV2 nahe verwandter Serotyp - lieferte keine Anzeichen für sterische oder elektrostatische Störungen durch die ausgetauschten Aminosäuresseitengruppen. Außerdem liegen alle Seitengruppen an der Oberfläche und sind für das Lösungsmittel zugänglich. Deshalb ist es durchaus möglich, daß sie an der Wechselwirkung mit dem Rezeptor der kleinen Gruppe beteiligt sind und daß ihre Veränderung zu einem Verlust des Bindevermögens und der Infektionsfähigkeit führt.
Die Veränderung von Proi 14g zu Gly in HRV2 war ohne Wirkung auf die Fähigkeit des Virus, an seinen Rezeptor zu binden. Bei HRV14 führt ein entsprechender Austausch zu einer beträchtlich festeren Bindung an den Rezeptor. Pro \ 155 bildet eine Art Sockel am Fuß des Canyons und scheint den Rezeptor daran zu hindern, weiter in das virale Kapsid einzudringen. Der Anstieg der Bindungsaffinität durch Ersatz von Pro durch Gly kann deshalb als Reduktion der sterischen Hinderung interpretiert werden. Da ein solcher Effekt bei HRV2 nicht beobachtet wurde, ist es wahrscheinlich, daß die Vi¬ rus/Rezeptorwechselwirkung bei Rhinoviren der kleinen Gruppe an einer anderen Stelle stattfindet als die, die von den Rhinoviren der großen Gruppe benutzt wird.
SEQUENZPROTOKOLL
(1) ALLGEMEINE INFORMATION :
(i ) ANMELDER :
(A) NAME: Boehringer Ingelheim
(B) STRASSE: Binger Strasse
(C) ORT: Ingelheim (D) BUNDESLAND: Rheinland-Pfalz
(E) LAND: Deutschland
(F) POSTLEITZAHL: W-6507
(G) TELEPHON: 06132-77-0 (H) TELEFAX: 06132-77-3000 (I) TELEX: 418791-0 bi d
(ii) ANMELDETITEL: REZEPTORDERIVATE (iii) ANZAHL DER SEQUENZEN: 5
(iv) COMPUTER-LESBARE FORM:
(A) DATENTRÄGER: Floppy dis
(B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.25 (EPA)
(2) INFORMATION ZU SEQ ID NO: 1:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 750 Aminosäuren
(B) ART: Aminosäure
(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Peptid
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
Met Gly Pro Trp Gly Trp Lys Leu Arg Trp Thr Val Ala Leu Leu Leu 1 5 10 15 Ala Ala Ala Gly Thr Ala Val Gly Asp Arg Cys Glu Arg Asn Glu Phe
20 25 30
Gin Cys Gin Asp Gly Lys Cys Ile Ser Tyr Lys Trp Val Cys Asp Gly 35 40 45
Ser Ala Glu Cys Gin Asp Gly Ser Asp Glu Ser Gin Glu Thr Cys Leu 50 55 60
Ser Val Thr Cys Lys Ser Gly Asp Phe Ser Cys Gly Gly Arg Val Asn 65 70 75 80
Arg Cys Ile Pro Gin Phe Trp Arg Cys Asp Gly Gin Val Asp Cys Aεp 85 90 95
Asn Gly Ser Asp Glu Gin Gly Cys Pro Pro Lys Thr Cys Ser Gin Asp 100 105 110
Glu Phe Arg Cyε Hiε Aεp Gly Lyε Cys Ile Ser Arg Gin Phe Val Cyε 115 120 125
Asp Ser Asp Arg Asp Cyε Leu Asp Gly Ser Aεp Glu Ala Ser Cyε Pro 130 135 140
ERSATZBLATT Val Leu Thr Cys Gly Pro Ala Ser Phe Gin Cys Asn Ser Ser Thr Cyε 145 150 155 160
Ile Pro Gin Leu Trp Ala Cys Asp Asn Asp Pro Asp Cys Glu Asp Gly 165 170 175
Ser Aεp Glu Trp Pro Gin Arg Cys Arg Gly Leu Tyr Val Phe Gin Gly 180 185 190
10
Asp Ser Ser Pro Cys Ser Ala Phe Glu Phe His Cyε Leu Ser Gly Glu 195 200 205
Cys Ile His Ser Ser Trp Arg Cys Asp Gly Gly Pro Asp Cys Lys Asp
15 210 215 220
Lys Ser Asp Glu Glu Asn Cys Ala Val Ala Thr Cyε Arg Pro Aεp Glu 225 230 235 240
20 Phe Gin Cys Ser Asp Gly Asn Cys Ile Hiε Gly Ser Arg Gin Cys Aεp 245 250 255
Arg Glu Tyr Asp Cys Lys Asp Met Ser Asp Glu Val Gly Cyε Val Asn 260 265 270
25
Val Thr Leu Cyε Glu Gly Pro Aεn Lys Phe Lys Cys His Ser Gly Glu 275 280 285
Cyε Ile Thr Leu Asp Lys Val Cys Asn Met Ala Arg Asp Cyε Arg Aεp 30. 290 295 300
Trp Ser Aεp Glu Pro Ile Lys Glu Cys Gly Thr Asn Glu Cys Leu Asp
305 310 315 320
35 Aεn Asn Gly Gly Cys Ser Hiε Val Cyε Asn Asp Leu Lys Ile Gly Tyr
325 330 335
Glu Cys Leu Cys Pro Asp Gly Phe Gin Leu Val Ala Gin Arg Arg Cys 340 345 350
40
Glu Asp Ile Asp Glu Cyε Gin Asp Pro Asp Thr Cys Ser Gin Leu Cys 355 360 365
Val Asn Leu Glu Gly Gly Tyr Lys Cyε Gin Cys Glu Glu Gly Phe Gin 45 370 375 380
Leu Asp Pro His Thr Lys Ala Cys Lyε Ala Val Gly 'Ser Ile Ala Tyr 385 390 395 400
50 Leu Phe Phe Thr Asn Arg His Glu Val Arg Lys Met Thr Leu Asp Arg
405 410 415
Ser Glu Tyr Thr Ser Leu Ile Pro Asn Leu Arg Asn Val Val Ala Leu 420 425 430
55
Asp Thr Glu Val Ala Ser Asn Arg Ile Tyr Trp Ser Asp Leu Ser Gin 435 440 445
Arg Met Ile Cys Ser Thr Gin Leu Asp Arg Ala His Gly Val Ser Ser 60 450 455 460
Tyr Asp Thr Val Ile Ser Arg Asp Ile Gin Ala Pro Asp Gly Leu Ala 465 470 475 480
65 Val Asp Trp Ile His Ser Asn Ile Tyr Trp Thr Aεp Ser Val Leu Gly
485 490 495
ER Thr Val Ser Val Ala Asp Thr Lys Gly Val Lys Arg Lys Thr Leu Phe 500 505 510
Arg Glu Asn Gly Ser Lys Pro Arg Ala Ile Val Val Asp Pro Val His 515 520 525
Gly Phe Met Tyr Trp Thr Asp Trp Gly Thr Pro Ala Lys Ile Lys Lys 530 535 540
Gly Gly Leu Asn Gly Val Asp Ile Tyr Ser Leu Val Thr Glu Asn Ile 545 550 555 560
Gin Trp Pro Asn Gly Ile Thr Leu Asp Leu Leu Ser Gly Arg Leu Tyr 565 570 575
Trp Val Asp Ser Lyε Leu Hiε Ser Ile Ser Ser Ile Aεp Val Aεn Gly 580 585 590
Gly Asn Arg Lys Thr Ile Leu Glu Asp Glu Lys Arg Leu Ala His Pro 595 600 605
Phe Ser Leu Ala Val Phe Glu Asp Lys Val Phe Trp Thr Asp Ile Ile 610 615 620
Asn Glu Ala Ile Phe Ser Ala Asn Arg Leu Thr Gly Ser Asp Val Asn 625 630 635 640
Leu Leu Ala Glu Asn Leu Leu Ser Pro Glu Asp Met Val Leu Phe Hiε 645 650 655
Aεn Leu Thr Gin Pro Arg Gly Val Aεn Trp Cyε Glu Arg Thr Thr Leu 660 665 670 Ser Asn Gly Gly Cys Gin Tyr Leu Cyε Leu Pro Ala Pro Gin Ile Asn 675 680 685
Pro His Ser Pro Lys Phe Thr Cys Ala Cyε Pro Aεp Gly Met Leu Leu 690 695 700
Ala Arg Asp Met Arg Ser Cys Leu Thr Glu Ala Glu Ala Ala Val Ala 705 710 715 720
Thr Gin Glu Thr Ser Thr Val Arg Leu Lyε Val Ser Ser Thr Ala Val 725 730 735
Arg Thr Gin Hiε Thr Thr Thr Arg Pro Val Pro Asp Thr Ser 740 745 750
(2) INFORMATION ZU SEQ ID NO: 2: (i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 322 Aminosäuren
(B) ART: Aminosäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Peptid
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:
Met Gly Pro Trp Gly Trp Lys Leu Arg Trp Thr Val Ala Leu Leu Leu 1 5 10 15
ERSATZBLATT Ala Ala Ala Gly Thr Ala Val Gly Asp Arg Cyε Glu Arg Aεn Glu Phe 20 25 30
Gin Cys Gin Asp Gly Lyε Cys Ile Ser Tyr Lyε Trp Val Cyε Aεp Gly 35 40 45
Ser Ala Glu Cys Gin Aεp Gly Ser Aεp Glu Ser Gin Glu Thr Cys Leu 50 55 60
Ser Val Thr Cys Lys Ser Gly Asp Phe Ser Cyε Gly Gly Arg Val Aεn 65 70 75 80
Arg Cyε Ile Pro Gin Phe Trp Arg Cyε Asp Gly Gin Val Aεp Cys Aεp 85 90 95
Aεn Gly Ser Aεp Glu Gin Gly Cyε Pro Pro Lyε Thr Cys Ser Gin Aεp 100 105 110
Glu Phe Arg Cys His Asp Gly Lyε Cyε Ile Ser Arg Gin Phe Val Cyε 115 120 125
Asp Ser Asp Arg Aεp Cyε Leu Asp Gly Ser Asp Glu Ala Ser Cys Pro 130 135 140
Val Leu Thr Cys Gly Pro Ala Ser Phe Gin Cys Asn Ser Ser Thr Cys 145 150 155 160
Ile Pro Gin Leu Trp Ala Cys Asp Asn Asp Pro Asp Cys Glu Asp Gly 165 170 175
Ser Asp Glu Trp Pro Gin Arg Cys Arg Gly Leu Tyr Val Phe Gin Gly 180 185 190 Asp Ser Ser Pro Cys Ser Ala Phe Glu Phe His Cyε Leu Ser Gly Glu 195 200 205
Cys Ile His Ser Ser Trp Arg Cyε Asp Gly Gly Pro Asp Cys Lys Asp 210 215 220
Lys Ser Asp Glu Glu Asn Cys Ala Val Ala Thr Cys Arg Pro Asp Glu 225 230 235 240
Phe Gin Cyε Ser Asp Gly Asn Cys Ile His Gly Ser Arg Gin Cys Asp 245 250 255
Arg Glu Tyr Asp Cys Lys Asp Met Ser Asp Glu Val Gly Cyε Val Asn 260 265 270 Val Thr Leu Cys Glu Gly Pro Asn Lys Phe Lys Cyε His Ser Gly Glu 275 280 285
Cys Ile Thr Leu Asp Lys Val Cys Asn Met Ala Arg Asp Cys Arg Asp 290 295 300
Trp Ser Asp Glu Pro Ile Lyε Glu Cyε Gly Thr Aεn Glu Cyε Leu Aεp 305 310 315 320
Aεn Asn
(2) INFORMATION ZU SEQ ID NO: 3:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 860 Aminosäuren
ERS (B) ART: Aminosäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Peptid
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:
Met Gly Pro Trp Gly Trp Lys Leu Arg Trp Thr Val Ala Leu Leu Leu 1 5 10 15
Ala Ala Ala Gly Thr Ala Val Gly Asp Arg Cyε Glu Arg Aεn Glu Phe 20 25 30
Gin Cyε Gin Asp Gly Lys Cyε Ile Ser Tyr Lyε Trp Val Cyε Asp Gly 35 40 45
Ser Ala Glu Cys Gin Asp Gly Ser Asp Glu Ser Gin Glu Thr Cyε Leu 50 55 60
Ser Val Thr Cyε Lys Ser Gly Asp Phe Ser Cyε Gly Gly Arg Val Aεn 65 70 75 80
Arg Cyε Ile Pro Gin Phe Trp Arg Cys Asp Gly Gin Val Aεp Cyε Aεp 85 90 95
Aεn Gly Ser Aεp Glu Gin Gly Cyε Pro Pro Lyε Thr Cyε Ser Gin Aεp 100 105 110
Glu Phe Arg Cys His Asp Gly Lyε Cyε Ile Ser Arg Gin Phe Val Cyε 115 120 125
Asp Ser Asp Arg Asp Cys Leu Aεp Gly Ser Asp Glu Ala Ser Cyε Pro 130 135 140
Val Leu Thr Cyε Gly Pro Ala Ser Phe Gin Cys Asn Ser Ser Thr Cys
145 150 155 160
Ile Pro Gin Leu Trp Ala Cys Asp Aεn Asp Pro Asp Cyε Glu Aεp Gly 165 170 175
Ser Asp Glu Trp Pro Gin Arg Cys Arg Gly Leu Tyr Val Phe Gin Gly 180 185 190
Aεp Ser Ser Pro Cyε Ser Ala Phe Glu Phe His Cys Leu Ser Gly Glu 195 200 205 Cyε Ile His Ser Ser Trp Arg Cys Asp Gly Gly Pro Aεp Cys Lys Asp 210 215 220
Lyε Ser Aεp Glu Glu Asn Cys Ala Val Ala Thr Cys Arg Pro Asp Glu
225 230 235 240
Phe Gin Cys Ser Asp Gly Asn Cys Ile His Gly Ser Arg Gin Cyε Aεp 245 250 255
Arg Glu Tyr Asp Cys Lyε Aεp Met Ser Aεp Glu Val Gly Cys Val Asn 260 265 270
Val Thr Leu Cys Glu Gly Pro Aεn Lyε Phe Lys Cyε His Ser Gly Glu 275 280 285 Cys Ile Thr Leu Asp Lyε Val Cyε Asn Met Ala Arg Asp Cys Arg Asp 290 295 300 Trp Ser Asp Glu Pro Ile Lys Glu Cys Gly Thr Aεn Glu Cys Leu Asp 305 310 315 320
Asn Asn Gly Gly Cys Ser Hiε Val Cys Asn Aεp Leu Lyε Ile Gly Tyr 325 330 335
Glu Cyε Leu Cys Pro Asp Gly Phe Gin Leu Val Ala Gin Arg Arg Cys 340 345 350
Glu Asp Ile Asp Glu Cys Gin Asp Pro Asp Thr Cys Ser Gin Leu Cyε 355 360 365
Val Asn Leu Glu Gly Gly Tyr Lyε Cyε Gin Cyε Glu Glu Gly Phe Gin 370 375 380
Leu Aεp Pro His Thr Lys Ala Cys Lys Ala Val Gly Ser Ile Ala Tyr 385 390 395 400
Leu Phe Phe Thr Aεn Arg Hiε Glu Val Arg Lyε Met Thr Leu Aεp Arg 405 410 415
Ser Glu Tyr Thr Ser Leu Ile Pro Aεn Leu Arg Asn Val Val Ala Leu 420 425 430
Asp Thr Glu Val Ala Ser Asn Arg Ile Tyr Trp Ser Aεp Leu Ser Gin 435 440 445
Arg Met Ile Cys Ser Thr Gin Leu Asp Arg Ala His Gly Val Ser Ser 450 455 460
Tyr Aεp Thr Val Ile Ser Arg Asp Ile Gin Ala Pro Asp Gly Leu Ala 465 470 475 480
Val Asp Trp Ile His Ser Asn Ile Tyr Trp Thr Asp Ser Val Leu Gly 485 490 495 Thr Val Ser Val Ala Asp Thr Lys Gly Val Lys Arg Lyε Thr Leu Phe
500 505 510
Arg Glu Aεn Gly Ser Lyε Pro Arg Ala Ile Val Val Asp Pro Val His 515 520 525
Gly Phe Met Tyr Trp Thr Aεp Trp Gly Thr Pro Ala Lyε Ile Lyε Lyε 530 535 540
Gly Gly Leu Asn Gly Val Aεp Ile Tyr Ser Leu Val Thr Glu Asn Ile 545 550 555 560
Gin Trp Pro Aεn Gly Ile Thr Leu Asp Leu Leu Ser Gly Arg Leu Tyr 565 570 575 Trp Val Asp Ser Lys Leu His Ser Ile Ser Ser Ile Asp Val Aεn Gly
580 585 590
Gly Asn Arg Lys Thr Ile Leu Glu Asp Glu Lys Arg Leu Ala Hiε Pro 595 600 605
Phe Ser Leu Ala Val Phe Glu Aεp Lyε Val Phe Trp Thr Asp Ile Ile 610 615 620
Asn Glu Ala Ile Phe Ser Ala Aεn Arg Leu Thr Gly Ser Aεp Val Aεn 625 630 635 640
Leu Leu Ala Glu Asn Leu Leu Ser Pro Glu Asp Met Val Leu Phe Hiε 645 650 655 Asn Leu Thr Gin Pro Arg Gly Val Asn Trp Cys Glu Arg Thr Thr Leu 660 665 670
Ser Asn Gly Gly Cys Gin Tyr Leu Cys Leu Pro Ala Pro Gin Ile Asn 675 680 685
Pro His Ser Pro Lys Phe Thr Cys Ala Cys Pro Asp Gly Met Leu Leu 690 695 700
Ala Arg Asp Met Arg Ser Cyε Leu Thr Glu Ala Glu Ala Ala Val Ala 705 710 715 720
Thr Gin Glu Thr Ser Thr Val Arg Leu Lyε Val Ser Ser Thr Ala Val 725 730 735
Arg Thr Gin Hiε Thr Thr Thr Arg Pro Val Pro Aεp Thr Ser Arg Leu 740 745 750
Pro Gly Ala Thr Pro Gly Leu Thr Thr Val Glu Ile Val Thr Met Ser 755 760 765
His Gin Ala Leu Gly Asp Val Ala Gly Arg Gly Asn Glu Lys Lyε Pro 770 775 780
Ser Ser Val Arg Ala Leu Ser Ile Val Leu Pro Ile Val Leu Leu Val 785 790 795 800
Phe Leu Cys Leu Gly Val Phe Leu Leu Trp Lyε Asn Trp Arg Leu Lyε 805 810 815
Asn Ile Aεn Ser Ile Asn Phe Asp Asn Pro Val Tyr Gin Lys Thr Thr 820 825 830
Glu Asp Glu Val Hiε Ile Cyε Hiε Asn Gin Asp Gly Tyr Ser Tyr Pro 835 840 845
Ser Arg Gin Met Val Ser Leu Glu Aεp Aεp Val Ala 850 855 860
(2) INFORMATION ZU SEQ ID NO: 4:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 4492 Aminosäuren
(B) ART: Aminosäure (C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Peptid
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:
Met Leu Thr Pro Pro Leu Leu Leu Leu Leu Pro Leu Leu Ser Ala Leu 1 5 10 15
Val Ala Ala Ala Ile Asp Ala Pro Lys Thr Cys Ser Pro Lys Gin Phe 20 25 30 Ala Cyε Arg Aεp Gin Ile Thr Cyε Ile Ser Lyε Gly Trp Arg Cyε Asp 35 40 45 Gly Glu Arg Asp Cys Pro Asp Gly Ser Asp Glu Ala Pro Glu Ile Cys 50 55 60
Pro Gin Ser Lys Ala Gin Arg Cys Gin Pro Asn Glu His Asn Cys Leu 65 70 75 80
Gly Thr Glu Leu Cys Val Pro Met Ser Arg Leu Cyε Aεn Gly Val Gin 85 90 95
Asp Cys Met Asp Gly Ser Asp Glu Gly Pro Hiε Cyε Arg Glu Leu Gin 100 105 110
Gly Aεn Cys Ser Arg Leu Gly Cyε Gin His His Cys Val Pro Thr Leu 115 120 125
Asp Gly Pro Thr Cys Tyr Cyε Asn Ser Ser Phe Gin Leu Gin Ala Asp 130 135 140
Gly Lyε Thr Cys Lyε Asp Phe Asp Glu Cys Ser Val Tyr Gly Thr Cyε 145 150 155 160
Ser Gin Leu Cys Thr Asn Thr Asp Gly Ser Phe Ile Cyε Gly Cys Val 165 170 175
Glu Gly Tyr Leu Leu Gin Pro Asp Asn Arg Ser Cys Lys Ala Lyε Asn 180 185 190
Glu Pro Val Asp Arg Pro Pro Val Leu Leu Ile Ala Asn Ser Gin Asn 195 200 205
Ile Leu Met Pro Gly Leu Lys Gly Phe Val Asp Glu His Thr Ile Asn 210 215 220
Ile Ser Leu Ser Leu His His Val Glu Gin Met Ala Ile Asp Trp Leu 225 230 235 240
Thr Gly Asn Phe Tyr Phe Val Aεp Aεp Ile Aεp Asp Arg Ile Phe Val 245 250 255
Cys Asn Arg Asn Gly Aεp Thr Cys Val Thr Leu Leu Asp Leu Glu Leu 260 265 270 Tyr Asn Pro Lys Gly Ile Ala Leu Asp Pro Ala Met Gly Lys Val Phe 275 280 285
Phe Thr Asp Tyr Gly Gin Ile Pro Lys Val Glu Arg Cys Asp Met Asp 290 295 300
Gly Gin Asn Arg Thr Lys Leu Val Asp Ser Lys Ile Val Phe Pro Hiε 305 310 315 320
Gly Ile Thr Leu Asp Leu Val Ser Arg Leu Val Tyr Trp Ala Asp Ala 325 330 335
Tyr Leu Asp Tyr Ile Glu Val Val Asp Tyr Glu Gly Lys Gly Arg Gin 340 345 350 Thr Ile Ile Gin Gly Ile Leu Ile Glu His Leu Tyr Gly Leu Thr Val 355 360 365
Phe Glu Aεn Tyr Leu Tyr Ala Thr Asn Ser Asp Aεn Ala Aεn Ala Gin 370 375 380
Gin Lys Thr Ser Val Ile Arg Val Asn Arg Phe Asn Ser Thr Glu Tyr 385 390 395 400 Gin Val Val Thr Arg Val Asp Lys Gly Gly Ala Leu Hiε Ile Tyr His 405 410 415
Gin Arg Arg Gin Pro Arg Val Arg Ser Hiε Ala Cyε Glu Aεn Asp Gin 420 425 430
Tyr Gly Lyε Pro Gly Gly Cyε Ser Asp Ile Cys Leu Leu Ala Asn Ser 435 440 445 His Lys Ala Arg Thr Cyε Arg Cys Arg Ser Gly Phe Ser Leu Gly Ser 450 455 460
Asp Gly Lys Ser Cys Lyε Lyε Pro Glu His Glu Leu Phe Leu Val Tyr 465 470 475 480
Gly Lys Gly Arg Pro Gly Ile Ile Arg Gly Met Asp Met Gly Ala Lyε 485 490 495
Val Pro Aεp Glu Hiε Met Ile Pro Ile Glu Aεn Leu Met Aεn Pro Arg 500 505 510
Ala Leu Aεp Phe His Ala Glu Thr Gly Phe Ile Tyr Phe Ala Asp Thr 515 520 525
Thr Ser Tyr Leu Ile Gly Arg Gin Lys Ile Asp Gly Thr Glu Arg Glu 530 535 540
Thr Ile Leu Lyε Asp Gly Ile His Asn Val Glu Gly Val Ala Val Asp 545 550 555 560
Trp Met Gly Aεp Asn Leu Tyr Trp Thr Asp Asp Gly Pro Lys Lys Thr 565 570 575
Ile Ser Val Ala Arg Leu Glu Lys Ala Ala Gin Thr Arg Lys Thr Leu 580 585 590
Ile Glu Gly Lys Met Thr Hiε Pro Arg Ala Ile Val Val Asp Pro Leu 595 600 605
Asn Gly Trp Met Tyr Trp Thr Asp Trp Glu Glu Asp Pro Lyε Aεp Ser 610 615 620 Arg Arg Gly Arg Leu Glu Arg Ala Trp Met Asp Gly Ser His Arg Asp 625 630 635 640
Ile Phe Val Thr Ser Lys Thr Val Leu Trp Pro Asn Gly Leu Ser Leu 645 650 655
Asp Ile Pro Ala Gly Arg Leu Tyr Trp Val Asp Ala Phe Tyr Asp Arg 660 665 670
Ile Glu Thr Ile Leu Leu Asn Gly Thr Asp Arg Lys Ile Val Tyr Glu 675 680 685
Gly Pro Glu Leu Asn His Ala Phe Gly Leu Cyε His His Gly Asn Tyr 690 695 700 Leu Phe Trp Thr Glu Tyr Arg Ser Gly Ser Val Tyr Arg Leu Glu Arg 705 710 715 720
Gly Val Gly Gly Ala Pro Pro Thr Val Thr Leu Leu Arg Ser Glu Arg 725 730 735
Pro Pro Ile Phe Glu Ile Arg Met Tyr Aεp Ala Gin Gin Gin Gin Val 740 745 750
ERSATZBLATT Gly Thr Asn Lys Cys Arg Val Asn Aεn Gly Gly Cys Ser Ser Leu Cyε 755 760 765
Leu Ala Thr Pro Gly Ser Arg Gin Cys Ala Cys Ala Glu Aεp Gin Val 770 775 780
Leu Aεp Ala Aεp Gly Val Thr Cyε Leu Ala Aεn Pro Ser Tyr Val Pro 785 790 795 800 Pro Pro Gin Cyε Gin Pro Gly Glu Phe Ala Cys Ala Asn Ser Arg Cys
805 810 815
Ile Gin Glu Arg Trp Lys Cys Asp Gly Asp Asn Asp Cys Leu Asp Asn 820 825 830
Ser Asp Glu Ala Pro Ala Leu Cyε His Gin Hiε Thr Cys Pro Ser Asp 835 840 845
Arg Phe Lys Cys Glu Asn Asn Arg Cyε Ile Pro Asn Arg Trp Leu Cys 850 855 860
Asp Gly Asp Asn Asp Cys Gly Asn Ser Glu Asp Glu Ser Asn Ala Thr 865 870 875 880
Cyε Ser Ala Arg Thr Cyε Pro Pro Asn Gin Phe Ser Cyε Ala Ser Gly 885 890 895
Arg Cyε Ile Pro Ile Ser Trp Thr Cys Asp Leu Asp Asp Asp Cyε Gly 900 905 910
Asp Arg Ser Asp Glu Ser Ala Ser Cys Ala Tyr Pro Thr Cys Phe Pro 915 920 925
Leu Thr Gin Phe Thr Cys Asn Asn Gly Arg Cyε Ile Asn Ile Aεn Trp 930 935 940
Arg Cyε Aεp Asn Asp Aεn Aεp Cyε Gly Asp Asn Ser Aεp Glu Ala Gly 945 950 955 960
Cys Ser His Ser Cys Ser Ser Thr Gin Phe Lys Cys Asn Ser Gly Arg 965 970 975
Cys Ile Pro Glu Hiε Trp Thr Cyε Aεp Gly Aεp Aεn Aεp Cys Gly Asp 980 985 990
Tyr Ser Asp Glu Thr His Ala Asn Cys Thr Asn Gin Ala Thr Arg Pro 995 1000 1005
Pro Gly Gly Cyε His Thr Asp Glu Phe Gin Cys Arg Leu Asp Gly Leu 1010 1015 1020
Cys Ile Pro Leu Arg Trp Arg Cys Asp Gly Asp Thr Asp Cys Met Asp 1025 1030 1035 1040
Ser Ser Asp Glu Lys Ser Cys Glu Gly Val Thr His Val Cys Asp Pro 1045 1050 1055 Ser Val Lys Phe Gly Cys Lys Asp Ser Ala Arg Cyε Ile Ser Lyε Ala
1060 1065 1070
Trp Val Cyε Aεp Gly Aεp Aεn Asp Cys Glu Asp Asn Ser Asp Glu Glu 1075 1080 1085
Asn Cyε Glu Ser Leu Ala Cyε Arg Pro Pro Ser His Pro Cys Ala Asn 1090 1095 1100
ATZBLATT Asn Thr Ser Val Cys Leu Pro Pro Aεp Lys Leu Cyε Aεp Gly Asn Aεp 1105 1110 1115 1120
Aεp Cyε Gly Asp Gly Ser Asp Glu Gly Glu Leu Cyε Asp Gin Cys Ser 1125 1130 1135
Leu Asn Aεn Gly Gly Cyε Ser His Asn Cys Ser Val Ala Pro Gly Glu 1140 1145 1150 Gly Ile Val Cyε Ser Cyε Pro Leu Gly Met Glu Leu Gly Pro Aεp Aεn 1155 1160 1165
His Thr Cys Gin Ile Gin Ser Tyr Cyε Ala Lyε His Leu Lys Cys Ser 1170 1175 1180
Gin Lys Cys Asp Gin Aεn Lys Phe Ser Val Lyε Cyε Ser Cyε Tyr Glu 1185 1190 1195 1200
Gly Trp Val Leu Glu Pro Aεp Gly Glu Ser Cyε Arg Ser Leu Asp Pro
1205 1210 1215
Phe Lys Pro Phe Ile Ile Phe Ser Asn Arg His Glu Ile Arg Arg Ile 1220 1225 1230
Asp Leu His Lys Gly Asp Tyr Ser Val Leu Val Pro Gly Leu Arg Aεn 1235 1240 1245
Thr Ile Ala Leu Aεp Phe His Leu Ser Gin Ser Ala Leu Tyr Trp Thr 1250 1255 1260
Aεp Val Val Glu Asp Lys Ile Tyr Arg Gly Lyε Leu Leu Aεp Aεn Gly 1265 1270 1275 1280 Ala Leu Thr Ser Phe Glu Val Val Ile Gin Tyr Gly Leu Ala Thr Pro
1285 1290 1295
Glu Gly Leu Ala Val Aεp Trp Ile Ala Gly Aεn Ile Tyr Trp Val Glu 1300 1305 1310
Ser Aεn Leu Asp Gin Ile Glu Val Ala Lys Leu Asp Gly Thr Leu Arg 1315 1320 1325 Thr Thr Leu Leu Ala Gly Asp Ile Glu His Pro Arg Ala Ile Ala Leu 1330 1335 1340
Asp Pro Arg Asp Gly Ile Leu Phe Trp Thr Asp Trp Asp Ala Ser Leu 1345 1350 1355 1360
Pro Arg Ile Glu Ala Ala Ser Met Ser Gly Ala Gly Arg Arg Thr Val 1365 1370 1375
His Arg Glu Thr Gly Ser Gly Gly Trp Pro Aεn Gly Leu Thr Val Asp 1380 1385 1390
Tyr Leu Glu Lys Arg Ile Leu Trp Ile Aεp Ala Arg Ser Aεp Ala Ile 1395 1400 1405 Tyr Ser Ala Arg Tyr Aεp Gly Ser Gly His Met Glu Val Leu Arg Gly 1410 1415 1420
Hiε Glu Phe Leu Ser Hiε Pro Phe Ala Val Thr Leu Tyr Gly Gly Glu 1425 1430 1435 1440
Val Tyr Trp Thr Asp Trp Arg Thr Asn Thr Leu Ala Lys Ala Asn Lys 1445 1450 1455 Trp Thr Gly His Asn Val Thr Val Val Gin Arg Thr Asn Thr Gin Pro 1460 1465 1470
Phe Asp Leu Gin Val Tyr Hiε Pro Ser Arg Gin Pro Met Ala Pro Aεn 1475 1480 1485
Pro Cys Glu Ala Asn Gly Gly Gin Gly Pro Cys Ser Hiε Leu Cys Leu 1490 1495 1500 Ile Asn Tyr Asn Arg Thr Val Ser Cys Ala Cys Pro His Leu Met Lyε 1505 1510 1515 1520
Leu His Lyε Aεp Aεn Thr Thr Cyε Tyr Glu Phe Lyε Lyε Phe Leu Leu 1525 1530 1535
Tyr Ala Arg Gin Met Glu Ile Arg Gly Val Asp Leu Asp Ala Pro Tyr 1540 1545 1550
Tyr Asn Tyr Ile Ile Ser Phe Thr Val Pro Asp Ile Asp Asn Val Thr 1555 1560 1565
Val Leu Aεp Tyr Aεp Ala Arg Glu Gin Arg Val Tyr Trp Ser Aεp Val 1570 1575 1580
Arg Thr Gin Ala Ile Lyε Arg Ala Phe Ile Asn Gly Thr Gly Val Glu 1585 1590 1595 1600
Thr Val Val Ser Ala Aεp Leu Pro Asn Ala His Gly Leu Ala Val Asp 1605 1610 1615
Trp Val Ser Arg Asn Leu Phe Trp Thr Ser Tyr Asp Thr Asn Lys Lys 1620 1625 1630 Gin Ile Asn Val Ala Arg Leu Asp Gly Ser Phe Lyε Asn Ala Val Val 1635 1640 1645
Gin Gly Leu Glu Gin Pro Hiε Gly Leu Val Val His Pro Leu Arg Gly 1650 1655 1660
Lys Leu Tyr Trp Thr Asp Gly Asp Asn Ile Ser Met Ala Asn Met Asp 1665 1670 1675 1680 Gly Ser Asn Arg Thr Leu Leu Phe Ser Gly Gin Lys Gly Pro Val Gly
1685 1690 1695
Leu Ala Ile Asp Phe Pro Glu Ser Lys Leu Tyr Trp Ile Ser Ser Gly 1700 1705 1710
Asn His Thr Ile Asn Arg Cyε Asn Leu Asp Gly Ser Gly Leu Glu Val 1715 1720 1725
Ile Asp Ala Met Arg Ser Gin Leu Gly Lys Ala Thr Ala Leu Ala Ile 1730 1735 1740
Met Gly Aεp Lys Leu Trp Trp Ala Asp Gin Val Ser Glu Lys Met Gly 1745 1750 1755 1760 Thr Cys Ser Lyε Ala Aεp Gly Ser Gly Ser Val Val Leu Arg Aεn Ser
1765 1770 1775
Thr Thr Leu Val Met Hiε Met Lys Val Tyr Asp Glu Ser Ile Gin Leu 1780 1785 1790
Asp His Lys Gly Thr Aεn Pro Cyε Ser Val Aεn Aεn Gly Aεp Cyε Ser 1795 1800 1805
ERSAT Gin Leu Cys Leu Pro Thr Ser Glu Thr Thr Arg Ser Cys Met Cys Thr 1810 1815 1820
Ala Gly Tyr Ser Leu Arg Ser Gly Gin Gin Ala Cys Glu Gly Val Gly 1825 1830 1835 1840
Ser Phe Leu Leu Tyr Ser Val Hiε Glu Gly Ile Arg Gly Ile Pro Leu 1845 1850 1855 Aεp Pro Asn Asp Lyε Ser Asp Ala Leu Val Pro Val Ser Gly Thr Ser
1860 1865 1870
Leu Ala Val Gly Ile Asp Phe His Ala Glu Asn Asp Thr Ile Tyr Trp 1875 1880 1885
Val Asp Met Gly Leu Ser Thr Ile Ser Arg Ala Lys Arg Asp Gin Thr 1890 1895 1900
Trp Arg Glu Asp Val Val Thr Asn Gly Ile Gly Arg Val Glu Gly Ile 1905 1910 1915 1920
Ala Val Asp Trp Ile Ala Gly Aεn Ile Tyr Trp Thr Asp Gin Gly Phe 1925 1930 1935
Asp Val Ile Val Ala Arg Leu Asn Gly Ser Phe Arg Tyr Val Val Ile 1940 1945 1950
Ser Gin Gly Leu Aεp Lyε Pro Arg Ala Ile Thr Val His Pro Glu Lyε 1955 1960 1965
Gly Tyr Leu Phe Trp Thr Glu Trp Gly Gin Tyr Pro Arg Ile Glu Arg 1970 1975 1980 Ser Arg Leu Aεp Gly Thr Glu Arg Val Val Leu Val Asn Val Ser Ile 1985 1990 1995 2000
Ser Trp Pro Aεn Gly Ile Ser Val Aεp Tyr Gin Aεp Gly Lys Leu Tyr 2005 2010 2015
Trp Cys Asp Ala Arg Thr Asp Lyε Ile Glu Arg Ile Asp Leu Glu Thr 2020 2025 2030
Gly Glu Asn Arg Glu Val Val Leu Ser Ser Asn Aεn Met Asp Met Phe 2035 2040 2045
Ser Val Ser Val Phe Glu Asp Phe Ile Tyr Trp Ser Asp Arg Thr His 2050 2055 2060
Ala Asn Gly Ser Ile Lys Arg Gly Ser Lys Asp Asn Ala Thr Aεp Ser 2065 2070 2075 2080
Val Pro Leu Arg Thr Gly Ile Gly Val Gin Leu Lys Asp Ile Lys Val 2085 2090 2095
Phe Asn Arg Asp Arg Gin Lyε Gly Thr Aεn Val Cyε Ala Val Ala Asn 2100 2105 2110 Gly Gly Cys Gin Gin Leu Cys Leu Tyr Arg Gly Arg Gly Gin Arg Ala 2115 2120 2125
Cyε Ala Cys Ala His Gly Met Leu Ala Glu Asp Gly Ala Ser Cys Arg 2130 2135 2140
Glu Tyr Ala Gly Tyr Leu Leu Tyr Ser Glu Arg Thr Ile Leu Lyε Ser 2145 2150 2155 2160
ERSATZBLATT Ile Hiε Leu Ser Asp Glu Arg Asn Leu Asn Ala Pro Val Gin Pro Phe 2165 2170 2175
Glu Asp Pro Glu His Met Lys Asn Val Ile Ala Leu Ala Phe Asp Tyr 2180 2185 2190
Arg Ala Gly Thr Ser Pro Gly Thr Pro Asn Arg Ile Phe Phe Ser Aεp 2195 2200 2205 Ile His Phe Gly Asn Ile Gin Gin Ile Asn Asp Asp Gly Ser Arg Arg 2210 2215 2220
Ile Thr Ile Val Glu Asn Val Gly Ser Val Glu Gly Leu Ala Tyr His 2225 2230 2235 2240
Arg Gly Trp Asp Thr Leu Tyr Trp Thr Ser Tyr Thr Thr Ser Thr Ile 2245 2250 2255
Thr Arg His Thr Val Aεp Gin Thr Arg Pro Gly Ala Phe Glu Arg Glu
2260 2265 2270
Thr Val Ile Thr Met Ser Gly Aεp Aεp Hiε Pro Arg Ala Phe Val Leu 2275 2280 2285
Aεp Glu Cys Gin Asn Leu Met Phe Trp Thr Asn Trp Asn Glu Gin His 2290 2295 2300
Pro Ser Ile Met Arg Ala Ala Leu Ser Gly Ala Asn Val Leu Thr Leu 2305 2310 2315 2320
Ile Glu Lys Asp Ile Arg Thr Pro Asn Gly Leu Ala Ile Asp Hiε Arg 2325 2330 2335 Ala Glu Lys Leu Tyr Phe Ser Asp Ala Thr Leu Asp Lys Ile Glu Arg
2340 2345 2350
Cys Glu Tyr Asp Gly Ser His Arg Tyr Val Ile Leu Lys Ser Glu Pro 2355 2360 2365
Val Hiε Pro Phe Gly Leu Ala Val Tyr Gly Glu Hiε Ile Phe Trp Thr 2370 2375 2380
Asp Trp Val Arg Arg Ala Val Gin Arg Ala Asn Lys Hiε Val Gly Ser 2385 2390 2395 2400
Asn Met Lyε Leu Leu Arg Val Asp Ile Pro Gin Gin Pro Met Gly Ile 2405 2410 2415
Ile Ala Val Ala Asn Aεp Thr Aεn Ser Cys Glu Leu Ser Pro Cys Arg 2420 2425 2430
Ile Asn Asn Gly Gly Cys Gin Aεp Leu Cys Leu Leu Thr Hiε Gin Gly 2435 2440 2445
His Val Asn Cys Ser Cys Arg Gly Gly Arg Ile Leu Gin Aεp Asp Leu 2450 2455 2460 Thr Cyε Arg Ala Val Asn Ser Ser Cyε Arg Ala Gin Asp Glu Phe Glu 2465 2470 2475 2480
Cys Ala Asn Gly Glu Cys Ile Asn Phe Ser Leu Thr Cyε Asp Gly Val 2485 2490 2495
Pro Hiε Cyε Lys Asp Lys Ser Asp Glu Lys Pro Ser Tyr Cys Asn Ser 2500 2505 2510
ERSATZBLATT Arg Arg Cys Lys Lyε Thr Phe Arg Gin Cys Ser Asn Gly Arg Cyε Val 2515 2520 2525
Ser Aεn Met Leu Trp Cys Aεn Gly Ala Asp Asp Cyε Gly Aεp Gly Ser 2530 2535 2540
Asp Glu Ile Pro Cys Asn Lys Thr Ala Cyε Gly Val Gly Glu Phe Arg 2545 2550 2555 2560 Cys Arg Asp Gly Thr Cys Ile Gly Asn Ser Ser Arg Cys Asn Gin Phe
2565 2570 2575
Val Asp Cys Glu Asp Ala Ser Asp Glu Met Asn Cyε Ser Ala Thr Aεp 2580 2585 2590
Cyε Ser Ser Tyr Phe Arg Leu Gly Val Lyε Gly Val Leu Phe Gin Pro 2595 2600 2605
Cys Glu Arg Thr Ser Leu Cys Tyr Ala Pro Ser Trp Val Cyε Aεp Gly 2610 2615 2620
Ala Aεn Aεp Cys Gly Asp Tyr Ser Aεp Glu Arg Aεp Cyε Pro Gly Val 2625 2630 2635 2640
Lyε Arg Pro Arg Cys Pro Leu Asn Tyr Phe Ala Cyε Pro Ser Gly Arg 2645 2650 2655
Cyε Ile Pro Met Ser Trp Thr Cys Asp Lys Glu Asp Asp Cys Glu His 2660 2665 2670
Gly Glu Asp Glu Thr His Cys Asn Lys Phe Cys Ser Glu Ala Gin Phe 2675 2680 2685
Glu Cyε Gin Asn Hiε Arg Cyε Ile Ser Lyε Gin Trp Leu Cys Asp Gly 2690 2695 2700
Ser Asp Asp Cys Gly Asp Gly Ser Asp Glu Ala Ala His Cys Glu Gly 2705 2710 2715 2720
Lys Thr Cyε Gly Pro Ser Ser Phe Ser Cys Pro Gly Thr His Val Cyε 2725 2730 2735
Val Pro Glu Arg Trp Leu Cys Asp Gly Asp Lys Asp Cyε Ala Aεp Gly 2740 2745 2750
Ala Asp Glu Ser Ile Ala Ala Gly Cys Leu Tyr Aεn Ser Thr Cyε Asp 2755 2760 2765
Asp Arg Glu Phe Met Cyε Gin Asn Arg Gin Cys Ile Pro Lys His Phe 2770 2775 2780
Val Cys Asp His Asp Arg Asp Cys Ala Asp Gly Ser Asp Glu Ser Pro 2785 2790 2795 2800
Glu Cys Glu Tyr Pro Thr Cys Gly Pro Ser Glu Phe Arg Cys Ala Asn 2805 2810 2815 Gly Arg Cyε Leu Ser Ser Arg Gin Trp Glu Cys Asp Gly Glu Aεn Aεp
2820 2825 2830
Cyε His Aεp Gin Ser Aεp Glu Ala Pro Lyε Asn Pro His Cys Thr Ser 2835 2840 2845
Pro Glu His Lys Cys Aεn Ala Ser Ser Gin Phe Leu Cyε Ser Ser Gly 2850 2855 2860
ERSATZBLAT Arg Cys Val Ala Glu Ala Leu Leu Cyε Aεn Gly Gin Aεp Aεp Cyε Gly 2865 2870 2875 2880
Asp Ser Ser Asp Glu Arg Gly Cyε His Ile Asn Glu Cyε Leu Ser Arg 2885 2890 2895
Lyε Leu Ser Gly Cys Ser Gin Asp Cyε Glu Asp Leu Lys Ile Gly Phe 2900 2905 2910 Lyε Cyε Arg Cyε Arg Pro Gly Phe Arg Leu Lyε Aεp Aεp Gly Arg Thr 2915 2920 2925
Cys Ala Asp Val Asp Glu Cyε Ser Thr Thr Phe Pro Cyε Ser Gin Arg 2930 2935 2940
Cys Ile Asn Thr Hiε Gly Ser Tyr Lyε Cyε Leu Cyε Val Glu Gly Tyr 2945 2950 2955 2960
Ala Pro Arg Gly Gly Asp Pro His Ser Cyε Lyε Ala Val Thr Asp Glu 2965 2970 2975
Glu Pro Phe Leu Ile Phe Ala Aεn Arg Tyr Tyr Leu Arg Lyε Leu Aεn 2980 2985 2990
Leu Aεp Gly Ser Aεn Tyr Leu Leu Lyε Gin Gly Leu Asn Asn Ala Val 2995 3000 3005
Ala Leu Asp Phe Asp Tyr Arg Glu Gin Met Ile Tyr Trp Thr Asp Val 3010 3015 3020
Thr Thr Gin Gly Ser Met Ile Arg Arg Met Hiε Leu Asn Gly Ser Asn 3025 3030 3035 3040
Val Gin Val Leu His Arg Thr Gly Leu Ser Aεn Pro Asp Gly Leu Ala 3045 3050 3055
Val Aεp Trp Val Gly Gly Aεn Leu Tyr Trp Cys Asp Lys Gly Arg Asp 3060 3065 3070
Thr Ile Glu Val Ser Lyε Leu Asn Gly Ala Tyr Arg Thr Val Leu Val 3075 3080 3085
Ser Ser Gly Leu Arg Glu Pro Arg Ala Leu Val Val Asp Val Gin Asn 3090 3095 3100
Gly Tyr Leu Tyr Trp Thr Aεp Trp Gly Asp His Ser Leu Ile Gly Arg 3105 3110 3115 3120 He Gly Met Asp Gly Ser Ser Arg Ser Val Ile Val Asp Thr Lyε Ile
3125 3130 3135
Thr Trp Pro Asn Gly Leu Thr Leu Asp Tyr Val Thr Glu Arg Ile Tyr 3140 3145 3150
Trp Ala Asp Ala Arg Glu Aεp Tyr Ile Glu Phe Ala Ser Leu Aεp Gly 3155 3160 3165 Ser Asn Arg His Val Val Leu Ser Gin Aεp Ile Pro Hiε Ile Phe Ala 3170 3175 3180
Leu Thr Leu Phe Glu Asp Tyr Val Tyr Trp Thr Asp Trp Glu Thr Lys 3185 3190 3195 3200
Ser Ile Asn Arg Ala Hiε Lyε Thr Thr Gly Thr Asn Lys Thr Leu Leu 3205 3210 3215 Ile Ser Thr Leu Hiε Arg Pro Met Asp Leu Hiε Val Phe His Ala Leu 3220 3225 3230
Arg Gin Pro Asp Val Pro Asn His Pro Cys Lyε Val Aεn Asn Gly Gly 3235 3240 3245
Cys Ser Asn Leu Cyε Leu Leu Ser Pro Gly Gly Gly His Lyε Cys Ala 3250 3255 3260 Cys Pro Thr Asn Phe Tyr Leu Gly Ser Aεp Gly Arg Thr Cyε Val Ser 3265 3270 3275 3280
Aεn Cys Thr Ala Ser Gin Phe Val Cyε Lyε Aεn Aεp Lys Cyε Ile Pro 3285 3290 3295
Phe Trp Trp Lyε Cyε Aεp Thr Glu Aεp Aεp Cyε Gly Aεp Hiε Ser Aεp 3300 3305 3310
Glu Pro Pro Asp Cyε Pro Glu Phe Lyε Cys Arg Pro Gly Gin Phe Gin 3315 3320 3325
Cyε Ser Thr Gly Ile Cyε Thr Asn Pro Ala Phe Ile Cyε Asp Gly Asp 3330 3335 3340
Asn Asp Cys Gin Asp Asn Ser Asp Glu Ala Asn Cys Aεp Ile His Val 3345 3350 3355 3360
Cyε Leu Pro Ser Gin Phe Lyε Cyε Thr Asn Thr Asn Arg Cyε Ile Pro 3365 3370 3375
Gly Ile Phe Arg Cyε Aεn Gly Gin Asp Asn Cys Gly Asp Gly Glu Aεp 3380 3385 3390
Glu Arg Asp Cys Pro Glu Val Thr Cyε Ala Pro Aεn Gin Phe Gin Cyε 3395 3400 3405
Ser Ile Thr Lyε Arg Cyε Ile Pro Arg Val Trp Val Cyε Aεp Arg Asp 3410 3415 3420
Asn Asp Cys Val Asp Gly Ser Asp Glu Pro Ala Asn Cys Thr Gin Met 3425 3430 3435 3440
Thr Cyε Gly Val Asp Glu Phe Arg Cyε Lyε Asp Ser Gly Arg Cys Ile 3445 3450 3455
Pro Ala Arg Trp Lys Cys Asp Gly Glu Asp Asp Cys Gly Asp Gly Ser 3460 3465 3470 Asp Glu Pro Lys Glu Glu Cys Aεp Glu Arg Thr Cys Glu Pro Tyr Gin 3475 3480 3485
Phe Arg Cys Lys Asn Asn Arg Cys Val Pro Gly Arg Trp Gin Cys Asp 3490 3495 3500
Tyr Asp Asn Asp Cys Gly Aεp Aεn Ser Asp Glu Glu Ser Cys Thr Pro 3505 3510 3515 3520 Arg Pro Cyε Ser Glu Ser Glu Phe Ser Cys Ala Asn Gly Arg Cys Ile
3525 3530 3535
Ala Gly Arg Trp Lys Cyε Asp Gly Aεp Hiε Aεp Cyε Ala Aεp Gly Ser 3540 3545 3550
Aεp Glu Lyε Aεp Cyε Thr Pro Arg Cys Asp Met Asp Gin Phe Gin Cyε 3555 3560 3565 Lys Ser Gly Hiε Cyε Ile Pro Leu Arg Trp Arg Cyε Aεp Ala Aεp Ala 3570 3575 3580
Aεp Cyε Met Asp Gly Ser Asp Glu Glu Ala Cys Gly Thr Gly Val Arg 5 3585 3590 3595 3600
Thr Cyε Pro Leu Aεp Glu Phe Gin Cyε Aεn Aεn Thr Leu Cyε Lyε Pro 3605 3610 3615
10. Leu Ala Trp Lyε Cyε Aεp Gly Glu Aεp Aεp Cyε Gly Aεp Asn Ser Asp
3620 3625 3630
Glu Asn Pro Glu Glu Cys Ala Arg Phe Val Cys Pro Pro Asn Arg Pro 3635 3640 3645
15
Phe Arg Cys Lys Aεn Asp Arg Val Cys Leu Trp Ile Gly Arg Gin Cyε 3650 3655 3660
0 Asp Gly Thr Asp Asn Cyε Gly Aεp Gly Thr Aεp Glu Glu Aεp Cyε Glu 3665 3670 3675 3680
Pro Pro Thr Ala Hiε Thr Thr Hiε Cyε Lyε Asp Lys Lys Glu Phe Leu 3685 3690 3695 5
Cys Arg Asn Gin Arg Cys Leu Ser Ser Ser Leu Arg Cys Aεn Met Phe 3700 3705 3710
Aεp Asp Cys Gly Asp Gly Ser Asp Glu Glu Asp Cyε Ser Ile Aεp Pro 0 3715 3720 3725
Lyε Leu Thr Ser Cys Ala Thr Asn Ala Ser Ile Cyε Gly Aεp Glu Ala 3730 3735 3740 5 Arg Cys Val Arg Thr Glu Lys Ala Ala Tyr Cyε Ala Cyε Arg Ser Gly 3745 3750 3755 3760
Phe His Thr Val Pro Gly Gin Pro Gly Cys Gin Asp Ile Asn Glu Cyε 3765 3770 3775 0
Leu Arg Phe Gly Thr Cyε Ser Gin Leu Cys Asn Asn Thr Lys Gly Gly 3780 3785 3790
His Leu Cys Ser Cys Ala Arg Asn Phe Met Lys Thr His Asn Thr Cys 5 3795 3800 3805
Lyε Ala Glu Gly Ser Glu Tyr Gin Val Leu Tyr Ile Ala Asp Aεp Aεn 3810 3815 3820 0 Glu Ile Arg Ser Leu Phe Pro Gly Hiε Pro Hiε Ser Ala Tyr Glu Gin 3825 3830 3835 3840
Ala Phe Gin Gly Asp Glu Ser Val Arg Ile Asp Ala Met Aεp Val Hiε 3845 3850 3855 5
Val Lyε Ala Gly Arg Val Tyr Trp Thr Aεn Trp His Thr Gly Thr Ile 3860 3865 3870
0 Ser Tyr Arg Ser Leu Pro Pro Ala Ala Pro Pro Thr Thr Ser Asn Arg 3875 3880 3885
Hiε Arg Arg Gin Ile Aεp Arg Gly Val Thr His Leu Asn Ile Ser Gly 3890 3895 3900 5
Leu Lys Met Pro Arg Gly Ile Ala Ile Aεp Trp Val Ala Gly Aεn Val 3905 3910 3915 3920 Tyr Trp Thr Aεp Ser Gly Arg Aεp Val Ile Glu Val Ala Gin Met Lyε 3925 3930 3935
Gly Glu Asn Arg Lyε Thr Leu Ile Ser Gly Met Ile Aεp Glu Pro Hiε 3940 3945 3950
Ala Ile Val Val Asp Pro Leu Arg Gly Thr Met Tyr Trp Ser Asp Trp 3955 3960 3965 Gly Asn His Pro Lys Ile Glu Thr Ala Ala Met Asp Gly Thr Leu Arg 3970 3975 3980
Glu Thr Leu Val Gin Asp Asn Ile Gin Trp Pro Thr Gly Leu Ala Val 3985 3990 3995 4000
Asp Tyr His Asn Glu Arg Leu Tyr Trp Ala Asp Ala Lys Leu Ser Val 4005 4010 4015
Ile Gly Ser Ile Arg Leu Asn Gly Thr Aεp Pro Ile Val Ala Ala Aεp 4020 4025 4030
Ser Lyε Arg Gly Leu Ser Hiε Pro Phe Ser Ile Asp Val Phe Glu Aεp 4035 4040 4045
Tyr Ile Tyr Gly Val Thr Tyr Ile Asn Asn Arg Val Phe Lys Ile Hiε 4050 4055 4060
Lyε Phe Gly His Ser Pro Leu Val Asn Leu Thr Gly Gly Leu Ser His 4065 4070 4075 4080
Ala Ser Asp Val Val Leu Tyr Hiε Gin Hiε Lyε Gin Pro Glu Val Thr 4085 4090 4095 Aεn Pro Cyε Aεp Arg Lyε Lyε Cys Glu Trp Leu Cys Leu Leu Ser Pro
4100 4105 4110
Ser Gly Pro Val Cys Thr Cys Pro Asn Gly Lys Arg Leu Asp Asn Gly 4115 4120 4125
Thr Cyε Val Pro Val Pro Ser Pro Thr Pro Pro Pro Aεp Ala Pro Arg 4130 4135 4140
Pro Gly Thr Cyε Asn Leu Gin Cyε Phe Asn Gly Gly Ser Cys Phe Leu 4145 4150 4155 4160
Asn Ala Arg Arg Gin Pro Lys Cys Arg Cys Gin Pro Arg Tyr Thr Gly 4165 4170 4175 Asp Lys Cys Glu Leu Asp Gin Cyε Trp Glu Hiε Cyε Arg Aεn Gly Gly
4180 4185 4190
Thr Cys Ala Ala Ser Pro Ser Gly Met Pro Thr Cys Arg Cys Pro Thr 4195 4200 4205
Gly Phe Thr Gly Pro Lys Cyε Thr Gin Gin Val Cyε Ala Gly Tyr Cys 4210 4215 4220
Ala Asn Asn Ser Thr Cys Thr Val Asn Gin Gly Asn Gin Pro Gin Cyε 4225 4230 4235 4240
Arg Cys Leu Pro Gly Phe Leu Gly Asp Arg Cys Gin Tyr Arg Gin Cys 4245 4250 4255
Ser Gly Tyr Cys Glu Asn Phe Gly Thr Cys Gin Met Ala Ala Asp Gly 4260 4265 4270
ERSATZBLATT Ser Arg Gin Cys Arg Cys Thr Ala Tyr Phe Glu Gly Ser Arg Cys Glu 4275 4280 4285
Val Aεn Lyε Cyε Ser Arg Cyε Leu Glu Gly Ala Cyε Val Val Aεn Lys 4290 4295 4300
Gin Ser Gly Asp Val Thr Cyε Asn Cys Thr Asp Gly Arg Val Ala Pro 4305 4310 4315 4320 Ser Cys Leu Thr Cyε Val Gly His Cys Ser Asn Gly Gly Ser Cys Thr
4325 4330 4335
Met Asn Ser Lys Met Met Pro Glu Cys Gin Cyε Pro Pro Hiε Met Thr 4340 4345 4350
Gly Pro Arg Cyε Glu Glu His Val Phe Ser Gin Gin Gin Pro Gly His 4355 4360 4365
Ile Ala Ser Ile Leu Ile Pro Leu Leu Leu Leu Leu Leu Leu Val Leu 4370 4375 4380
Val Ala Gly Val Val Phe Trp Tyr Lys Arg Arg Val Gin Gly Ala Lys 4385 4390 4395 4400
Gly Phe Gin His Gin Arg Met Thr Asn Gly Ala Met Asn Val Glu Ile 4405 4410 4415
Gly Asn Pro Thr Tyr Lyε Met Tyr Glu Gly Gly Glu Pro Aεp Aεp Val 4420 4425 4430
Gly Gly Leu Leu Asp Ala Asp Phe Ala Leu Asp Pro Asp Lyε Pro Thr 4435 4440 4445 Asn Phe Thr Asn Pro Val Tyr Ala Thr Leu Tyr Met Gly Gly His Gly 4450 4455 4460
Ser Arg His Ser Leu Ala Ser Thr Aεp Glu Lyε Arg Glu Leu Leu Gly 4465 4470 4475 4480
Arg Gly Pro Glu Asp Glu Ile Gly Asp Pro Leu Ala 4485 4490
(2) INFORMATION ZU SEQ ID NO: 5:
(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 319 Aminosäuren
(B) ART: Aminosäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Peptid
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:
Arg Ser Ala Glu Lys Aεn Glu Pro Glu Met Ala Ala Lys Arg Glu Ser 1 5 10 15
Gly Glu Glu Phe Arg Met Glu Lys Leu Asn Gin Leu Trp Glu Lys Ala 20 25 30
ERSATZBLATT Lys Arg Leu Hiε Leu Ser Pro Val Arg Leu Ala Glu Leu His Ser Asp 35 40 45
Leu Lys Ile Gin Glu Arg Asp Glu Leu Asn Trp Lys Lyε Leu Lyε Val 50 55 60
Glu Gly Leu Asp Gly Asp Gly Glu Lys Glu Ala Lys Leu Val His Asn 65 70 75 80
Leu Asn Val Ile Leu Ala Arg Tyr Gly Leu Asp Gly Arg Lys Asp Thr 85 90 95
Gin Thr Val His Ser Asn Ala Leu Asn Glu Asp Thr Gin Aεp Glu Leu 100 105 110
Gly Aεp Pro Arg Leu Glu Lyε Leu Trp His Lys Ala Lys Thr Ser Gly 115 120 125
Ile Ser Val Arg Leu Thr Ser Cys Ala Arg Val Leu Hiε Tyr Lyε Glu 130 135 140
Lyε Ile Hiε Glu Tyr Aεn Val Leu Leu Aεp Thr Leu Ser Arg Ala Glu 145 150 155 160
Glu Gly Tyr Glu Asn Leu Leu Ser Pro Ser Asp Met Thr His Ile Lyε 165 170 175
Ser Asp Thr Leu Ala Ser Lys His Ser Glu Leu Lys Aεp Arg Leu Arg 180 185 190
Ser Ile Aεn Gin Gly Leu Aεp Arg Leu Arg Lyε Val Ser Hiε Gin Leu 195 200 205 Arg Pro Ala Thr Glu Phe Glu Glu Pro Arg Val Ile Aεp Leu Trp Asp 210 215 220
Leu Ala Gin Ser Ala Asn Phe Thr Glu Lyε Glu Leu Glu Ser Phe Arg 225 230 235 240
Glu Glu Leu Lyε Hiε Phe Glu Ala Lys Ile Glu Lys His Asn His Tyr 245 250 255
Gin Lys Gin Leu Glu Ile Ser His Gin Lys Leu Lys His Val Glu Ser 260 265 270
Ile Gly Asp Pro Glu Hiε Ile Ser Arg Aεn Lyε Glu Lyε Tyr Val Leu 275 280 285 Leu Glu Glu Lyε Thr Lyε Glu Leu Gly Tyr Lyε Val Lyε Lyε Hiε Leu 290 295 300
Gin Asp Leu Ser Ser Arg Val Ser Arg Ala Arg His Asn Glu Leu 305 310 315
ERSATZBLATT

Claims

PATENTANSPRÜCHE
1. Polypeptid, dadurch gekennzeichnet, daß es ein funktionelles Derivat eines Rezeptors für Rhinoviren der "kleinen Rhinovirus-Rezeptorgruppe" ist.
2. Polypeptid gemäß Anspruch 1, dadurch gekennzeichnet, daß es ein lösliches Derivat ist.
3. Polypeptid gemäß Anspruch 1-2, dadurch gekennzeichnet, daß es sich um die lösliche extrazelluläre Form eines Rezeptorproteins handelt.
4. Polypeptid gemäß einem der Ansprüche 1-3, dadurch gekennzeichnet, daß es aus der LDL-Rezeptorfamilie abgeleitet ist.
5. Polypeptid gemäß Anspruch 4, dadurch gekennzeichnet, daß es aus der Aminosäuresequenz des humanen LDL-Rezeptors gemäß Fig. 1 oder aus der des CX2-V-R/LRP gemäß Fig. 2 oder aus der des gp330 gemäß Fig. 3 abgeleitet ist.
6. Polypeptid gemäß Anspruch 5, dadurch gekennzeichnet, daß er im wesentlichen die Domäne 1, die Domänen 1 und 2 oder die Domänen 1, 2 und 3 eines Rezeptors aus der LDL-Rezeptorfamilie gemäß Fig. 4 umfaßt.
7. Polypeptid gemäß Anspruch 6, dadurch gekennzeichnet, daß es die Aminosäuresequenz gemäß SEQ.ID.NO.l oder SEQ.ED.NO.2 umfaßt.
8. Polypeptid gemäß Anspruch 6, dadurch gekennzeichnet, daß es im wesentlichen aus den Domänen 1 und 2 des LDL-Rezeptors besteht, von eukaryontischen Zellen freigesetzt wird und ein Molekulargewicht von ca. 120 kDa aufweist, wobei das
Molekulargewicht durch SDS-Gelelelektrophorese unter nicht-reduzierenden Bedingungen besαmmt ist.
9. Polypeptid gemäß einem der Ansprüche 1-8, dadurch gekennzeichnet, daß es als Dimer, Trimer, Tetramer oder Multimer vorliegt.
10. DNA, codierend für ein Polypeptid nach einem der Ansprüche 1-9.
11. DNA gemäß Anspruch 10, dadurch gekennzeichnet, daß es in einen Vektor eingefügt ist.
12. DNA gemäß Anspruch 11, dadurch gekennzeichnet, daß die DNA nach einem der vorhergehenden Ansprüche in einen Vektor in funktioneller Verbindung mit einer
Expressionskontrollsequenz verknüpft ist und in Mikroorganismen und/oder Säugetierzellen replizierbar ist.
13. Wirtsorganismus, dadurch gekennzeichnet, daß er mit einer DNA nach einem der Ansprüche 11 oder 12 transformiert ist.
14. Verfahren zur Herstellung eines DNA-Moleküls gemäß Anspruch 12, dadurch gekennzeichnet, daß man in eine mit Restriktionsendonukleasen geschnittene Vektor-DNA, die Expressionskontrollsequenzen enthält, eine mit entsprechenden Enden versehene DNA, die für ein fünktionelles Derivat desRezeptors der "kleinen
Rhinovirus-Rezeptorgruppe" gemäß Anspruch 10 kodiert, so einfügt, daß die Expressionskontrollsequenzen die Expression der eingefügten DNA reguliert.
15. Verfahren zur Herstellung eines fünktionellen Derivates eines Rezeptors der "kleinen Rhinovirus-Rezeptorgruppe", dadurch gekennzeichnet, daß das
Polypeptid durch enzymatische, bevorzugt proteolytische oder chemische, bevorzugt reduktive, Behandlung aus dem nativem Rezeptormolekülen genommen wird.
16. Verfahren zur Herstellung eines fünktionellen Derivates eines Rezeptors der "kleinen Rhinoviren- Rezeptorgruppe", dadurch gekennzeichnet, daß es durch Expression einer DNA gemäß einem der Ansprüche 10-12 erhalten wird.
17. Hybrid-Zellinie, dadurch gekennzeichnet, daß sie monoklonale Antikörper gegen eines der Polypeptide nach einem der Ansprüche 1 bis 9 sezerniert.
18. Monoklonale Antikörper, dadurch gekennzeichnet, daß sie spezifisch die Wirkung der Polypeptide nach einem der Ansprüche 1 bis 9 neutralisieren oder spezifisch an eines der besagten Polypeptide binden.
19. Verwendung der monoklonalen Antikörper nach Anspruch 18 zur qualitativen und/oder quantitativen Bestimmung oder zur Reinigung eines der Polypeptide nach einem der Ansprüche 1 bis 9.
20. Test Kit zur Bestimmung von Polypeptiden nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß er monoklonale Antikörper nach Anspruch 18 enthält.
21. Verfahren zur Herstellung von monoklonalen Antikörpern nach Anspruch 18, dadurch gekennzeichnet, daß Wirtstiere mit einem der Polypeptide nach einem der Ansprüche 1 bis 9 immunisiert, B-Lymphozyten dieser Wirtstiere mit Myelomzellen fusioniert, die die monoklonalen Antikörper ausscheidenden Hybrid- Zellinien subkloniert und kultiviert werden.
22. Verwendung der Polypeptide nach einem der Ansprüche 1 bis 9 sowie der nativen Rezeptormoleküle der LDL Rezeptorfamilie oder entsprechender pharmazeutisch geeigneter Salze zur therapeutischen oder prophylaktischen Behandlung des menschlichen Körpers.
23. Verwendung der Polypeptide nach einem der Ansprüche 1 bis 9 sowie der nativen Rezeptormoleküle der LDL Rezeptorfamilie als antivirale, insbesondere antirhinovirale Mittel.
24. Mittel zur therapeutischen Behandlung, dadurch gekennzeichnet, daß es neben pharmazeutisch inerten Trägerstoffen eine wirksame Menge eines Polypeptids nach einem der Ansprüche 1 bis 9 oder der nativen Rezeptormoleküle der LDL Rezeptorfamilie enthält.
25. Pharmazeutische Zusammensetzung enthaltend ein oder mehrere Polypeptide gemäß einem der Ansprüche 1-9 und ein geeignetes Trägermaterial.
26. Verwendung von Rhinovirusmaterial der "kleinen Rhinovirus-Rezeptorgruppe" zur Inhibition der Bindung physiologischer LDL-Liganden.
27. Verfahren zur Identifizierung von Substanzen, die die Bindung von Liganden an "Rezeptoren der LDL-Rezeptorfamilie" inhibieren, dadurch gekennzeichnet, daß a. der Rezeptor oder eine aus Kulturüberständen isolierbare lösliche Form des Rezeptors in Gegenwart einer potentiellen Inhibitorsubstanz mit b. markiertem Rhinovirusmaterial der "kleinen Rhinovirus- Rezeptorgruppe" inkubiert und c. das Ausmaß der Bindung bestimmt wird.
28. Verfahren zur Bestimmung von Rezeptoren aus der LDL-Rezeptorfamilie, dadurch gekennzeichnet, daß a. eine Substanz, abgeleitet von Virusmaterial aus der "kleinen Rhinovirus-Rezeptorgruppe" mit Bindungsaktivität zum Rezeptor markiert wird, b. mit der entsprechenden Probe inkubiert und c. das Ausmaß der Bindung des markierten Virusmaterials detektiert wird.
29. Verfahren zur Zuführung einer therapeutisch wirksamen Substanz in eine tragende Zelle, dadurch gekennzeichnet, daß a. Virusmaterial der "kleinen Rhinovirus-Rezeptorgruppe" mit Bindungsaktivität zum LDL-Rezeptor mit der therapeutischen Substanz gekoppelt wird und b. das besagte Material zu dem entsprechenden
Zellmaterial gegeben, an den Rezeptor gebunden und so die therapeutisch wirksame Substanz in die Zelle eingeführt wird.
EP93915793A 1992-07-08 1993-07-05 Rezeptorderivate mit bindungsstellen für humane rhinoviren Withdrawn EP0613498A1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE4222385 1992-07-08
DE4222385A DE4222385A1 (de) 1992-07-08 1992-07-08 Verfahren zur Isolierung von Inhibitoren des Rhinovirus-Rezeptors
DE19924227892 DE4227892A1 (de) 1992-08-22 1992-08-22 Derivate des Rezeptors der "kleinen Rhinovirus-Rezeptorgruppe" sowie die dafür codierenden DNA-Moleküle
DE4227892 1992-08-22
DE4305063 1993-02-19
DE19934305063 DE4305063A1 (de) 1993-02-19 1993-02-19 Rezeptorderivate
PCT/EP1993/001728 WO1994001553A1 (de) 1992-07-08 1993-07-05 Rezeptorderivate mit bindungsstellen für humane rhinoviren

Publications (1)

Publication Number Publication Date
EP0613498A1 true EP0613498A1 (de) 1994-09-07

Family

ID=27203940

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93915793A Withdrawn EP0613498A1 (de) 1992-07-08 1993-07-05 Rezeptorderivate mit bindungsstellen für humane rhinoviren

Country Status (11)

Country Link
EP (1) EP0613498A1 (de)
JP (1) JPH06510673A (de)
CN (1) CN1082609A (de)
AU (1) AU678978B2 (de)
CA (1) CA2117099A1 (de)
FI (1) FI941077A0 (de)
HU (1) HUT68246A (de)
IL (1) IL106287A0 (de)
MX (1) MX9304074A (de)
NZ (1) NZ254102A (de)
WO (1) WO1994001553A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130202A (en) * 1990-07-20 2000-10-10 Bayer Corporation Antiviral methods
US5496926A (en) 1992-01-19 1996-03-05 Yeda Research And Development Co. Ltd. Process of preparing a soluble LDL receptor
GB9314951D0 (en) * 1993-07-17 1993-09-01 Prodrive Eng Ltd Gear change mechanism
US8598332B1 (en) 1998-04-08 2013-12-03 Bayer Cropscience N.V. Methods and means for obtaining modified phenotypes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745060A (en) * 1984-12-28 1988-05-17 Board Of Regents, The University Of Texas System Methods and compositions for the detection of Familial Hypercholesterolemia
DE3712678A1 (de) * 1987-04-14 1988-10-27 Boehringer Ingelheim Int Rezeptor der kleinen rhinovirus rezeptor gruppe
EP0358977A1 (de) * 1988-08-23 1990-03-21 The General Hospital Corporation Kloniertes Nephritis-Antigen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9401553A1 *

Also Published As

Publication number Publication date
IL106287A0 (en) 1993-11-15
AU4564093A (en) 1994-01-31
CA2117099A1 (en) 1994-01-20
WO1994001553A1 (de) 1994-01-20
FI941077A (fi) 1994-03-08
AU678978B2 (en) 1997-06-19
FI941077A0 (fi) 1994-03-08
HUT68246A (en) 1995-06-28
NZ254102A (en) 1997-08-22
MX9304074A (es) 1994-05-31
JPH06510673A (ja) 1994-12-01
HU9400675D0 (en) 1994-06-28
CN1082609A (zh) 1994-02-23

Similar Documents

Publication Publication Date Title
DE69017753T3 (de) Tumor-Nekrosefaktor-Bindungsprotein II, seine Reinigung und spezifische Antikörper
DE69233441T2 (de) Menschliches Zelloberflächen-Antigen codierende DNA
EP0939121B1 (de) TFN-bindende Proteine
DE69333591T2 (de) CD40CR-Rezeptor und Liganden dafür
EP1003786B1 (de) Peptid mit radioprotektiver wirkung
DE69632949T2 (de) Die aktivierung von rezeptoren durch gas6
DE69534962T3 (de) Htk-ligand
DE69836638T2 (de) Peptidanaloga abgeleitet vom tumornekrose-faktor-rezeptor
DE69936538T2 (de) Neue methode zur erkennung eines stoffes, der die interaktion zwischen einem tnf-liganden und seinem rezeptor auf b-zellen moduliert
DE3902157A1 (de) Amphiregulin, verfahren zu dessen herstellung und pharmazeutische mittel
DE69532857T2 (de) Neurotrophischer AL-1 Faktor, einer Ligand verwandt mit dem EPH Tyrosine Kinase Receptor
EP0763061A1 (de) Verfahren zur herstellung von cardiodilatin-fragmenten, hochgereinigte cardiodilatin-fragmente und zwischenprodukte zu deren herstellung
DE69532436T2 (de) Einzelkettenformen des clycoprotein-hormon-quartetts
EP0710248A1 (de) Melanom-inhibierendes protein
EP1516054B1 (de) Fusionkonstrukte, enthaltend aktive abschnitte von tnf-liganden
DE69835519T2 (de) Verfahren und zusammensetzungen für die diagnose und die behandlung von krankheiten, die mit eisenüberschuss oder eisenmangel assoziiert sind.
WO1994001553A1 (de) Rezeptorderivate mit bindungsstellen für humane rhinoviren
WO2011120859A1 (de) Fusionsprotein und dessen verwendungen
DE69533905T2 (de) Interferon alpha/beta bindendes Protein, seine Herstellung und Anwendung
DE69434782T2 (de) Verfahren zur herstellung rekombinanter, biologisch aktiver polypeptide
DE69935071T2 (de) Mutein von humanem Thrombopoietin
DE4305063A1 (de) Rezeptorderivate
DE69839150T2 (de) Intrazelluläre glukocortikoid-induzierte leucin-zipper modulatoren von mechanismen des apoptotischen zelltodes
EP0858465B1 (de) Protein mit anti-tumorwirkung
DE4227892A1 (de) Derivate des Rezeptors der "kleinen Rhinovirus-Rezeptorgruppe" sowie die dafür codierenden DNA-Moleküle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980201