EP0603340B1 - Verfahren und vorrichtung zum prüfen von münzen - Google Patents

Verfahren und vorrichtung zum prüfen von münzen Download PDF

Info

Publication number
EP0603340B1
EP0603340B1 EP92922260A EP92922260A EP0603340B1 EP 0603340 B1 EP0603340 B1 EP 0603340B1 EP 92922260 A EP92922260 A EP 92922260A EP 92922260 A EP92922260 A EP 92922260A EP 0603340 B1 EP0603340 B1 EP 0603340B1
Authority
EP
European Patent Office
Prior art keywords
coin
inductor
reactance
loss
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92922260A
Other languages
English (en)
French (fr)
Other versions
EP0603340A4 (de
EP0603340A1 (de
Inventor
David Michael Furneaux
Timothy Peter Waite
John William Bailey
Alan Ralph
Michael Chittleborough
Cary Sagady
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mars Inc
Original Assignee
Mars Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/868,551 external-priority patent/US5213190A/en
Application filed by Mars Inc filed Critical Mars Inc
Publication of EP0603340A1 publication Critical patent/EP0603340A1/de
Publication of EP0603340A4 publication Critical patent/EP0603340A4/de
Application granted granted Critical
Publication of EP0603340B1 publication Critical patent/EP0603340B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Definitions

  • This invention relates to a method and apparatus for testing coins.
  • coin is used to encompass genuine coins, tokens, counterfeit coins and any other objects which may be used in an attempt to operate coin-operated equipment.
  • Coin testing apparatus in which a coin is subjected to a test by passing it through a passageway in which it enters an oscillating magnetic field produced by an inductor and measuring the degree of interaction between the coin and the field, the resulting measurement being dependent upon one or more characteristics of the coin and being compared with a reference value, or each of a set of reference values, corresponding to the measurement obtained from one or more denominations of acceptable coins. It is most usual to apply more than one such test, the respective tests being responsive to respective different coin characteristics, and to judge the tested coin acceptable only if all the test results are appropriate to a single, acceptable, denomination of coin. An example of such apparatus is described in GB-A-2 093 620.
  • At least one of the tests is sensitive primarily to the material of which the coin is made and, in particular, such a test may be influenced by the electrical conductivity, and in magnetic materials the magnetic permeability, of the coin material.
  • Such tests have been carried out by arranging for the coin to pass across the face of an inductor, and hence through its oscillating field, and measuring the effect that the coin has, by virtue of its proximity to the inductor, upon the frequency or amplitude of an oscillator of which the inductor forms part. Most often it has been the peak value of the effect, achieved when the coin is central relative to the inductor, that has been measured.
  • US-A-4946019 shows a method and apparatus for testing a coin comprising subjecting a coin to an oscillating magnetic field generated by an inductor, and making reactance and loss measurements which are used to validate the coin.
  • measurements of this type are sensitive to the distance between the coin and the inductor, in the direction perpendicular to the face of the inductor, at the time when the measurement is made.
  • This undesirable effect can be countered to some extent by arranging the mechanical design of the mechanism such that coins are always encouraged to pass the inductor at a fixed distance from it but this can never be achieved completely and requires design features which in other respects may be undesirable.
  • the measurement scatter caused by variable coin lateral position may be allowed for by setting the coin acceptance limits wider, so that acceptable coins will always pass the test even though they pass the inductor at different distances from it, but this adversely affects the reliability of the mechanism in rejecting unacceptable coins.
  • An object of the invention is to provide a method of testing a coin which is responsive to the material of the coin, and is relatively insensitive to the distance of the coin from a testing inductor.
  • the invention provides from one aspect a method of testing a coin in a coin testing mechanism, comprising subjecting a coin inserted into the mechanism to an oscillating field generated by an inductor, measuring the reactance and the loss of the inductor when the coin is in the field, and determining whether the direction in the impedance plane of a displacement line, representing the displacement of a coin-present point defined by the measurements relative to a coin-absent point representing the inductor reactance and loss in the absence of rejecting unacceptable coins. It is also known to utilise the combined effect of two inductors, one each side of the path of the coin, so that at least to some extent the effects of variation of coin position between the two inductors can cancel each other, but this involves the provision of a second inductor.
  • An object of the invention is to provide a method of testing a coin which is responsive to the material of the coin, and is relatively insensitive to the distance of the coin from a testing inductor.
  • the invention provides from one aspect a method of testing a coin in a coin testing mechanism, comprising subjecting a coin inserted into the mechanism to an oscillating field generated by an inductor, measuring the reactance and the loss of the inductor when the coin is in the field, and determining whether the direction in the impedance plane of a displacement line, representing the displacement of a coin-present point defined by the measurements relative to a coin-absent point representing the inductor reactance and loss in the absence of a coin, corresponds to a reference direction in the impedance plane.
  • the "impedance plane” as referred to above is a plane in which the reactance (reactive impedance) and the loss (resistive impedance) of a circuit or of an inductor are represented as measurements or vectors along two mutually perpendicular axes lying in that plane.
  • the term “displacement line” will be explained later in relation to Figure 1.
  • the invention can be carried out using only a single inductor because the direction of the displacement line is substantially independent of the lateral position of the coin. This simplifies the electrical wiring required and, in a typical coin mechanism where the coin passgeway lies between a body and an openable lid, avoids the need to provide flexible wiring leading to an inductor mounted on the lid.
  • the reference direction in the impedance plane is established as an angle relative to one of the reactance and loss axes.
  • the position of the coin-absent point in the impedance plane may not be constant, because the reactance of the coil itself, and the loss of the coil itself, may vary with temperature and consequently with time and also small changes in the geometry of the coin mechanism might occur.
  • the reactance and the loss of the inductor are measured both when the coin is in the field, and when it is not.
  • the direction of the displacement line is determined by the two points in respect of which the measurements have been taken.
  • the two reactance measurements are subtracted, the two loss measurements are subtracted, and the ratio of the two differences is taken, this representing the tangent of an angle the displacement line makes with one of the axes.
  • the tangent can then be compared with the reference direction which may be established or stored also as the tangent of the corresponding angle for an acceptable coin, represented, of course, as a number in digital form when digital processing and storage are being used for implementation.
  • the reference information may constitute for example a set of stored coordinates in the impedance plane which together define a reference displacement line the direction of which is the reference direction and the position of which is such that it extends through the substantially fixed coin-absent point. Then, the determination of whether the direction of the displacement line corresponds to the reference direction need not involve actually measuring the coin-absent point. It can be assumed that that point has not changed, so the correspondence of the two directions, or otherwise, can be determined simply by checking whether the coin-present point lies on the reference displacement line. If it does, then the coin will have caused displacement of the coin-present point in the direction of the reference displacement line.
  • the reference direction is established as an angle relative to the coin-absent total impedance vector of the inductor, instead of relative to the loss or reactance axes. This is of particular value, as will be explained below, when the reactance and loss measurements are taken by a phase discrimination method.
  • Using a phase discrimination method has advantages, which are mentioned above, but also can introduce errors due to reference signals employed not being accurately phased. Measuring the direction of displacement of the impedance plane point caused by the coin relative to the total impedance vector of the inductor and establishing the reference direction also as an angle relative to that total impedance vector reduces or eliminates such errors.
  • the direction of the displacement line is computed from signal ratios. Because ratios are taken, the result is independent of the gain of the channel which handles the relevant signals. However, when it is also desired to use as an acceptability criterion the difference between the coin-present and the coin-absent reactance, then the gain of the channel becomes important.
  • a further feature of the invention usable irrespective of whether the measurements are taken using a phase discrimination technique, or not, comprises compensating for the effect of varying system gain on said difference between reactance values by simulating, from time to time, a predetermined change in the reactance of the inductor when a coin is not in its field, detecting the resulting change in a signal dependent on said reactance which signal has been subjected to said system gain, comparing the detected change with a reference value, applying to said reactance-dependent signal a compensation factor derived from the result of said comparison such as to adjust that signal to substantially correspond with the reference value, and maintaining the application of said compensation factor until the next time said change is simulated.
  • the invention provides a method of testing a coin in a coin testing mechanism, comprising subjecting a coin inserted into the mechanism to an oscillating field generated by an inductor, measuring the reactance and the loss of the inductor when the coin is in the field, and determining whether the direction in the impedance plane of a displacement line, representing the displacement of a coin-present point defined by the measurements relative to a coin-absent point representing the inductor reactance and loss in the absence of a coin, corresponds to a reference direction in the impedance plane, and wherein the frequency of the oscillating field generated by the inductor is sufficiently low that its skin depth for the coin material is greater than the thickness of the coin, whereby the direction of said displacement line is influenced by the thickness of the coin being tested.
  • a further aspect of the invention is a coin testing mechanism for carrying out methods in accordance with the invention as referred to above.
  • the vertical axis represents the imaginary component, i.e. the reactance X, of the impedance of an inductor such as the coil 104 of the apparatus shown in Figure 2, as affected by any coin which may be near it.
  • the horizontal axis represents the real component of the impedance i.e. its resistance or loss R, again as affected by any coin which may near the coil.
  • both the effective reactance and the effective loss of the coil will change, that is to say that if X and R are now measured for coil plus coin the resulting values will define a different point b in the impedance plane.
  • the position of the line a-b may move in the impedance plane, for example to the parallel position a′-b′ , but its gradient, the angle ⁇ , remains the same for the same type of coin. That is to say, the direction of the line on which the point representing the coin/coil combination in the impedance plane has moved relative to the coil-only point (herein called the "displacement line”) is indicative of coin type and substantially independent of the lateral position of the coin.
  • the loss is increased by the additional factor of hysteresis loss, and the reactance may increase instead of decreasing, since the coin will, to a degree, act as a core for the coil.
  • the angle ⁇ will be in the opposite sense from that shown in Figure 1. This may be used to discriminate between magnetic and non-magnetic coins.
  • values of X and R are measured when no coin is present, and then when a coin is adjacent to the coil, the X values are subtracted and the R values are subtracted so as to give ⁇ x and ⁇ R as indicated in Figure 1, these values indicating by how much the coin has changed the effective reactance and the effective loss of the coil, and ⁇ X/ ⁇ R is taken; this is tan ⁇ for the unknown coin. Acceptability is tested by comparing this with a reference value of tan ⁇ which corresponds to the ratio of the measured values of ⁇ X and ⁇ R for an acceptable coin.
  • Means for positioning a coin shown in broken lines at 10 adjacent to a coil 104, the means being shown schematically as a coin passageway 12 along which the coin moves on edge past the coil.
  • a practical arrangement for passing a moving coin adjacent to an inductive testing coil is shown, for example, in GB-A-2 093 620.
  • the apparatus utilises the peak values.
  • the circuit of Figure 2 uses a phase discrimination technique for separating the real (R) and imaginary (X) components of the coil impedance. It comprises a signal source consisting of a digital frequency generator 100 whose output is filtered by a filter 102 whose output controls a constant current source 103 whose output drives the coin sensing coil 104. Thus, components 100, 102, 103 appear to the coil as a constant current source.
  • the output of generator 100 approximates to a sine wave but, being generated digitally, it contains higher harmonics and the function of the filter 102 is to filter these out.
  • the signal across coil 104 is applied to a phase sensitive detector 106 which also receives, from the generator 100, two reference signals.
  • One reference signal is on line 108 and ideally is in phase with the voltage across coil 104 so as to enable the phase sensitive detector to produce the signal representing X at one of its outputs.
  • On another line 110 a reference signal is applied which is at 90° to the first reference signal and in phase with the coil current, so as to enable the phase sensitive detector to develop at another output thereof a signal indicative of R of the coil.
  • the voltage signals applied to and output from the phase sensitive detector can only be relied on as measures of X and R so long as the peak coil current is constant with time.
  • the R and X signals are filtered by respective filters 112 and 114 and the resulting signals are applied to a microprocessor 116 which is programmed to carry out the necessary further processing of the signals, and also to carry out the further functions required for coin validation. Additionally, microprocessor 116 controls signal generator 100 so that it will generate alternately the reference signals on lines 108 and 110, and also switches the output of the phase sensitive detector 106 between the R and X output channels in synchronism with the switching of the reference signals.
  • vector 118 represents the total impedance of coil 104 when no coin is present and hence its end corresponds to point a in Figure 1. When a passing coin is centred on the coil, vector 118 has been shifted along displacement line 120 to become vector 118′.
  • Microprocessor 116 receives from the phase sensitive detector 106 signals representing the X and R components of both of those vectors and hence can compute ⁇ X and ⁇ R and their ratio ⁇ X/ ⁇ R which is tan ⁇ as referred to before.
  • the inductor is shown as a single coil, it may have other configurations, such as a pair of coils opposed across the coin passageway and connected in parallel or series, aiding or opposing.
  • Figure 4 shows how, for a single coin, X and R (both measured in ohms) vary with time as a coin passes the coil. ⁇ X and ⁇ R are also shown. It can be seen that whereas X reaches a relatively smooth and flat negative peak during the middle part of the passage of the coin, R has a relatively smooth plateau in the central part of its peak, with a small further superimposed peak at each end of the plateau, these small peaks being caused by edge effects as the rim of the coin passes the centre of the coil.
  • the vector 120 from the coin-absent point to the point defined by the present X-R measurements of the moving coin lengthens and rotates clockwise until it reaches the tip of the hook and then performs the reverse movement.
  • computations may be carried out by storing the variable values of ⁇ X and ⁇ R occurring throughout the passage of the coin, computing the corresponding time-varying values of ⁇ X/ ⁇ R (i.e. tan ⁇ ) and then detecting the maximum of the computed value of tan ⁇ , this maximum being compared with the reference value of tan ⁇ for an acceptable coin.
  • phase error is that the components of the total impedance vectors 118 and 118′ in Figure 3 would be measured relative to discrimination axes X d and R d which are rotated relative to the true reactance and loss axes.
  • the calculated value ⁇ X d becomes larger than the desired true value ⁇ X while the calculated value ⁇ R d becomes smaller than the desired true value ⁇ R.
  • Angle C is equal to the sum of angles A and B as indicated in Figure 6.
  • Figure 6 indicates that R d /X d is the tangent of angle B so that angle B can be computed from those measured values.
  • the tangent of angle A is ⁇ R d / ⁇ X d , so that angle A can be computed from those difference values.
  • Angle C is arrived at by summing the computed angles A and B.
  • Figure 7 shows various additions to the basic phase discrimination measurement type of circuit as shown in Figure 2.
  • components corresponding to those already described with reference to Figure 2 have been given the same reference numerals as in Figure 2 and will not be described again.
  • the constant current source is in the form of a transistor 103 and associated components.
  • the additional components as compared with Figure 2 are a calibration and offset circuit generally indicated at 130, a pre-amplifier 132 for amplifying the X and R signals, which are taken from the lower end of coil 104, prior to their application to the phase sensitive detector 106, a second offset circuit 134, and a digital-to-analogue converter 136 for converting the outputs of the filters 112 and 114 to digital form for handling by the microprocessor 116.
  • a single filter or integrator 112/114 is shown in Figure 7, this being equivalent to the two separately shown circuits 112 and 114 in Figure 2. In practice, it would be preferred to use a microprocessor which actually incorporates the analogue-to-digital converter 136.
  • phase sensitive detector 106 separates the X signal from the R signal by developing at its output the X signal when the in-phase (with the coil voltage) reference signal is being applied on line 108, and the R signal when the quadrature-phase reference signal is being applied on line 110. Consequently, the circuit components from the output of phase sensitive detector 106 to microprocessor 116 are serving as a common channel for the X and R signals but at any one moment are handling only one or the other of them.
  • a first significant function of the Figure 7 circuitry is to provide an alternative manner of dealing with the problem caused by angular displacement of the phase discrimination axes relative to the true X and R axes; that is to say, alternative to the method previously described with reference to Figures 3 and 6 in which the angle C between the displacement line 120 and the total impedance vector 118 was calculated instead of the error-influenced angle ⁇ d .
  • the first step is to measure the phase-error angle ⁇ e (see Figure 3) in a way which will be described below. It can be seen from Figure 3 that ⁇ e is the difference between the desired angle ⁇ and the erroneous angle ⁇ d . Once ⁇ e is known, either or both of two steps can be taken. First, the microprocessor 116 can adjust the digital generator 100 such that the phases of the reference signals on both lines 108 and 110 are shifted in a direction tending to reduce ⁇ e to zero. This will usually not be possible because, since generator 100 is digital, the phases of its outputs can only be adjusted in steps and so normally there will be a residual value of ⁇ e which cannot be eliminated by adjustment.
  • the principle is to simulate, by operation of the calibration and offset circuit 130, a change in the reactance in the coil 104 when there is no coin in its field. It can be appreciated from a study of Figure 3 that if the phase-error angle ⁇ e were 0, and the X component of the coil impedance vector 118 were changed without changing its R component, then there would not be any change either in the R component as perceived or measured at the output of the phase sensitive detector 106. However, if the phase-error angle ⁇ e is not 0, so that in Figure 3 axis R d does not coincide with axis R, there will be a change in the R value as measured along the axis R d .
  • the calibration and offset circuit 130 in Figure 7 simulates the change in the coil impedance X component, and makes sure that the simulation does not affect the coil R component, and then the relationship between the change in R as measured from the output of phase sensitive detector 106, and the change in the X measurement, is used as a basis for computing the error angle ⁇ e .
  • calibration and offset circuit 130 The normal operating configuration of calibration and offset circuit 130 is with transistor T2 switched off and transistor T1 switched on.
  • the current in coil 104 is then split between series resistors Rb and Rc on the one hand and the parallel resistor Ra on the other hand. These are all precision resistors. It needs to be remembered that in the Figure 7 circuit it is that voltage component across coil 104 which is in phase with the current through coil 104 that is being taken as a measure of the coil loss R. This is only a true representation so long as the magnitude of the coil current remains constant. It is the value of the voltage component across coil 104 that is 90° out of phase with the coil current that is being taken as a measure of coil reactance X.
  • this latter voltage has an offset applied to it for a reason which will be described later, by tapping between resistors Rb and Rc to obtain a voltage which is in phase with the coil current, changing the phase of that tapped-off voltage by 90° by means of capacitor Ci, and applying the resulting phase-shifted voltage to the input of the preamplifier 132.
  • This offset voltage is 180° out of phase with the imaginary, or reactance-related, component of the voltage across coil 104 and so the effect is simply to apply a fixed offset to the voltage component which, at the input of preamplifier 132, represents the coil reactance X.
  • This offset voltage is A.C. and it is phased such that it will not in itself affect the loss-related component of the input voltage to pre-amplifier 132.
  • transistor T2 is switched on which introduces precision resistor Rd in parallel with resistor Rc, thus reducing the tapped-off voltage being fed through capacitor Ci.
  • This voltage reduction simulates, at the input of pre-amplifier 132 a reduction in the reactance X of coil 104, i.e. ⁇ X d of Figure 8.
  • resistor Ra is switched out by turning off transistor T1. The value of resistor Ra is chosen to then keep the coil current constant and so the simulation of the change in X is arranged not, in itself, to also simulate any change in coil loss R, i.e.
  • microprocessor 116 Having calculated ⁇ e or at least tan ⁇ e , as ⁇ R d / ⁇ X d , if the resultant angle is greater than the minimum adjustment that can be applied to the digital generator 100, microprocessor 116 instructs the digital generator 100 to make that adjustment, in a sense which reduces the phase discrimination error. At such time as the measured error angle becomes less than the minimum adjustment step, microprocessor 116 sums it with the measured value ⁇ d , so as to obtain the desired angle ⁇ for the coin test. It should be appreciated that ⁇ e may be positive or negative so that the summing may either increase or decrease the measured value ⁇ d .
  • the circuitry may instead be adapted so as to simulate a change in R without simulating any change in X, and then calculating ⁇ e or tan ⁇ e from the measured value of ⁇ R d and any resulting measured value of ⁇ X d .
  • the X and R signals both have to be processed in the common channel of pre-amplifier 132 and phase sensitive detector 106 and with one signal approximately thirty times the size of the other an extremely poor signal-to-noise ratio would be obtained, possibly making any meaningful extraction of a ⁇ R measurement impossible.
  • the offset applied to the X signal through capacitor Ci is substantial, so that it renders the X signal at the input of pre-amplifier 132 comparable in size to the R signal.
  • greatly improved use is made of the dynamic range of the operational amplifier 132, and the signal-to-noise ratio can be made acceptable.
  • the exact value of the offset voltage is not important, so long as it remains constant, because it is applied against both the coin-present and coin-absent X values and hence does not cause any alteration in the difference ⁇ X which is used in computing the angle ⁇ or its tangent. No offset is applied against the R signal at the input of pre-amplifier 132.
  • Calibration and offset circuit 130 has a third function but it is necessary, before explaining it, to refer to a further technique used in testing coins, using the circuit of Figure 7.
  • coin diameter is a useful one.
  • the direction of the displacement line (for example the angle ⁇ ) is not sufficiently sensitive to coin diameter to provide a useful diameter test, even if the coil is made approximately as large as, or larger than, the largest-diameter coin to be tested. It is found that, when using the circuit of Figure 7, and so long as the diameter of the inductor 104 is about as large as or larger than the diameter of the largest coin to be tested, the value of ⁇ X is usefully sensitive to coin diameter, and can be used as a second coin test, the coin only being accepted when its ⁇ X value corresponds to that of the same type of acceptable coin as does its displacement line direction.
  • the value of the ⁇ X signal alone will be dependent upon the system gain, and this can be expected to vary with time and with temperature.
  • the calibration and offset circuit 130 is periodically (for example on switching on, and every few minutes) operated as follows.
  • transistor T2 is switched off during normal operation of the circuit.
  • transistor T1 is also switched off, thus taking resistor Ra out of the circuit. Since this is in parallel with Rb and Rc the total resistance is increased and the current through coil 104 falls. Since the three resistors Ra, Rb and Rc are precision resistors, they can be selected so that switching Ra out will repeatably produce a quite accurately constant percentage change in the coil current, for example 2%. So far as the X-component of the coil voltage is concerned, this will appear as a 2% decrease in the coil reactance.
  • the system will be designed to operate with some desirable level of overall gain from the coil 104 to the output of the digital-to-analogue converter 136.
  • the desired overall gain is such that a 2% change in the X-component of the coil voltage should produce a count change of 200 at the analogue-to-digital converter output.
  • T1 is switched off to cause the 2% change
  • the resulting change in counts at the output of the analogue-to-digital converter is checked by the microprocessor 116. If it is 200, no action is taken, but if it is different from 200, say n, then the compensation factor 200/n is calculated.
  • transistor T1 is switched on again to return the circuit to its normal operating configuration and subsequently each time ⁇ X is calculated by the microprocessor 116 (based of course upon the count outputs of the analogue-to-digital converter 136 for coin-present and coin-absent X values), the result is multiplied by the compensation factor 200/n thus producing a ⁇ X value which has been compensated for variations in the system gain.
  • variations in gain of the analogue components are measured and are then compensated for by multiplication at the digital stage such that constant gain is maintained as between the output from the coil and the final computed ⁇ X value.
  • the analogue-to-digital converter 136 forms a further common channel in which both the X and R signals are to be processed.
  • the X signal decreases and the R signal increases.
  • further offsets are applied to both the X and R signals such that the coin-absent value of each signal lies close to the appropriate end of the dynamic range of the analogue-to-digital converter 136.
  • the substantial first X offset voltage which is applied through capacitor Ci as was previously described is represented as Xo and reduces X1 and X2 to X10 and X20 where they are comparable in magnitude to R1 and R2, so that line 120 is shifted to 120′.
  • the second X offset voltage, applied by second offset circuit 134 is represented as Xo′ and shifts the voltages X10 and X20 to X 10′ and X 20′ respectively, thus shifting lines 120′ to 120′′.
  • the R offset voltage from circuit 134 is indicated at Ro′ and shifts the voltages R1 and R2 to R 10′ and R 20′ respectively, so that line 120′′ shifts to 120′′′.
  • the idling or coin-absent X component value X 10′ is close to zero. This places it near the bottom of the dynamic range of the analogue-to-digital converter 136.
  • the coin-absent value of the R component signal R 10′ is placed near the top of the dynamic range of the analogue-to-digital converter 136.
  • the difference values ⁇ X and ⁇ R, and consequently the angle ⁇ remain unchanged by the application of the offsets, as indicated near the bottom left-hand corner of Figure 9, and although the difference values are in opposite senses, they occupy different but substantially overlapping portions of the dynamic range of the analogue-to-digital converter so that the use of its dynamic range is optimised.
  • the angle ⁇ discussed above and shown in the drawings, and the angle C shown in Figure 4, are constant for a given coin material, so long as the coin is large enough to influence the whole of the field of coil 104, at the frequencies that are most commonly used in testing coins. However, as the frequency is decreased below the most commonly used ranges, for example to below 20 kHz, so the angle ⁇ starts to change, the change being dependent on the thickness of the coin.
  • Figure 10 shows a set of three curves which represent the values of the angle ⁇ for three test discs which are of the same material but which differ in thickness, and the values of ⁇ being shown over a range of frequencies (on a logarithmic scale) at which coil 104 may be driven.
  • the thickness-dependence of the angle ⁇ becomes significant when the frequency is reduced to the point where the skin depth of the field in the material is about one third of the thickness of the material. It can be seen from Figure 10 that when the frequency is high enough for the skin depth to be much less than the thickness of all of the test discs, the thickness-dependence of the angle ⁇ disappears. The higher the conductivity of the material, the less the skin depth at a given frequency. Consequently it is necessary to go to lower frequencies to achieve useful thickness-dependence for the higher conductivity coin materials.
  • the US coin set is primarily of relatively high conductivity materials and to achieve thickness sensitivity with that coin set, and with magnetic coins, it is preferred to use a frequency of 10 kHz or less, for example less than 6 kHz.
  • a frequency of 10 kHz or less for example less than 6 kHz.
  • cupronickel which is common among the UK coin set
  • the conductivity is lower and the skin depth greater at a given frequency, so that significant thickness-dependence can be obtained at frequencies below 100 kHz, preferably below 50 kHz and even more preferably below 35 kHz where the effect is greater.
  • the angle ⁇ is dependent on coin thickness as well as material, it remains to a very large extent independent of the spacing of the coin from the coil and so a reliable thickness dependent measurement can be made using a single coil located to one side of the coin path.
  • a practical coin testing apparatus has been constructed which employs the techniques described herein with reference to Figure 7 and which employs two testing inductors comparable with the inductor 104. Both inductors were located on the same side of the coin path.
  • the first inductor consisting of an annular coil set into a ferrite pot core was 14 mm in diameter and was driven at 8 kHz.
  • the second, regarded in the direction of coin travel, was of similar construction but 37.5 mm in diameter and was driven at 115 kHz. The first was smaller in diameter than the smallest coin to be accepted and was set above the coin track so as to always be completely occluded by the coin when the coin was centred relative to the coil.
  • this inductor was driven at the relatively low frequency of 8 kHz, the value of angle ⁇ derived using this coil was dependent on both the material and the thickness of the coin.
  • the second inductor was of a diameter greater than that of the largest coin to be accepted and was set with its bottom edge level with the coin track. The higher frequency of 115 kHz ensured that the angle ⁇ derived using this inductor would be substantially independent of coin thickness, but the large diameter of the coil rendered the angle ⁇ sensitive to the diameter or area of the coin as well as its material.
  • This inductor was positioned downstream on the coin path to allow any bouncing of the coin to cease the which otherwise would influence the diameter-sensitive measurement on the coin. Such bouncing would have less influence on the output of the much smaller thickness-sensitive inductor.
  • Both coils were driven by the same digital signal generator 100 and the output signals from both coils were processed, referring to Figure 7, by the same pre-amplifier 132 and the further components right through to the microprocessor 116.
  • Each of the inductors was provided with its own filter 102, drive transistor 103 and calibration and offset circuit 130 and the two groups of these components were switched into and out of the circuitry of Figure 7, alternately, at the points marked P in Figure 7 under the control of microprocessor 116 which simultaneously switched generator 100 between the higher and the lower frequencies appropriate to the two inductors.
  • measurements are made when the displacement line direction, and ⁇ X itself, are at extremes, but it is also possible to use measurements taken at other times during the passage of a coin past a sensor, as is known, and the technique described may be used in that way also.
  • phase discrimination method is used to derive X, R, ⁇ X and ⁇ R
  • various novel and inventive aspects of those embodiments are usable even if alternative methods (such as will be described with reference to Figures 11 and 12) are used for those derivations, such as using ⁇ X as an acceptability criterion in addition to displacement line direction, and using displacement line direction at lower frequencies as a thickness-responsive measurement.
  • the described technique for compensating for gain variations is usable in coin mechanisms irrespective of the origin or significance of the signals being processed.
  • a pi-configuration tuned circuit 2 includes an inductor in the form of a single coil 4, two capacitors 6 and 7 and a resistor 8.
  • Resistor 8 is not normally a separate component and should be regarded as representing the effective loss in the tuned circuit, which will consist primarily of the inherent loss of the coil 4.
  • Means for positioning a coin shown in broken lines at 10 adjacent to the coil 4, the means being shown schematically as a coin passageway 12 along which the coin moves on edge past the coil.
  • the apparatus is responsive to the peak value of this effective loss.
  • the tuned circuit 2 is provided with a feedback path so as to form a free-running oscillator.
  • the feedback path is generally indicated at 14 and includes a line 16 which carries the voltage occurring at one point in the tuned circuit, a switching circuit 18, and an inverting amplifier 20 which provides gain in the feedback path.
  • a phase delay circuit shown schematically at 24 is alternately switched into the feedback path, or by-passed, depending on the condition of switching circuit 18.
  • the phase shift round the feedback path is 180° when the phase delay circuit 24 is not switched into it, and the phase shift across the pi-configuration tuned circuit is then also 180°. In this condition the oscillator runs at its resonant frequency.
  • Figure 12 shows the relationship between frequency of oscillation and amount of phase shift ( ⁇ ) in the feedback path for five different values of total effective loss in the tuned circuit, from a relatively low value R1 to a relatively high value R5.
  • the amount of effective loss in the circuit at any particular time can be determined by changing the amount of phase shift in the feedback path from one known value to another (or by a known amount) and measuring the resulting change in frequency.
  • the relationship between the phase shift change and the frequency change effectively represents the gradient of one of the curves shown in Figure 12 and consequently indicates on which curve the circuit is operating and hence what is the present effective loss in the circuit.
  • the effective loss is the low value R1; but, if the frequency changes by the larger amount ⁇ fC the effective loss is the higher value R4.
  • the frequency of the oscillator is fed on line 26 to a frequency sensing circuit 28.
  • a control circuit 30 repeatedly operates switching circuit 18 by a line 32 to switch the phase delay circuit 24 into and out of the oscillator feedback path. Via the same line 32 it also operates a switch 34 in synchronism with switching circuit 18 so that the values of the frequency sensed by sensing circuit 28 are stored in store 36 (this being the frequency value when the phase delay is not present in the oscillator circuit) and store 38 (this being the frequency value when the phase delay is introduced into the oscillator circuit).
  • Figure 11 and the following description may be better understood by reference to the following table of the notation used for various frequencies and frequency differences:
  • a subtracter 40 subtracts f0 from f ⁇ to develop ⁇ f and, in the normal condition of a switch 42, this value of ⁇ f is passed to a store 44.
  • This normal condition prevails while there is no coin adjacent to coil 4, in which case the effective loss in the tuned circuit is low (say, the low value R1 of Figure 12) and the frequency difference value being stored at 44 is then ⁇ fNC (indicated in Figure 12), this value being indicative of the inherent effective loss of the tuned circuit itself at the time when the measurements are being taken.
  • a section 46 of control circuit 30 detects the beginning of this change from line 48 and in response changes the condition of switch 42 via line 50, causing the recent idling value of ⁇ fNC to be held in store 44.
  • Circuit section 46 is adapted to detect this peak occurring and, in response, it causes switch 42 to direct the value of ⁇ f occurring when the coin is centred, to store 52.
  • This frequency shift indicates that the total effective loss in the tuned circuit is now the relatively high value R4 consisting of the effective loss inherent in the circuit plus the effective loss introduced into it by the particular coin which is now centred on the coil 4.
  • the effective loss R of the coil is k1 ⁇ f where k1 is a constant.
  • a value indicative of the effective loss introduced by the coin alone is then derived by circuit 54 which subtracts ⁇ fNC from ⁇ fC and multiplies by the constant k1. This is equal to ⁇ R as previously referred to.
  • the circuit of Figure 11 also measures ⁇ X, the amount of reactance introduced by the coin into the tuned circuit 2, as follows.
  • the value of f0 ie. oscillation frequency without any imposed phase shift
  • Switch 62 is operated by the arrival sensing and peak detecting section 46 of control circuit 30 in the same manner as switch 42. Consequently, the coin-absent or idling frequency without phase delay becomes stored in store 66, and the coin-present peak low frequency reached without phase delay as the coin passes the inductor 4 becomes stored in store 68.
  • These frequencies are indicative of the total reactance in the tuned circuit itself, and with the additional influence of the coin, respectively.
  • the effective reactance X of the coil is k2/f0 where k2 is a constant.
  • ⁇ X is derived by circuit 70 which takes the reciprocals of both frequencies, subtracts them, and multiplies by constant k2.
  • circuits 54 and 70 are fed to a divider 72 which takes ⁇ X/ ⁇ R (i.e. tan ⁇ for the coin being tested) and passes it to a comparator 74 where it is compared with a reference value of tan ⁇ from reference circuit 78. If they correspond, the comparator 74 provides an output to AND gate 76.
  • a divider 72 which takes ⁇ X/ ⁇ R (i.e. tan ⁇ for the coin being tested) and passes it to a comparator 74 where it is compared with a reference value of tan ⁇ from reference circuit 78. If they correspond, the comparator 74 provides an output to AND gate 76.
  • the inductor is shown as a single coil, it may have other configurations, such as a pair of coils opposed across the coin passageway and connected in parallel or series, aiding or opposing.
  • any comparisons made for checking acceptability in any of the embodiments will allow for this, for example by having the reference values in the form of a range defined by upper and lower limits or by applying a tolerance to the measured value before comparing with an exact reference. All reference values may be stored, for example in the memory of a microprocessor or in a separate digital memory, or they may be calculated from stored coin-related information whenever required.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Basic Packing Technique (AREA)

Claims (75)

  1. Verfahren zum Prüfen einer Münze (10) in einem Münzprüfmechanismus, bei dem eine in den Mechanismus eingeführte Münze (10) einem von einer Drossel (104) erzeugten schwingenden Feld unterworfen wird und die Reaktanz (X) und die Verluste (R) der Drossel (104) gemessen werden, wenn sich die Münze (10) im Feld befindet, dadurch gekennzeichnet, daß ermittelt wird, ob die Richtung (Θ) einer sich in der Impedanzebene befindenden Verschiebungslinie (a-b), die die Verschiebung eines Münze-vorhanden-Punkts (b), wie er durch die Meßwerte definiert wird, relativ zu einem Münze-fehlt-Punkt (a) repräsentiert, der die Reaktanz und Verluste der Drossel (104) beim Fehlen einer Münze (10) repräsentiert, einer Bezugsrichtung in der Impedanzebene entspricht, wobei die Messungen zur Reaktanz (X) und den Verlusten (R) durch ein Phasenerkennungsverfahren erfolgen.
  2. Verfahren zum Prüfen einer Münze (10) in einem Münzprüfmechanismus, bei dem eine in den Mechanismus eingeführte Münze (10) einem von einer Drossel (104) erzeugten schwingenden Feld unterworfen wird und die Reaktanz (X) und die Verluste (R) der Drossel (104) gemessen werden, wenn sich die Münze (10) im Feld befindet, dadurch gekennzeichnet, daß ermittelt wird, ob die Richtung (Θ) einer sich in der Impedanzebene befindenden Verschiebungslinie (a-b), die die Verschiebung eines Münze-vorhanden-Punkts (b), wie er durch die Meßwerte definiert wird, relativ zu einem Münze-fehlt-Punkt (a) repräsentiert, der die Reaktanz und Verluste der Drossel (104) beim Fehlen einer Münze (10) repräsentiert, einer Bezugsrichtung in der Impedanzebene entspricht, wobei ferner die Drossel (104) durch eine Signalquelle (100) betrieben wird.
  3. Verfahren nach Anspruch 2, bei dem die Signalquelle (100) als Konstantstromquelle (103) arbeitet.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Spannung an der Drossel (104) zu Zeitpunkten erfaßt wird, die phasenmäßig im wesentlichen um 90° auseinanderliegen, um jeweilige Signale herzuleiten, die die Drosselreaktanz (X) und die Verluste (R) repräsentieren.
  5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem die Winkelverschiebung (Θe) in der Impedanzebene der Phasenerkennungsachsen (Xd, Rd) relativ zu den wahren Achsen für die Reaktanz und die Verluste (X, R) gemessen wird.
  6. Verfahren nach Anspruch 5, bei dem die Winkelverschiebung (Θe) dadurch gemessen wird, daß eine Änderung nur hinsichtlich der Reaktanz (δX) oder der Verluste (δR) der Drossel simuliert wird, wenn sich keine Münze in deren Feld befindet, die sich ergebende Änderung der Verlust- oder Reaktanzmessungen erfaßt wird, wie durch das genannte Phasenerkennungsverfahren ausgeführt, und die Winkelverschiebung (Θe) aus der Beziehung zwischen der simulierten Änderung und der erfaßten, sich ergebenden Änderung berechnet wird.
  7. Verfahren nach Anspruch 6, bei dem die simulierte Änderung nur hinsichtlich der Reaktanz (δX) der Drossel (104) ausgeführt wird und die sich ergebende Änderung bei der Verlustmessung (R) erfaßt wird.
  8. Verfahren nach einem der Ansprüche 5 bis 7, bei dem die Phasenerkennungsachsen (Xd, Rd) winkelmäßig verschoben werden, um die Winkelverschiebung (Θe) zu verringern.
  9. Verfahren nach einem der Ansprüche 5 bis 8, bei dem in einem Bestimmungsschritt ein Korrekturfaktor angewandt wird, der aus der Messung zur Winkelverschiebung hergeleitet wird.
  10. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Bezugsrichtung als Winkel (Θ) in bezug auf die Reaktanz- oder Verlustachse (X, R) errichtet wird.
  11. Verfahren nach Anspruch 10, bei dem die Messungen zur Reaktanz und zu den Verlusten durch ein Phasenerkennungsverfahren ausgeführt werden und der Bestimmungsschritt das Auswerten des Winkels (Θ) der Verschiebungslinie relativ zu einer der Phasenerkennungsachsen (X, R) beinhaltet.
  12. Verfahren nach Anspruch 11 in direkter Abhängigkeit von Anspruch 9, bei dem die Anwendung eines Korrekturfaktors das Kombinieren der gemessenen Winkelverschiebung (Θe) der Phasenerkennungsachsen und des hergeleiteten Winkels (Θ) für die Verschiebungslinie umfaßt.
  13. Verfahren nach einem der vorstehenden Ansprüche, bei dem der die Drosselreaktanz (X) und -verluste (R) beim Fehlen einer Münze repräsentierende Punkt dadurch definiert wird, daß die Reaktanz und die Verluste der Drossel (104) beim Fehlen einer Münze gemessen wird, und die Richtung (Θ) der Verschiebungslinie aus den Messungen bei vorhandener Münze (b) und fehlender Münze (a) bestimmt wird.
  14. Verfahren nach Anspruch 13, bei dem die Messungen mit fehlender Münze jedesmal dann ausgeführt werden, wenn eine Münze (10) geprüft wird.
  15. Verfahren nach einem der Ansprüche 1 bis 9, bei dem eine Bezugsverschiebungslinie erstellt wird, deren Richtung in der Impedanzebene die Bezugsrichtung ist und deren Position in der Impedanzebene dergestalt ist, daß sie sich durch den Münze-fehlt-Punkt (a) erstreckt, und wobei der Bestimmungsschritt die Bestimmung umfaßt, ob die Münze-vorhanden-Meßwerte zur Reaktanz (X) und den Verlusten (R) einen Punkt (b) festlegen, der im wesentlichen auf der Bezugsverschiebungslinie liegt.
  16. Verfahren nach einem der Ansprüche 1 bis 4, bei dem der Bestimmungsschritt das Herleiten des Winkels (C) der Verschiebungslinie relativ zum Münze-fehlt-Gesamtimpedanzvektor (118) der Drossel (104) beinhaltet.
  17. Verfahren nach Anspruch 16, bei dem die Messungen zur Reaktanz und den Verlusten durch ein Phasenerkennungsverfahren ausgeführt werden und die Herleitung das Messen des Winkels (B) des Münze-fehlt-Gesamtimpedanzvektors (118) relativ zu einer Phasenerkennungsachse (Xd), das Messen des Winkels (A) der Verschiebungslinie (120) relativ zu einer Phasenerkennungsachse (Xd) und das Kombinieren dieser zwei gemessenen Winkel (A, B) umfaßt.
  18. Verfahren nach einem der Ansprüche 16 oder 17, bei dem die Bezugsrichtung als Winkel relativ zum Münze-fehlt-Gesamtimpedanzvektor (118) der Drossel (104) in der Impedanzebene errichtet wird.
  19. Verfahren nach einem der vorstehenden Ansprüche, bei dem von der Reaktanz (X) bzw. den Verlusten (R) der Drossel (104) abhängige Signale in einem gemeinsamen Kanal (132) verarbeitet werden, die Differenz (ΔX) zwischen dem Münzevorhanden- und dem Münze-fehlt-Wert des reaktanzabhängigen Signals beim Bestimmungsschritt verwendet wird und vor dieser Verarbeitung ein Versatz (Xo) auf das reaktanzabhängige Signal (X) gegeben wird, um dessen Wert zu dem des widerstandsabhängigen Signals (R) hin wesentlich zu verringern.
  20. Verfahren nach Anspruch 19, bei dem die Signale vom gemeinsamen Kanal (132) zu einem weiteren gemeinsamen Kanal (136) laufen, die Differenzen (ΔX, ΔR) zwischen den Münzevorhanden- und Münze-fehlt-Werten sowohl des reaktanzabhängigen als auch des verlustabhängigen Signals im Bestimmungsschritt verwendet werden und vor dem weiteren gemeinsamen Kanal (136) ein Versatz (Xo′, Ro′) auf eines der Signale oder beide in solcher Weise gegeben wird, daß der Münzefehlt-Wert jedes Signals nahe einem Ende des Dynamikbereichs einer Komponente (136) des weiteren gemeinsamen Kanals liegt, um dadurch die Verwendung des Dynamikbereichs dieser Komponente (136) zu optimieren.
  21. Verfahren nach Anspruch 20, bei dem die Komponente ein A-D-Umsetzer (136) ist.
  22. Verfahren zum Prüfen einer Münze (10) in einem Münzprüfmechanismus, bei dem eine in den Mechanismus eingeführte Münze (10) einem von einer Drossel (104) erzeugten schwingenden Feld unterworfen wird und die Reaktanz (X) und die Verluste (R) der Drossel (104) gemessen werden, wenn sich die Münze (10) im Feld befindet, dadurch gekennzeichnet, daß ermittelt wird, ob die Richtung (Θ) einer sich in der Impedanzebene befindenden Verschiebungslinie (a-b), die die Verschiebung eines Münze-vorhanden-Punkts (b), wie er durch die Meßwerte definiert wird, relativ zu einem Münze-fehlt-Punkt (a) repräsentiert, der die Reaktanz und Verluste der Drossel (104) beim Fehlen einer Münze (10) repräsentiert, einer Bezugsrichtung in der Impedanzebene entspricht, wobei die Bezugsrichtung für eine spezielle Münzart geeignet ist und bei dem ferner bestimmt wird, ob die Differenz (ΔX) zwischen dem Münze-fehlt- und dem Münze-vorhanden-Wert der Reaktanz der Drossel (104) einem Bezugswert entspricht, wie er für dieselbe spezielle Münzart passend ist.
  23. Verfahren nach Anspruch 22, bei dem die Auswirkung einer variablen Systemverstärkung auf die Differenz (ΔX) zwischen den Reaktanzwerten dadurch kompensiert wird, daß von Zeit zu Zeit eine vorgegebene Änderung (δX) der Reaktanz der Drossel (104) simuliert wird, solange sich keine Münze in deren Feld befindet, die sich ergebende Änderung in einem von der Reaktanz abhängigen Signal erfaßt wird, das der Systemverstärkung unterzogen wurde, die erfaßte Änderung mit einem Bezugswert verglichen wird, auf das reaktanzabhängige Signal ein aus dem Vergleichsergebnis hergeleiteter Kompensationsfaktor so angewandt wird, daß das Signal so eingestellt wird, daß es im wesentlichen dem Bezugswert entspricht und die Anwendung dieses Kompensationsfaktors aufrechterhalten wird, bis die Änderung das nächste Mal simuliert wird.
  24. Verfahren nach Anspruch 23, bei dem das von der Reaktanz abhängige Signal ein analoges Signal ist, wobei dieses analoge Signal vor dem Erfassen der sich ergebenden Änderung in digitale Form umgesetzt wird, die Änderung des Kanalausgangssignals in digitaler Form mit einem digitalen Bezugswert verglichen wird, aus dem Vergleich ein digitaler Kompensationsfaktor hergeleitet wird und der digitale Kompensationsfaktor auf die digitale Form des reaktanzabhängigen Signals angewandt wird, bis die Änderung das nächste Mal simuliert wird.
  25. Verfahren zum Prüfen einer Münze (10) in einem Münzprüfmechanismus, bei dem eine in den Mechanismus eingeführte Münze (10) einem von einer Drossel (104) erzeugten schwingenden Feld unterworfen wird und die Reaktanz (X) und die Verluste (R) der Drossel (104) gemessen werden, wenn sich die Münze (10) im Feld befindet, dadurch gekennzeichnet, daß ermittelt wird, ob die Richtung (Θ) einer sich in der Impedanzebene befindenden Verschiebungslinie (a-b), die die Verschiebung eines Münze-vorhanden-Punkts (b), wie er durch die Meßwerte definiert wird, relativ zu einem Münze-fehlt-Punkt (a) repräsentiert, der die Reaktanz und Verluste der Drossel (104) beim Fehlen einer Münze (10) repräsentiert, einer Bezugsrichtung in der Impedanzebene entspricht, wobei die Frequenz (fo) des von der Drossel (104) erzeugten schwingenden Felds ausreichend niedrig dafür ist, daß die Richtung (Θ) der Verschiebungslinie (a-b) durch die Dicke der geprüften Münze (10) beeinflußt wird.
  26. Verfahren nach Anspruch 25, bei dem die Frequenz (fo) ausreichend niedrig dafür ist, daß die Skineffekttiefe bei ihr für das Münzmaterial größer ist als ein Drittel der Dicke der Münze (10).
  27. Verfahren nach Anspruch 25, bei dem die Frequenz (fo) 100 kHz oder weniger beträgt.
  28. Verfahren nach Anspruch 25, bei dem die Frequenz (fo) 35 kHz oder weniger beträgt.
  29. Verfahren nach Anspruch 25, bei dem die Frequenz (fo) 10 kHz oder weniger beträgt.
  30. Verfahren nach einem der vorstehenden Ansprüche, bei dem das schwingende Feld auf nur einer Seite der Münze erzeugt wird.
  31. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Bestimmungsschritt in bezug auf mehrere Bezugsrichtungen ausgeführt wird, die jeweils mehreren annehmbaren Münzarten entsprechen.
  32. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Bestimmungsschritt mindestens dann ausgeführt wird, wenn die Richtung der Verschiebungslinie (120) während des Durchlaufs einer Münze an der Drossel vorbei einen Extremwert erreicht.
  33. Verfahren nach Anspruch 32, bei dem wiederholt die Richtung der Verschiebungslinie (120) ausgewertet wird, wenn sich die Münze (10) der Kante entlang an der Drossel (104) vorbeibewegt, und aus den Auswertungsergebnissen erfaßt wird, wann die Richtung der Verschiebungslinie (120) einen Extremwert aufweist.
  34. Münzprüfmechanismus mit einem Münzkanal (12), einer Schaltung mit einer Drossel (104), die so ausgebildet ist, daß sie bewirkt, daß die Drossel ein schwingendes Feld im Münzkanal (12) erzeugt, und einer Einrichtung (106 - 116), die so ausgebildet ist, daß sie die Reaktanz (X) und die Verluste (R) der Drossel (104) mißt, wenn sich eine Münze (10) im Feld befindet, gekennzeichnet durch eine Einrichtung (116) zum Bestimmen, ob die Richtung (Θ) einer sich in der Impedanzebene befindenden Verschiebungslinie (a-b), die die Verschiebung eines Münze-vorhanden-Punkts (b), wie er durch die Meßwerte definiert wird, relativ zu einem Münze-fehlt-Punkt (a) repräsentiert, der die Reaktanz und Verluste der Drossel beim Fehlen einer Münze repräsentiert, einer Bezugsrichtung in der Impedanzebene entspricht, wobei diese Einrichtung, so ausgebildet ist, daß sie die Reaktanz und die Verluste der Drossel (104) mißt, wenn sich eine Münze in deren Feld befindet, eine Phasenerkennungsschaltung (106 - 114) beinhaltet.
  35. Münzprüfmechanismus mit einem Münzkanal (12), einer Schaltung mit einer Drossel (104), die so ausgebildet ist, daß sie bewirkt, daß die Drossel ein schwingendes Feld im Münzkanal (12) erzeugt, und einer Einrichtung (106 - 116), die so ausgebildet ist, daß sie die Reaktanz (X) und die Verluste (R) der Drossel (104) mißt, wenn sich eine Münze (10) im Feld befindet, gekennzeichnet durch eine Einrichtung (116) zum Bestimmen, ob die Richtung (Θ) einer sich in der Impedanzebene befindenden Verschiebungslinie (a-b), die die Verschiebung eines Münze-vorhanden-Punkts (b), wie er durch die Meßwerte definiert wird, relativ zu einem Münze-fehlt-Punkt (a) repräsentiert, der die Reaktanz und Verluste der Drossel beim Fehlen einer Münze repräsentiert, einer Bezugsrichtung in der Impedanzebene entspricht, mit einer Signalquelle (100), die so angeordnet ist, daß sie die Drossel (104) betreibt.
  36. Mechanismus nach Anspruch 35, bei dem die Signalquelle ein Konstantstromquelle (132; Fig. 7) ist.
  37. Mechanismus nach einem der Ansprüche 34 bis 36, bei dem die Phasenerkennungsschaltung (106 - 114) so ausgebildet ist, daß sie die Spannung an der Drossel zu Zeitpunkten erfaßt, die phasenmäßig im wesentlichen um 90° auseinanderliegen, um jeweilige Signale herzuleiten, die die Drosselreaktanz (X) und die Verluste (R) repräsentieren.
  38. Mechanismus nach einem der Ansprüche 34 bis 37, mit einer Richtung (80) zum Messen der in der Impedanzebene liegenden Winkelverschiebung der Phasenerkennungsachsen (Xd, Rd) relativ zu den wahren Achsen für die Reaktanz und die Verluste (X, R).
  39. Mechanismus nach Anspruch 38, mit einer Einrichtung (130) zum Simulieren einer Änderung (δX) nur der Reaktanz oder der Verluste der Drossel (104), wenn sich keine Münze (10) in deren Feld befindet, einer Einrichtung (116) zum Erfassen der sich ergebenden Änderung der Meßwerte der Verluste oder der Reaktanz und einer Einrichtung (116) zum Berechnen der Winkelverschiebung aus der Beziehung zwischen der simulierten Änderung und der erfaßten, sich ergebenden Änderung.
  40. Mechanismus nach Anspruch 39, bei dem die Simulationseinrichtung (130) so ausgebildet ist, daß sie eine Änderung mit der Reaktanz (δX) der Drossel (104) simuliert, und die Erfassungseinrichtung (116) so ausgebildet ist, daß sie die sich ergebende Veränderung der Verlustmessung erfaßt.
  41. Mechanismus nach einem der Ansprüche 39 oder 40, bei dem die Simulationseinrichtung (130) so ausgebildet ist, daß sie zum Spulensignal zeitweilig ein Signal summiert, das dieselbe Frequenz wie das Spulensignal hat und mit derjenigen Komponente des Spulensignals, die die Impedanzkomponente repräsentiert, für die die Änderung zu simulieren ist, in Phase ist oder um 180° phasenverschoben ist.
  42. Mechanismus nach Anspruch 40, mit einem Widerstandsnetzwerk (Ra-Rd), das in einem Schaltkreis mit der Drossel (104) verbunden ist, einer Einrichtung, die die Drossel (104) mit einem Eingang der Phasenerkennungsschaltung (106) verbindet, um die Spannung an der Drossel (104) an die Schaltung anzulegen, und einem Kondensator (Ci), der ausgehend von einem Punkt im Widerstandsnetzwerk (Ra-Rd) mit diesem Eingang verbunden ist, um dadurch diesem Eingang eine Spannung zuzuführen, die um 180° gegen die Phasen der Drosselspannung verschoben ist.
  43. Mechanismus nach Anspruch 42, mit einer ersten Einrichtung (T2, Rd) zum Modifizieren des Widerstandsnetzwerks (Ra-Rd) zum zeitweiligen Ändern der über den Kondensator (Ci) zugeführten Spannung, um so die Reaktanzänderung zu simulieren.
  44. Mechanismus nach Anspruch 43, mit einer zweiten Einrichtung (T1, Ra) zum Modifizieren des Widerstandsnetzwerks (Ra-Rd), um jede Änderung des Drosselstroms aufzuheben, wie sie durch den Betrieb der ersten Einrichtung (T2, Rd) hervorgerufen werden würde.
  45. Mechanismus nach einem der Ansprüche 38 bis 44, mit einer Einrichtung (130) zum winkelmäßigen Verschieben der Phasenerkennungsachsen, gemäß denen die Phasenerkennungsschaltung (106) arbeitet, um die Winkelverschiebung zu verringern.
  46. Mechanismus nach einem der Ansprüche 38 bis 45, bei dem die Bestimmungseinrichtung (116) eine Einrichtung zum Anwenden eines Korrekturfaktors beinhaltet, der aus der Messung zur Winkelverschiebung hergeleitet wurde.
  47. Mechanismus nach einem der Ansprüche 34 bis 46, bei dem die Drossel (104) mit einer Frequenz betrieben wird, die von einem digitalen Signalgenerator (100) bestimmt wird.
  48. Mechanismus nach Anspruch 47, mit einem Analogfilter (102), das so ausgebildet ist, daß es das Ausgangssignal des digitalen Signalgenerators (100) filtert, bevor es an die Drossel (104) gegeben wird.
  49. Mechanismus nach einem der Ansprüche 34 bis 48, mit einer Einrichtung (116) zum Errichten der Bezugsrichtung als Winkel (Θ) bezogen auf die Reaktanzachse (X) oder die Verlustachse (R).
  50. Mechanismus nach Anspruch 49, mit einer Phasenerkennungsschaltung (106 - 114), die so ausgebildet ist, daß sie die Reaktanz (X) und die Verluste (R) der Drossel (104) mißt, und bei dem die Bestimmungseinrichtung (116) so ausgebildet ist, daß sie den Winkel (Θd) der Verschiebungslinie (120) relativ zu einer der Phasenerkennungsachsen (Xd, Rd) auswertet.
  51. Mechanismus nach Anspruch 50 in direkter Abhängigkeit von Anspruch 46, bei dem die Einrichtung (116) zum Anwenden eines Korrekturfaktors so ausgebildet ist, daß sie die gemessene Winkelverschiebung (Θe) der Phasenerkennungsachsen (Xd, Rd) und den hergeleiteten Wert (Θd) für die Verschiebungslinie kombiniert.
  52. Mechanismus nach einem der Ansprüche 34 bis 51, bei dem die Meßeinrichtung (116) weiter so ausgebildet ist, daß sie die Reaktanz und die Verluste der Drossel (104) beim Fehlen einer Münze (10) mißt, um denjenigen Punkt (6) zu errichten, der die Reaktanz und die Verluste der Drossel beim Fehlen einer Münze repräsentiert, und mit einer Einrichtung (116) zum Bestimmen der Richtung der Verschiebungslinie aus den Messungen bei vorhandener Münze (a) und fehlender Münze (b).
  53. Mechanismus nach Anspruch 52, mit einer Einrichtung, die bewirkt, daß die Meßeinrichtung die Münze-fehlt-Messungen jedesmal dann ausführt, wenn eine Münze (10) geprüft wird.
  54. Mechanismus nach einem der Ansprüche 34 bis 48, mit einer Einrichtung, um für eine Repräsentation einer Bezugsverschiebungslinie zu sorgen, deren Richtung in der Impedanzebene die Bezugsrichtung ist und deren Position in der Impedanzebene dergestalt ist, daß sie sich durch den Münzefehlt-Punkt (b) erstreckt, und bei dem die Bestimmungseinrichtung 8116) so ausgebildet ist, daß sie bestimmt, ob die Messungen zur Reaktanz und den Verlusten (X, R) bei vorhandener Münze einen Punkt festlegen, der im wesentlichen auf der Bezugsverschiebungslinie liegt.
  55. Mechanismus nach einem der Ansprüche 34 bis 37, bei dem die Bestimmungseinrichtung (116) so ausgebildet ist, daß sie den Winkel (C) der Verschiebungslinie (120) bezogen auf den Münze-fehlt-Gesamtimpedanzvektor (118) der Drossel (104) auswertet.
  56. Mechanismus nach Anspruch 55, mit einer Phasenerkennungsschaltung, die so ausgebildet ist, daß sie die Reaktanz (X) und die Verluste (R) der Drossel (104) mißt, und bei dem die Bestimmungseinrichtung (116) so betrieben werden kann, daß sie den Winkel (B) des Münze-fehlt-Gesamtimpedanzvektors (118) bezogen auf eine Phasenerkennungsachse (Xd) mißt, den Winkel (A) der Verschiebungslinie (120) bezogen auf eine Phasenerkennungsachse (Xd) mißt und diese zwei gemessenen Winkel (A, B) kombiniert.
  57. Mechanismus nach einem der Ansprüche 55 oder 56, mit einer Einrichtung zum Errichten der Bezugsrichtung als Winkel relativ zum Münze-fehlt-Gesamtimpedanzvektor (118) der Drossel (104) in der Impedanzebene.
  58. Mechanismus nach einem der Ansprüche 34 bis 57, mit einem gemeinsamen Kanal (132), in dem von der Reaktanz (X) bzw. den Verlusten (R) abhängige Signale der Drossel (104) verarbeitet werden, wobei die Bestimmungseinrichtung (116) so ausgebildet ist, daß sie die Differenz (ΔX) zwischen dem Münze-vorhanden- und dem Münze-fehlt-Wert des reaktanzabhängigen Signals verwendet, und mit einer Einrichtung (Ci) zum Anwenden eines Versatzes (Xo auf das reaktanzabhängige Signal, um dessen Wert wesentlich auf denjenigen des widerstandsabhängigen Signals hin zu verringern.
  59. Mechanismus nach Anspruch 58, bei dem die Signale vom gemeinsamen Kanal (132) zu einem weiteren gemeinsamen Kanal (136) laufen, wobei die Bestimmungseinrichtung so ausgebildet ist, daß sie die Differenz (ΔX, ΔR) zwischen den Münzevorhanden- und Münze-fehlt-Werten sowohl des reaktanzabhängigen als auch des verlustabhängigen Signals im Bestimmungsschritt verwendet, und mit einer Einrichtung (134) vor dem weiteren gemeinsamen Kanal (136), die vorhanden ist, um einen Versatz an eines der Signale oder beide so anzulegen, daß der Münze-fehlt-Wert jedes Signals nahe am Ende des Dynamikbereichs einer Komponente (136) des weiteren gemeinsamen Kanals liegt, wodurch die Verwendung des Dynamikbereichs dieser Komponente (136) optimiert wird.
  60. Mechanismus nach Anspruch 59, bei dem diese Komponente ein A-D-Umsetzer (136) ist.
  61. Münzprüfmechanismus mit einem Münzkanal (12), einer Schaltung mit einer Drossel (104), die so ausgebildet ist, daß sie bewirkt, daß die Drossel ein schwingendes Feld im Münzkanal (12) erzeugt, und einer Einrichtung (106 - 116), die so ausgebildet ist, daß sie die Reaktanz (X) und die Verluste (R) der Drossel (104) mißt, wenn sich eine Münze (10) im Feld befindet, gekennzeichnet durch eine Einrichtung (116) zum Bestimmen, ob die Richtung (Θ) einer sich in der Impedanzebene befindenden Verschiebungslinie (a-b), die die Verschiebung eines Münze-vorhanden-Punkts (b), wie er durch die Meßwerte definiert wird, relativ zu einem Münze-fehlt-Punkt (a) repräsentiert, der die Reaktanz und Verluste der Drossel beim Fehlen einer Münze repräsentiert, einer Bezugsrichtung in der Impedanzebene entspricht, wobei diese Bezugsrichtung für eine spezielle Münzart geeignet ist und die Bestimmungseinrichtung (116) ferner so ausgebildet ist, daß sie bestimmt, ob die Differenz (ΔX) zwischen dem Münzefehlt- und dem Münze-vorhanden-Wert für die Reaktanz (X) der Drossel (104) einem Bezugswert entspricht, wie er für dieselbe, spezielle Münzart geeignet ist.
  62. Mechanismus nach Anspruch 61, bei dem von der Drosselreaktanz abhängige Signale (ΔX) durch eine Schaltung verarbeitet werden, die variierende Systemverstärkung aufweist, die die Differenz zwischen den Reaktanzwerten beeinflußt, mit einer Einrichtung (130) zum zeitweiligen Simulieren einer vorgegebenen Änderung der Reaktanz der Drossel (104), wenn sich keine Münze (10) in deren Feld befindet, einer Einrichtung (116) zum Erfassen der sich ergebenden Änderung eines von der Reaktanz abhängigen Signals, das der Systemverstärkung unterzogen wurde, einer Einrichtung zum Vergleichen der erfaßten Änderung mit einem Bezugswert, einer Einrichtung zum Anwenden eines aus dem Vergleichsergebnis hergeleiteten Kompensationsfaktors auf solche Weise auf das reaktanzabhängige Signal (ΔX), daß dieses Signal so eingestellt wird, daß es im wesentlichen dem Bezugswert entspricht, und einer Einrichtung (116) zum Beibehalten der Anwendung des Kompensationsfaktors, bis die Änderung das nächste Mal simuliert wird.
  63. Mechanismus nach Anspruch 62, bei dem das von der Reaktanz abhängige Signal ein Analogsignal ist, mit einer Einrichtung (136) zum Umsetzen des Analogsignals in digitale Form, bevor die sich ergebende Änderung erfaßt wird, einer Einrichtung (116) zum Vergleichen der Änderung des Signals in digitaler Form mit einem digitalen Bezugswert, einer Einrichtung (116) zum Herleiten eines digitalen Kompensationsfaktors aus dem Vergleich und einer Einrichtung (116) zum Anwenden des digitalen Kompensationsfaktors auf die digitale Form des reaktanzabhängigen Signals, bis die Änderung das nächste Mal simuliert wird.
  64. Mechanismus nach einem der Ansprüche 34 bis 63, bei dem die Frequenz (fo) des von der Drossel (104) erzeugten schwingenden Felds ausreichend niedrig dafür ist, daß die Richtung (Θ) der Verschiebungslinie (a-b) durch die Dicke der geprüften Münze (10) beeinflußt wird.
  65. Mechanismus nach Anspruch 64, bei dem die Frequenz (fo) ausreichend niedrig dafür ist, daß die durch sie hervorgerufene Skineffekttiefe für das Münzmaterial größer als ein Drittel der Dicke der Münze (10) ist.
  66. Mechanismus nach Anspruch 64, bei dem die Frequenz (fo) 100 kHz oder weniger beträgt.
  67. Münzprüfmechanismus mit einem Münzkanal (12), einer Schaltung mit einer Drossel (104), die so ausgebildet ist, daß sie bewirkt, daß die Drossel ein schwingendes Feld im Münzkanal (12) erzeugt, und einer Einrichtung (106 - 116), die so ausgebildet ist, daß sie die Reaktanz (X) und die Verluste (R) der Drossel (104) mißt, wenn sich eine Münze (10) im Feld befindet, gekennzeichnet durch eine Einrichtung (116) zum Bestimmen, ob die Richtung (Θ) einer sich in der Impedanzebene befindenden Verschiebungslinie (a-b), die die Verschiebung eines Münze-vorhanden-Punkts (b), wie er durch die Meßwerte definiert wird, relativ zu einem Münze-fehlt-Punkt (a) repräsentiert, der die Reaktanz und Verluste der Drossel beim Fehlen einer Münze repräsentiert, einer Bezugsrichtung in der Impedanzebene entspricht, wobei die Frequenz (fo) 35 kHz oder weniger beträgt.
  68. Mechanismus nach Anspruch 67, bei dem die Frequenz (fo) 10 kHz oder weniger beträgt.
  69. Mechanismus nach einem der Ansprüche 34 bis 68, bei dem die Drossel (104) nur auf einer Seite des Münzkanals (12) vorhanden ist.
  70. Mechanismus nach einem der Ansprüche 34 bis 53, mit einer Einrichtung (78) zum Erstellen mehrerer Bezugsrichtungen, die jeweils von mehreren annehmbaren Münztypen abhängen, und bei dem die Bestimmungseinrichtung (116) so ausgebildet ist, daß sie den Bestimmungsschritt in bezug auf die mehreren Bezugsrichtungen ausführt.
  71. Mechanismus nach Anspruch 70, bei dem die Bereitstellungseinrichtung (78) so ausgebildet ist, daß sie Repräsentationen mehrerer Bezugsverschiebungslinien bereitstellt, deren Richtungen jeweils mehreren annehmbaren Münzarten entsprechen, und bei dem die Bestimmungseinrichtung (116) so ausgebildet ist, daß sie den Bestimmungsschritt in bezug auf diese mehreren Bezugsverschiebungslinien ausführt.
  72. Mechanismus nach einem der Ansprüche 34 bis 71, mit einer Einrichtung (116) zum Ermitteln der Richtung der Verschiebungslinie (120), die während des Durchlaufens einer Münze (10) an der Drossel vorbei einen Extremwert erreicht, und bei dem die Bestimmungseinrichtung (116) so ausgebildet ist, daß sie diese extreme Richtung verwendet.
  73. Mechanismus nach Anspruch 72, bei dem die Erfassungseinrichtung (116) so betreibbar ist, daß sie die Richtung der Verschiebungslinie (120) wiederholt auswertet, wenn sich die Münze (10) auf einer Kante an der Drossel entlang vorbeibewegt, und sie aus den Auswertungsergebnissen erfaßt, wann die Richtung der Verschiebungslinie (120) einen Extremwert hat.
  74. Münzprüfmechanismus mit einem Münzkanal (12), einer Schaltung mit einer Drossel (104), die so ausgebildet ist, daß sie bewirkt, daß die Drossel ein schwingendes Feld im Münzkanal (12) erzeugt, und einer Einrichtung (106 - 116), die so ausgebildet ist, daß sie die Reaktanz (X) und die Verluste (R) der Drossel (104) mißt, wenn sich eine Münze (10) im Feld befindet, gekennzeichnet durch eine Einrichtung (116) zum Bestimmen, ob die Richtung (Θ) einer sich in der Impedanzebene befindenden Verschiebungslinie (a-b), die die Verschiebung eines Münze-vorhanden-Punkts (b), wie er durch die Meßwerte definiert wird, relativ zu einem Münze-fehlt-Punkt (a) repräsentiert, der die Reaktanz und Verluste der Drossel beim Fehlen einer Münze repräsentiert, einer Bezugsrichtung in der Impedanzebene entspricht, und ferner mit einem digitalen Speicher zum Einspeichern eines Bezugswerts oder mehrerer, die, als Zahlen in digitaler Form, die Bezugsrichtung repräsentieren.
EP92922260A 1992-04-14 1992-10-15 Verfahren und vorrichtung zum prüfen von münzen Expired - Lifetime EP0603340B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US868551 1992-04-14
US07/868,551 US5213190A (en) 1991-04-15 1992-04-14 Method and apparatus for testing coins
PCT/US1992/008783 WO1993021608A1 (en) 1992-04-14 1992-10-15 Method and apparatus for testing coins

Publications (3)

Publication Number Publication Date
EP0603340A1 EP0603340A1 (de) 1994-06-29
EP0603340A4 EP0603340A4 (de) 1994-10-19
EP0603340B1 true EP0603340B1 (de) 1995-12-13

Family

ID=25351909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92922260A Expired - Lifetime EP0603340B1 (de) 1992-04-14 1992-10-15 Verfahren und vorrichtung zum prüfen von münzen

Country Status (6)

Country Link
EP (1) EP0603340B1 (de)
JP (1) JP2966933B2 (de)
AU (1) AU661243B2 (de)
DE (1) DE69206809T2 (de)
ES (1) ES2080521T3 (de)
WO (1) WO1993021608A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2170678B1 (es) * 2000-06-30 2003-09-16 Azkoyen Medios De Pago Sa Metodo y aparato de obtencion de caracteristicas fisicas de monedas para su identificacion.
US9922487B2 (en) 2013-09-11 2018-03-20 Sigma Metalytics, Llc Device for use in detecting counterfeit or altered bullion, coins or metal
US10417855B2 (en) 2016-01-18 2019-09-17 Sigma Metalytics LLC Systems and methods for detecting fake or altered bullion, coins, and metal
CN109900748B (zh) * 2019-04-24 2021-06-08 武汉市新宜电器设备制造有限公司 一种基于电阻测量的安防维稳物件的识别方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749220A (en) * 1971-10-06 1973-07-31 Anritsu Electric Co Ltd Coin discriminating apparatus
US4409543A (en) * 1980-03-11 1983-10-11 Hewlett-Packard Company Impedance meter
US4460080A (en) * 1981-03-19 1984-07-17 Aeronautical & General Instruments Limited Coin validation apparatus
US4946019A (en) * 1988-03-07 1990-08-07 Mitsubishi Jukogyo Kabushiki Kaisha Coin discriminator with phase detection
US5048662A (en) * 1989-04-19 1991-09-17 Mitsubishi Jukogyo Kabushiki Kaisha Coin discriminator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2254948B (en) * 1991-04-15 1995-03-08 Mars Inc Apparatus and method for testing coins

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749220A (en) * 1971-10-06 1973-07-31 Anritsu Electric Co Ltd Coin discriminating apparatus
US4409543A (en) * 1980-03-11 1983-10-11 Hewlett-Packard Company Impedance meter
US4460080A (en) * 1981-03-19 1984-07-17 Aeronautical & General Instruments Limited Coin validation apparatus
US4946019A (en) * 1988-03-07 1990-08-07 Mitsubishi Jukogyo Kabushiki Kaisha Coin discriminator with phase detection
US5048662A (en) * 1989-04-19 1991-09-17 Mitsubishi Jukogyo Kabushiki Kaisha Coin discriminator

Also Published As

Publication number Publication date
DE69206809D1 (de) 1996-01-25
EP0603340A4 (de) 1994-10-19
ES2080521T3 (es) 1996-02-01
DE69206809T2 (de) 1996-07-25
AU661243B2 (en) 1995-07-13
JPH06509673A (ja) 1994-10-27
AU2871792A (en) 1993-11-18
JP2966933B2 (ja) 1999-10-25
EP0603340A1 (de) 1994-06-29
WO1993021608A1 (en) 1993-10-28

Similar Documents

Publication Publication Date Title
US5213190A (en) Method and apparatus for testing coins
US5351798A (en) Coin discrimination apparatus and method
US4936435A (en) Coin validating apparatus and method
EP0780704B1 (de) Vielfachfrequenzverfahren und -anordnung zur Identifizierung von metallischen Objekten in einer Hintergrundumgebung
US5609234A (en) Coin validator
EP0699326A1 (de) Münzprüfung
EP0603340B1 (de) Verfahren und vorrichtung zum prüfen von münzen
US5337877A (en) Coin validators
EP1172772A2 (de) Verfahren und Einrichtung zum Feststellen von physikalischen Münzeigenschaften für ihre Identifikation
EP0527874B1 (de) Verfahren und vorrichtung zum prüfen von münzen
JPH0745809Y2 (ja) 硬貨判別装置
US3619771A (en) Method of an apparatus for selecting the optimum test frequency in eddy current testing
GB2266399A (en) Coin testing
GB2046974A (en) Method and apparatus for the identification of coins and equivalent
JP2936752B2 (ja) 硬貨選別装置
JPS5856155B2 (ja) 硬貨選別装置
KR930011725B1 (ko) 주화 선별장치
JPS6211760B2 (de)
JPS6236592B2 (de)
JPS6248879B2 (de)
JPH07118031B2 (ja) 硬貨判別装置
JPH06231334A (ja) 硬貨選別処理装置における硬貨通路開放検知装置
JPS5856154B2 (ja) 硬貨選別装置
JPS5931753B2 (ja) 硬貨選別装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI

A4 Supplementary search report drawn up and despatched

Effective date: 19940831

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): CH DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 19950125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 69206809

Country of ref document: DE

Date of ref document: 19960125

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2080521

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031017

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071009

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101013

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101018

Year of fee payment: 19

Ref country code: GB

Payment date: 20101013

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20101122

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69206809

Country of ref document: DE

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111015

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111015

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111016