EP0601511B1 - Verfahren und Vorrichtung für die Prallzerkleinerung von Feststoffpartikeln - Google Patents

Verfahren und Vorrichtung für die Prallzerkleinerung von Feststoffpartikeln Download PDF

Info

Publication number
EP0601511B1
EP0601511B1 EP93119613A EP93119613A EP0601511B1 EP 0601511 B1 EP0601511 B1 EP 0601511B1 EP 93119613 A EP93119613 A EP 93119613A EP 93119613 A EP93119613 A EP 93119613A EP 0601511 B1 EP0601511 B1 EP 0601511B1
Authority
EP
European Patent Office
Prior art keywords
suspension
solid particles
fluid
fluid jet
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93119613A
Other languages
English (en)
French (fr)
Other versions
EP0601511A1 (de
Inventor
Roland Dr.-Ing. Nied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0601511A1 publication Critical patent/EP0601511A1/de
Application granted granted Critical
Publication of EP0601511B1 publication Critical patent/EP0601511B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills

Definitions

  • EP 0300402 B1 deals with the generation of extremely small particles in such a way that the particles to be crushed, which already have a relatively small mass, initially in be suspended in a fluid and this suspension out Fluid with particles suspended therein for impact is brought to an area, but measures are provided with which the impact energy increases becomes. For this purpose, the suspension becomes drop-shaped Suspended subsets taken, which in turn cause impact be induced on the area. That kind of Impact crushing is based on the consideration that the comminution of particles is only successful can be if the mass of the particles to be broken down does not fall below a certain limit.
  • any of these Droplet is of the same kind from each other Droplets separated and the mass of these droplets now in turn entrained by a carrier fluid stream and brought to impact on the baffle.
  • a carrier fluid stream Instead of individual Solid particles that flow directly from a carrier fluid carried away and inadequate because of their small mass brought to impact on the impact surface and accordingly everyone will be crushed inadequately Solid particles first of all become part of a Droplets of larger mass made that with much higher energy is impacted and as a result The impact energy so increased can also solid particles extremely small mass can be smashed even further.
  • the first fluid usually becomes a liquid
  • the second fluid ie the carrier fluid
  • the carrier fluid be a gas
  • the Suspension of liquid and solid particles suspended in it with only a small mass is in a container contained and in this container and thus in the suspension a gas stream with high energy is blown in Droplets from subsets of liquid and those contained therein Entrains solid particles and in the manner described makes you bounce.
  • the first option is largely the one already described Technology in which the of a gas stream entrained partial suspension of liquid droplets and contained them in the smallest possible number Solid particles on a baffle is made to hit.
  • the second option is a modification in the Way that in the container with the suspension a suspension is introduced after beforehand with a fluid with high flow energy has been provided to a crushing in the Container through energy exchange between solid particles the one remaining in the container and the one with high flow energy introduced into the container
  • the effect then special is achieved favorably if several against each other directed high energy gas jets the impact crushing means at least two suspension subsets accelerated against each other is carried out.
  • the present invention is based on the consideration that regardless of which of the two ways to apply comes, a breakdown of solid particles already comes about within or within everyone Impact crushing takes place by Solid particles within the respective partial suspension amount meet and thus smash each other or disassemble.
  • the reasoning continues that the Possibility of this type of impact crushing within one Fluid jet of fluid and solid particles with increasing Distance from the beam source increases because within the There is a certain amount of turbulence that the clashing takes place favored by solid particles, that, however, the jet and thus also between solid particles exchanged energy with increasing distance of the beam from the beam source decreases and that finally in the area of the entry of the carrier fluid in the suspension in the form of an energy beam there are still few solid particles in the jet, that can meet and smash each other.
  • the object of the present invention is derived from this which consists of the impact crushing in the high energy Suspension partial quantity jet on one if possible promote long length of the beam and in particular already the possibility directly in the area of the radiation source for impact crushing of solid particles create.
  • a fluid 2 in which it can be a gas or a liquid (Fig. 1).
  • Solid particles 3 are suspended in this fluid, so that the container 1 a suspension 4 from in a fluid 2 suspended solid particles 3.
  • the diameter of a single one of the many solid particles 3 can be between 1 and 5 microns, preferably is its diameter, however, is already less than 1 ⁇ m.
  • By appropriate manipulation can, but does not have to, as few solid particles as possible with a specific one Fluid amount coagulated into a drop, its diameter should be around 50 ⁇ m. This results in, that, as mentioned, the fluid 2 is a gas or a liquid can act, but it is preferred is a liquid.
  • the fast fluid jets 9, 10 are preferably gas jets, without being exclusive and necessary have to.
  • the solid particles are broken down exclusively through energy exchange between the solid particles, with the problem particularly clearly shows that an energy exchange takes place only in one certain distance from the nozzles 7,8 where the energy of the gas jets is already a certain reduction has experienced that naturally directly at the nozzle outlet is greatest. That becomes with the state of the art Accepted because there is no exchange of energy between Solid particles is thought to go beyond a certain Distance from the nozzles in each of the fast gas jets are incorporated.
  • the primary thought is one Energy exchange between particles, one of the gas jets are to be assigned and particles that the other of the two gas jets can be assigned.
  • the present invention is now concerned so that an energy exchange between solid particles immediately after the discharge of fluid jets from one or more nozzles. Because of that are immediately following the respective fluid jet after leaving the respective nozzle, additional solid particles supplied with the exiting from the nozzle Suspension beam into an active connection and an energy exchange with those in the suspension jet immediately after the solid particles already contained in the nozzle occur (Fig. 1) or in an energy exchange kick with the solid particles caused by the fast Fluid jets from leaving the at least one nozzle 7,8 step on (Fig. 2).
  • the additional solid particles can now be different Be made available, particularly appropriate however, is to provide them as part of a suspension, those before insertion in the area of the nozzles 7.8 is removed from the suspension 4.
  • a housing 12 is one at one end that is the nozzle outlet is arranged on the outside tapering tube 13, whose inside diameter is constant.
  • This tube 13 occurs through the outlet end of the housing with a defined Radial play out, but without a federal approach projecting the housing.
  • Via a radial inlet 14 becomes the annular space 15 between the tube 13 and the housing 12 introduced a fluid in which granules are suspended.
  • a blade ring 16 ensures that the suspension Annulus 15 in such a way that it leaves the pipe 13 emerging fluid flow concentrically and evenly surrounds and thereby even with the fluid flow from the Tube 13 is mixed, insofar as this does not cause this fluid flow substantial energy is withdrawn.
  • FIG. 3 can be, for example, the nozzle 11 of the system Fig. 1, according to each of the two nozzles 7,8 of the system Fig. 2 or one and then only one of the nozzles 7.8 in an investment that is basically in accordance with the investment FIG. 2 corresponds, but with one of the designs shown in FIG. 3 Nozzles 7 or 8 get along because they meet of solid particles of suspension 4 with solid particles 3 an energy exchange in the exit jet of the nozzle takes place, which leads to a particle decomposition.
  • the suspension 4 from one Gas and solid particles or from a liquid with To let solid particles exist.
  • it is a suspension of a liquid and solid particles.
  • a gas or a liquid is brought out from the tube 13 of the nozzle shown in FIG. 3, a gas or a liquid is brought out.
  • a gas or a liquid is brought out.
  • it is a gas.
  • the exiting from the tube 13 Fluid is accelerated to flow through the tube 14 entrained suspension entrained, accelerated and give her the necessary energy.
  • the pipe 14 for entry into the nozzle according to FIG. 3 induced suspension can be a gas or a liquid with solid particles suspended therein.
  • she can can be prepared in any way. Preferably acts it is a liquid with solid particles suspended in it.
  • this suspension is preferred taken from container 1 or 6, i.e. is a subset the suspension 4 taken in the container 1 or 6 and is returned to the container.
  • the invention is particularly effective when the first fluid with the solid particles to be broken down, 2 in the case of FIG. 2, the suspension 4, already have a significant proportion of solid particles contains only a small mass, as is the case with modern classifiers the case is because these only want extremely fine visual goods is removed, that is, the material returned to the mill Good still a high proportion of relatively finely ground Contains well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)

Description

Bei der Prallzerkleinerung in ihrer häufig anzutreffenden Ausbildung werden Feststoffpartikel von einem Gasstrom mitgerissen und durch Aufprall auf eine Prallfläche in mehrere kleinere Partikel mit entsprechend geringerer Masse zerlegt.
EP 0300402 B1 behandelt die Erzeugung extrem kleiner Partikel in der Weise, daß die zu zerkleinernden Partikel, die schon relativ geringe Masse haben, zunächst zwar in einem Fluid suspendiert werden und diese Suspension aus Fluid mit darin suspendierten Partikeln zum Aufprallen auf eine Fläche gebracht wird, dabei jedoch Maßnahmen vorgesehen sind, mit denen die Aufprallenergie erhöht wird. Aus der Suspension werden hierzu tropfenförmige Suspensionsteilmengen entnommen, die ihrerseits zum Aufprallen auf die Fläche veranlaßt werden. Dieser Art der Prallzerkleinerung liegt die Überlegung zugrunde, daß die Zerkleinerung von Partikeln nur dann mit Erfolg bewirkt werden kann, wenn die Masse der zu zerlegenden Partikel einen bestimmten Grenzwert nicht unterschreitet. Haben die zu zerkleinernden Partikel eine zu geringe Masse, so besteht die Gefahr, daß sie gar nicht wirklich auf der Prallfläche auftreffen, sondern mit dem Fluidstrom noch vor der Prallfläche abgeleitet werden, allenfalls mit sehr geringer Energie auf die Prallfläche auftreffen und im Auftreffen als Teile der Suspension mit dieser zur Seite abgelenkt und parallel zur Prallfläche an dieser entlang geführt werden. Es wird deshalb vorgeschlagen, die zu zerkleinernden Feststoffpartikel nicht einfach in einem Fluid zu suspendieren und die so gebildete Suspension zum Auftreffen auf der Prallfläche zu veranlassen, sondern die Feststoffpartikel in ein erstes Fluid zu suspendieren, dann aus dieser Suspension Tröpfchen zu bilden, wobei jedes Tröpfchen aus einem Fluidanteil besteht, in dem allenfalls einige wenige Feststoffpartikel enthalten sind. Jedes dieser Tröpfchen wird von den jeweils anderen gleichartigen Tröpfchen separiert und die Masse dieser Tröpfchen wird nun ihrerseits von einem Trägerfluidstrom mitgerissen und zum Aufprall auf der Prallfläche gebracht. Statt einzelner Feststoffpartikel, die unmittelbar von einem Trägerfluidstrom mitgerissen und wegen ihrer geringen Masse nur unzulänglich zum Aufprall auf der Prallfläche gebracht und entsprechend unzulänglich zerkleinert werden, wird also jeder Feststoffpartikel zunächst einmal zum Bestandteil eines Tröpfchens größerer Masse gemacht, das mit wesentlich höherer Energie zum Aufprall gebracht wird und infolge der so erhöhten Aufprallenergie können auch Feststoffpartikel extrem kleiner Masse noch weiter zertrümmert werden.
In der Praxis werden das erste Fluid meist eine Flüssigkeit, das zweite Fluid, also das Trägerfluid, ein Gas sein. Die Suspension aus Flüssigkeit und darin suspendierten Feststoffpartikeln mit nur geringer Masse ist in einem Behälter enthalten und in diesen Behälter und damit in die Suspension wird ein Gasstrom mit hoher Energie eingeblasen, der Tröpfchen aus Flüssigkeitsteilmengen und darin befindlichen Feststoffpartikeln mitreißt und in der beschriebenen Weise zum Aufprallen bringt.
Dies führt nun zu zwei verschiedenen Möglichkeiten der Realisierung der Prallzerkleinerung.
Die erste Möglichkeit ist weitgehend die schon beschriebene Technik, bei der die von einem Gasstrom mitgerissene Suspensionsteilmenge aus Flüssigkeitströpfchen und darin in möglichst geringer Zahl enthaltenen Feststoffpartikeln auf einer Prallplatte zum Auftreffen gebracht wird.
Die zweite Möglichkeit ist eine Abwandlung in der Weise, daß in den Behälter mit der Suspension eine Suspension eingebracht wird, nachdem sie vorher mit einem Fluid mit hoher Strömungsenergie versehen- worden ist, um eine Prallzerkleinerung im Behälter durch Energieaustausch zwischen Feststoffpartikeln der im Behälter verbliebenen und der mit hoher Strömungsenergie in den Behälter eingeführten Suspension zu bewirken, wobei die Wirkung dann besonders günstig erzielt wird, wenn mehrere gegeneinander gerichtete Gasstrahlen hoher Energie eingeblasen werden, die Prallzerkleinerung also mittels mindestens zweier gegeneinander beschleunigter Suspensionsteilmengen durchgeführt wird.
Der vorliegenden Erfindung liegt nun die Überlegung zugrunde, daß unabhängig davon, welche der beiden Möglichkeiten zur Anwendung kommt, eine Zertrümmerung von Feststoffpartikeln bereits dadurch zustande kommt, daß innerhalb der oder jeder Suspensionsteilmenge eine Prallzerkleinerung stattfindet, indem Feststoffpartikel innerhalb der jeweiligen Suspensionsteilmenge aufeinandertreffen und sich so gegenseitig zertrümmern bzw. zerlegen. Die Überlegung geht weiter dahin, daß die Möglichkeit dieser Art der Prallzerkleinerung innerhalb eines Fluidstrahls aus Fluid und Feststoffpartikeln mit zunehmender Entfernung von der Strahlquelle zunimmt, weil innerhalb des Strahls eine gewisse Verwirbelung stattfindet, die das Aufeinandertreffen von Feststoffpartikeln begünstigt, daß jedoch die Strahl- und damit auch die zwischen Feststoffpartikeln ausgetauschte Energie mit zunehmender Entfernung des Strahls von der Strahlquelle abnimmt und daß schließlich im Bereich des Eintritts des Trägerfluids in die Suspension in der Form eines energiereichen Strahls im Strahl noch wenig Feststoffpartikel enthalten sind, die aufeinandertreffen und sich zertrümmern können.
Daraus leitet sich die Aufgabe der vorliegenden Erfindung ab, die darin besteht, die Prallzerkleinerung im energiereichen Suspensionsteilmengenstrahl auf einer möglichst großen Länge des Strahls zu fördern und insbesondere bereits unmittelbar im Bereich der Strahlquelle die Möglichkeit zur Prallzerkleinerung von Feststoffpartikeln zu schaffen.
Der Lösung dieser Aufgabe dienen die Merkmale der Patentansprüche.
Mit der Definition der Erfindung in den Ansprüchen, insbesondere im Anspruch 1, geht hervor, daß in die Suspension aus einem Fluid und darin suspendierten Feststoffpartikeln nicht nur einfach ein zweites Fluid hoher Energie eintritt, sondern daß dieser Zweitfluidstrom bereits eine Teilmenge der zu zerkleinernden Feststoffpartikel enthält, die bereits durch Energieaustausch untereinander sich wechselseitig zertrümmern könnten, worauf es aber gar nicht so sehr ankommt. Wichtiger ist vielmehr, daß der energiereiche Fluidstrahl, in den mit Feststoffpartikeln durchsetztes erstes Fluid zum Eintreten veranlaßt wird, Feststoffpartikel enthält, die eine sehr hohe dynamische Energie haben und mit dieser hohen dynamischen Energie auf die neu eintretenden Feststoffpartikel auftreffen und diese in einem Bereich zerlegen können, in dem bisher eine solche Zerlegung überhaupt noch nicht möglich war und daß diese Zerlegung in dem neu erschlossenen Bereich sogar besonders wirksam erfolgt.
Die Erfindung wird nachfolgend anhand der Zeichnung noch näher erläutert.
In einem Behälter 1 befindet sich ein Fluid 2, bei dem es sich um ein Gas oder eine Flüssigkeit handeln kann (Fig. 1). In dieses Fluid sind Feststoffpartikel 3 suspendiert, so daß der Behälter 1 eine Suspension 4 aus in einem Fluid 2 suspendierten Feststoffpartikeln 3 aufnimmt. Der Durchmesser eines einzelnen der vielen Feststoffpartikel 3 kann zwischen 1 und 5 µm liegen, vorzugsweise liegt sein Durchmesser jedoch sogar bereits unter 1µm. Durch entsprechende Manipulation können, müssen aber nicht, möglichst wenige Feststoffpartikel mit einer bestimmten Fluidmenge zu einem Tropfen koaguliert sein, dessen Durchmesser bei etwa 50 µm liegen sollte. Daraus ergibt sich, daß es sich, wie erwähnt, bei dem Fluid 2 um ein Gas oder eine Flüssigkeit handeln kann, daß es sich aber bevorzugt um eine Flüssigkeit handelt. Die Vielzahl derartiger Einzelpartikel aus möglichst wenigen Feststoffpartikeln in einer Fluidteilmenge, die Tropfenform hat, werden nun über eine Zerstäuberdüse 11 mit großer Energie auf einer Prallfläche 5 zum Aufprall gebracht, wodurch die Feststoffpartikel in eine Vielzahl kleinerer Partikel zerlegt werden. Bei der Alternative gemäß Fig. 2 werden in einen zylindrischen Behälter 6 über zwei einander gegenüberliegende Düsen 7,8 zwei Fluidstrahlen 9,10 in die Suspension 4 aus Fluid und im Fluid suspendierten Feststoffpartikeln als schnelle Fluidstrahlen eingeblasen, wodurch Feststoffpartikel veranlaßt werden, aufeinanderzuprallen und durch den dabei erfolgenden Energieaustausch in entsprechend kleinere Partikel zerlegt zu werden.
So wie das Fluid 2 in beiden Fällen bevorzugt, aber nicht ausschließlich und notwendigerweise eine Flüssigkeit ist, sind die schnellen Fluidstrahlen 9,10 bevorzugt Gasstrahlen, ohne daß sie das ausschließlich und notwendigerweise sein müssen.
Im Fall der Fig. 1 erfolgt die Zerlegung der Partikel 3 weit überwiegend durch den Aufprall auf der starren Prallfläche 5. In wesentlich geringerem aber durchaus beachtenswertem Maße könnte auch bereits im Bereich zwischen der Zerstäuberdüse 11 und der Prallfläche 5 eine Zerlegung der Feststoffpartikel in Feststoffpartikel kleinerer Größe durch Energieaustausch zwischen den Feststoffpartikeln erfolgen und zwar umsomehr, je mehr sich die Suspension aus Fluid und Feststoffpartikeln von der Zerstäuberdüse entfernt und der Prallfläche nähert, weil dabei die unmittelbar nach der Düse völlig geordnete Strömung zunehmend ungeordnet wird, soweit dies mit Rücksicht auf die eigentliche Wirkung an der Prallfläche vertretbar ist.
Bei der Lösung nach Fig. 2 erfolgt die Zerlegung der Feststoffpartikel ausschließlich durch Energieaustausch zwischen den Feststoffpartikeln, wobei sich das Problem besonders deutlich zeigt, daß ein Energieaustausch erst in einer gewissen Entfernung von den Düsen 7,8 erfolgen kann, wo die Energie der Gasstrahlen schon eine gewisse Minderung erfahren hat, die natürlicherweise unmittelbar am Düsenauslaß am größten ist. Das wird beim Stand der Technik hingenommen, weil ja an keinen Energieaustausch zwischen Feststoffpartikeln gedacht ist, die ab einer gewissen Entfernung von den Düsen in jeden der schnellen Gasstrahlen inkorporiert sind. Gedacht ist dabei primär an einen Energieaustausch zwischen Partikeln, die einem der Gasstrahlen zuzuordnen sind und Partikeln, die dem anderen der beiden Gasstrahlen zuzuordnen sind.
Die vorliegende Erfindung befaßt sich nun aber gerade damit, daß ein Energieaustausch zwischen Feststoffpartikeln schon unmittelbar nach dem Austritt von Fluidstrahlen aus einer oder mehreren Düsen erfolgt. Deswegen werden dem jeweiligen Fluidstrahl schon unmittelbar nach dem Verlassen der jeweiligen Düse zusätzliche Feststoffpartikel zugeführt, die mit dem aus der Düse austretenden Suspensionsstrahl in eine Wirkverbindung und einen Energieaustausch mit den im Suspensionsstrahl unmittelbar nach dem Verlassen der Düse bereits enthaltenen Feststoffpartikeln treten (Fig. 1) oder die in einen Energieaustausch mit den Feststoffpartikeln treten, die durch die schnellen Fluidstrahlen von deren Verlassen der zumindest einen Düse 7,8 an treten (Fig. 2).
Letzteres zeigt, daß die Erfindung in der Praxis so ausgelegt werden kann, daß auch bei der Anordnung nach Fig. 2 gar nicht der Energieaustausch zwischen Partikeln erfolgen muß, die zwei schnellen Fluidstrahlen zuzuordnen sind, sondern daß die angestrebte Zerlegung von Feststoffpartikeln mit den zusätzlich einzubringenden Feststoffpartikeln bereits dann erfolgen kann, wenn nur eine der Düsen 7,8 vorgesehen ist, wie die Erfindung, gleichsam selbstverständlich auch dann einsetzbar ist, wenn bei der Anordnung gemäß Fig. 2 mehr als zwei Düsen vorgesehen sind.
Die zusätzlichen Feststoffpartikel können nun auf verschiedene Weise zur Verfügung gestellt werden, besonders zweckmäßig ist es jedoch, sie als Teile einer Suspension bereitzustellen, die vor der Einbringung im Bereich der Düsen 7,8 aus der Suspension 4 entnommen wird.
Eine Mischdüse, die bei der Erfindung besonders zweckmäßig einsetzbar ist, ist in Fig. 3 als Mittellängsschnitt dargestellt.
In einem Gehäuse 12 ist ein am einen Ende, das der Düsenauslaß ist, sich außen verjüngendes Rohr 13 angeordnet, dessen Innendurchmesser konstant ist. Dieses Rohr 13 tritt durch das auslaßseitige Ende des Gehäuses mit definiertem Radialspiel aus, ohne jedoch über einen bundartigen Ansatz des Gehäuses vorzustehen. Über einen radialen Einlaß 14 wird dem Ringraum 15 zwischen dem Rohr 13 und dem Gehäuse 12 ein Fluid eingeleitet, in dem Granulat suspendiert ist. Ein Schaufelkranz 16 sorgt dafür, daß die Suspension den Ringraum 15 in der Weise verläßt, daß es den aus dem Rohr 13 austretenden Fluidstrom konzentrisch und gleichmäßig umgibt und dabei sich sogar mit dem Fluidstrom aus dem Rohr 13 vermischt, soweit diesem Fluidstrom dadurch nicht wesentlich Energie entzogen wird. Bei der Düse gemäß Fig. 3 kann es sich beispielsweise um die Düse 11 der Anlage gemäß Fig. 1, um jede der beiden Düsen 7,8 der Anlage gemäß Fig. 2 oder um eine und dann einzige der Düsen 7,8 in einer Anlage handeln, die grundsätzlich der Anlage gemäß Fig. 2 entspricht, jedoch mit einer der gemäß Fig. 3 ausgestalteten Düsen 7 oder 8 auskommt, weil im Zusammentreffen von Feststoffpartikeln der Suspension 4 mit Feststoffpartikeln im Austrittsstrahl der Düse gemäß Fig. 3 ein Energieaustausch erfolgt, der zu einer Partikelzerlegung führt.
Grundsätzlich ist es möglich, die Suspension 4 aus einem Gas und Feststoffpartikeln oder aus einer Flüssigkeit mit Feststoffpartikeln bestehen zu lassen. Vorzugsweise handelt es sich um eine Suspension aus einer Flüssigkeit und Feststoffpartikeln.
Aus dem Rohr 13 der Düse gemäß Fig. 3 kann ein Gas oder eine Flüssigkeit zum Austritt gebracht werden. Vorzugsweise handelt es sich um ein Gas. Das aus dem Rohr 13 austretende Fluid ist so beschleunigt, daß es die durch das Rohr 14 in den Ringraum eingebrachte Suspension mitreißt, beschleunigt und ihr die notwendige Energie vermittelt.
Die über das Rohr 14 zum Eintritt in die Düse gemäß Fig. 3 veranlaßte Suspension kann ein Gas oder eine Flüssigkeit mit darin suspendierten Feststoffpartikeln sein. Sie kann in beliebiger Weise zubereitet werden. Vorzugsweise handelt es sich um eine Flüssigkeit mit darin suspendierten Feststoffpartikeln. Nochmals vorzugsweise ist diese Suspension dem Behälter 1 bzw. 6 entnommen, d.h. ist also eine Teilmenge der Suspension 4, die in dem Behälter 1 bzw. 6 entnommen und wieder in den Behälter rückgeführt wird.
Wird, wie oben bereits beschrieben, ausgehend von der Anordnung nach Fig. 1, in den die Düse 11 verlassenden Fluidstrahl 17 ein zweiter Fluidstrahl 18 eingebracht, der seinerseits eine Suspension mit in einem Fluid suspendierten Feststoffpartikeln besteht und erfolgt damit die Prallzerkleinerung in dem Fluidstrahl 17 in einem Maße, daß auf die Prallzerkleinerung an der Prallfläche 5 verzichtet werden kann, so liegt eine Fließbettstrahlmühle hoher Effizienz und geringem Bauaufwand vor.
Die Erfindung entfaltet ihre volle Wirkung insbesondere dann, wenn das erste Fluid mit den zu zerlegenden Feststoffpartikeln, also im Fall der Fig. 2 die Suspension 4, bereits einen erheblichen Anteil Feststoffpartikel mit nur geringer Masse enthält, wie es bei modernen Sichtern der Fall ist, weil diesen gewollt nur extrem feines Sichtgut entnommen wird, also das in die Mühle zurückgeführte Gut immer noch einen hohen Anteil an relativ feingemahlenem Gut enthält.

Claims (7)

  1. Verfahren zur Prallzerkleinerung von Feststoffpartikeln (3) unter Anwendung eines Fluids (2), in dem die zu zerkleinernden Feststoffpartikel (3) suspendiert sind, wobei sich die Suspension (4) in einem Behälter (1;6) befindet, dem eine Suspensionsteilmenge entnommen wird, um deren Feststoffpartikel auf einer Prallfläche zum Aufprall zu bringen, dadurch gekennzeichnet, daß die dem Behälter (1;6) entnommenene Suspensionsteilmenge zunächst einer Düse (7,8,11) zugeführt wird, um ihr einen zusätzlichen Fluidstrahl zum Beschleunigen und zur Erhöhung der Energie zuzuordnen, um einen schnellen Fluidstrahl (7,8,17) mit hohem Energiegehalt aus Suspensionsteilmenge und zusätzlichem Fluidstrahl zu bilden und diesen auf der Prallfläche zum Aufprall zu bringen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zuordnung des zusätzlichen Fluidstrahles (18) zur Suspensionsteilmenge unmittelbar im Bereich des Düsenauslasses erfolgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der zusätzliche Fluidstrahl (18) ebenfalls aus einer Suspension gebildet ist.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Suspension für den zusätzlichen Fluidstrahl (18) wie die Suspensionsteilmenge dem Behälter (1,6) entnommen wird.
  5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Prallfläche von Feststoffpartikeln der Suspensionsteilmenge und des von einer Suspension gebildeten zusätzlichen Fluidstrahles (18) gebildet wird und Suspensionsteilmenge und von einer Suspension gebildeter zusätzlicher Fluidstrahl das Fließbett (17) einer Fließbettstrahlmühle bilden.
  6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Prallfläche eine stationäre Prallfläche (5) außerhalb des Behälters (1) ist.
  7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der schnelle Fluidstrahl (9,10) vermittels der Düse (7,8) in den Behälter (6) zurückgeführt wird, sodaß die Prallfläche von in der im Behälter zurückgebliebenen Suspension (4) suspendierten Feststoffpartikeln gebildet wird.
EP93119613A 1992-12-10 1993-12-06 Verfahren und Vorrichtung für die Prallzerkleinerung von Feststoffpartikeln Expired - Lifetime EP0601511B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4241549 1992-12-10
DE4241549A DE4241549A1 (de) 1992-12-10 1992-12-10 Verfahren und Vorrichtung für die Prallzerkleinerung von Feststoffpartikeln

Publications (2)

Publication Number Publication Date
EP0601511A1 EP0601511A1 (de) 1994-06-15
EP0601511B1 true EP0601511B1 (de) 1998-08-26

Family

ID=6474839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93119613A Expired - Lifetime EP0601511B1 (de) 1992-12-10 1993-12-06 Verfahren und Vorrichtung für die Prallzerkleinerung von Feststoffpartikeln

Country Status (4)

Country Link
EP (1) EP0601511B1 (de)
JP (1) JPH06269693A (de)
DE (2) DE4241549A1 (de)
ES (1) ES2121921T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513035C2 (de) * 1995-04-06 1998-07-30 Nied Roland Fließbett-Strahlmahlung
DE19728382C2 (de) * 1997-07-03 2003-03-13 Hosokawa Alpine Ag & Co Verfahren und Vorrichtung zur Fließbett-Strahlmahlung
US7511079B2 (en) * 2003-03-24 2009-03-31 Baxter International Inc. Methods and apparatuses for the comminution and stabilization of small particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU643188A1 (ru) * 1977-04-01 1979-01-25 Уральский ордена Трудового Красного Знамени политехнический институт им. С.М.Кирова Струйна мельница с псевдоожиженным слоем
US4248387A (en) * 1979-05-09 1981-02-03 Norandy, Inc. Method and apparatus for comminuting material in a re-entrant circulating stream mill
DE3724297A1 (de) * 1987-07-22 1989-02-02 Nied Roland Verfahren zur erzeugung extrem kleiner partikel und anwendung des verfahrens
DE4015605A1 (de) * 1990-05-15 1991-11-21 Nied Roland Verfahren zur erzeugung feinster partikel und vorrichtung zur durchfuehrung des verfahrens
US5133504A (en) * 1990-11-27 1992-07-28 Xerox Corporation Throughput efficiency enhancement of fluidized bed jet mill

Also Published As

Publication number Publication date
JPH06269693A (ja) 1994-09-27
ES2121921T3 (es) 1998-12-16
EP0601511A1 (de) 1994-06-15
DE4241549A1 (de) 1994-06-16
DE59308927D1 (de) 1998-10-01

Similar Documents

Publication Publication Date Title
DE69521976T2 (de) Strahldüse für die Anwendung im katalytischen Wirbelschicht-Krackverfahren
DE60002741T2 (de) Einsatzeinspritzsystem für katalytisches krackverfahren
DE3116660C2 (de) Mehrstoff-Zerstäuberdüse
DE19728382C2 (de) Verfahren und Vorrichtung zur Fließbett-Strahlmahlung
DE4325968C2 (de) Vorrichtung zum Kühlen von Gasen und gegebenenfalls Trocknen von dem Gas zugegebenen Feststoffteilchen
DE2908723A1 (de) Verfahren und vorrichtung zum elektrostatischen spruehen einer fluessigkeit
DE3429066A1 (de) Einspritzduese fuer mikroblasen
WO2009036947A1 (de) Vielloch- oder bündeldüse
EP1022078B1 (de) Verfahren und Vorrichtung zur Herstellung von Metallpulver durch Gasverdüsung
EP0736328B1 (de) Vorrichtung für die Fliessbett-Strahlmahlung
EP0603602A1 (de) Verfahren und Vorrichtung zur Fliessbett-Strahlmahlung
EP1080786B1 (de) Verfahren zur Fliessbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens
EP2691180B1 (de) Elektrodenanordnung für eine elektrodynamische fragmentierungsanlage
DE1458080B2 (de) Ringlochdüse
EP0601511B1 (de) Verfahren und Vorrichtung für die Prallzerkleinerung von Feststoffpartikeln
DE1223237B (de) Strahlmuehle mit flachzylindrischer Mahlkammer
DE2141291C3 (de) Sprühdüse zur Erzielung eines kegelstumpfförmigen Sprühnebels
DE69001816T2 (de) Vorrichtung mit einem brausekopf zur ausrüstung der brausen.
DE2531815A1 (de) Vorrichtung zur verwirbelung und verteilung eines in einem traegergas schwebenden pulvers
DE69014891T2 (de) Vorrichtung zum herstellen einer partikeldispersion.
DE2600534A1 (de) Vorrichtung zum abscheiden von in einem gasstrom befindlichen teilchen
EP0300402B1 (de) Verfahren zur Erzeugung extrem kleiner Partikel und Anwendung des Verfahrens
DE69014144T2 (de) Verfahren und Vorrichtung zum Erzeugen von Kohlendioxydschnee.
DD280049A5 (de) Universaler spruehkopf
DE19513035C2 (de) Fließbett-Strahlmahlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19940608

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19960206

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980827

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59308927

Country of ref document: DE

Date of ref document: 19981001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2121921

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991214

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991222

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991228

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991231

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020228

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051206