EP0600011B1 - Precipitateur electrostatique humide - Google Patents

Precipitateur electrostatique humide Download PDF

Info

Publication number
EP0600011B1
EP0600011B1 EP92918939A EP92918939A EP0600011B1 EP 0600011 B1 EP0600011 B1 EP 0600011B1 EP 92918939 A EP92918939 A EP 92918939A EP 92918939 A EP92918939 A EP 92918939A EP 0600011 B1 EP0600011 B1 EP 0600011B1
Authority
EP
European Patent Office
Prior art keywords
liquid
gas
electrodes
accumulator tank
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92918939A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0600011A1 (fr
Inventor
Charles Eyraud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecoprocess SARL
Original Assignee
Ecoprocess SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecoprocess SARL filed Critical Ecoprocess SARL
Publication of EP0600011A1 publication Critical patent/EP0600011A1/fr
Application granted granted Critical
Publication of EP0600011B1 publication Critical patent/EP0600011B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/32Transportable units, e.g. for cleaning room air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/014Addition of water; Heat exchange, e.g. by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/16Plant or installations having external electricity supply wet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles

Definitions

  • the structural and operational elements of an electrostatic reactor according to the invention are: the gas treatment line, the spray field, the module, the hopper field, the accumulation tank, the extraction tank, the concentration field, residence time, transfer liquid, electric field, liquid processing line.
  • the "gas treatment line” or “effect line” is formed by the succession of spray fields at the level of which the transfers and reactions take place between the gas and the liquid mist, from entry to exit from the device.
  • a "spray field” is the space occupied by a group of electrodes sprayed frontally with a curtain of liquid finely dispersed by sprayer booms distributed in a plane perpendicular to the gas flow. It corresponds to an "effect" of the gas-liquid transfer.
  • additional spraying is carried out at the top of a group of flat electrodes using the same liquid as that of front spraying.
  • the composition of the spray liquid can be the same for all the spray fields flowing in the same accumulation tank. It can be different if an additional chemical reagent is brought directly to the injection ramps, or if the spraying is carried out totally or partially using a liquid coming either from the contiguous accumulation tank or from a tank any extraction after purification.
  • the first case offers the possibility of optimizing the treatment of gas with a particular reagent at a single spray field
  • the second case is a contribution to reflux by a route other than that of the direct transport of liquid from a accumulation tank to the next
  • the third case has the advantage of reducing entrainment by gases, from one spray field to another, pollutants contained in excessively concentrated liquid vesicles.
  • the “concentration field”, which ends with an extraction tank, is the section of apparatus to which the concentration of certain transfer pollutants by liquid-gas reflux contact with multiple stages is allocated. It therefore includes several hopper fields, that is to say several accumulation tanks materializing the stages.
  • the electrostatic reactor according to the invention necessarily has at least one concentration field.
  • a “sequential residence time” is the average time it takes the gas to travel through a particular section of the treatment line: spray field, hopper field, concentration field or gas treatment line.
  • spray field hopper field
  • concentration field or gas treatment line In the case of dusting it varies proportionally to the "volume area of electrodes of the corresponding section", ie of the area of electrodes contained in this section by normal cubic meters of gas passing through the device in one hour .
  • modular construction it can be varied by assigning more or less modules in series or in parallel to a particular processing sequence. If the residence time necessary to remove a gaseous pollutant is greater than that necessary for the electrostatic precipitation of the dust which accompanies it, a gas washer (not electrostatic) can be placed at the head or tail of the electric purifier. We thus have the number of degree of freedom necessary to adjust the characteristics of the purifier according to the speeds of the chemical reactions in question and the anti-pollution standards in force.
  • composition of the "transfer liquid”, in either a nebulized or a runoff state collected in accumulation tanks, varies along the gas treatment line due, on the one hand, to the specificity of the reactions in question.
  • other part of the multistage concentration and gas-liquid counter-current achieved either by direct transport of the liquid from one accumulation tank to the next or by continuous or discontinuous partial spraying of a group of electrodes by means of the liquid from the accumulation tank of the adjoining floor or from a racking and purification operation carried out at the level of an extraction tank; during the spraying sequence the end of the group of electrodes is properly washed, but part of the liquid mist and the pollutants it contains are entrained from one stage to the next by convection, an effect unfavorable to a high concentration of sludge and to a thorough purification of the gas; during the spraying stop sequence the drops are electrostatically precipitated on the floor where they are produced and therefore do not participate in the re-training of impurities conveyed by the liquid mist.
  • the composition can also vary from one spray field to another if reagents are introduced directly into the spray bars in addition to those introduced into the tanks.
  • the composition of the "spray liquid" is determined by the nature and kinetics of the transfer reactions which are assigned to a spray field, a hopper field, or a concentration field. It is most generally a water containing soluble reagents, reactive or inert solids in the dispersed state, catalysts, optionally ionic or nonionic surfactants or even oleophilic emulsified substances.
  • the "liquid processing line” is that of the physical and chemical operations carried out on the concentrated liquids drawn off at the level of the extraction tanks in view on the one hand to eliminate undesirable products on the other hand to partially or totally recycle, at suitably chosen points of the gas treatment line, washing liquids thus totally or partially purified, and optionally regenerated reagents.
  • Figure 1 is a longitudinal vertical sectional view of a wet electrofilter with liquid-gas counter-current.
  • Figure 2 is a top view of the electrostatic filter shown in the previous figure.
  • Figure 3 is a vertical sectional view of a spray field with vertical booms and horizontal booms, the runoff of the electrodes being collected by two hoppers in a single accumulation tank constituting one of the stages for concentrating a flat wet electrostatic precipitator against liquid-gas counter-current.
  • FIG. 1 and FIG. 2 show diagrammatically and in section, respectively vertical and horizontal, an apparatus with plane geometry with three "electric fields” 46, 47, and 48. It consists of an envelope 44, four spray fields 5, 6, 7, 8, three hopper fields 9, 10, 11, the first two 9 and 10 each consisting of a single spray field, the third 11 of two spray fields, 7 and 8. All the spray fields have three "streets” such as 12 and are each watered by vertical ramps such as 13. Other ramps such as 19 ensure the saturation in water vapor of the gas entering the device. These spray bars 19 can advantageously be part of a head stage assigned to the drying of the sludge by the sensible heat of the gas in order to finally obtain solid or pasty products.
  • Two accumulation tanks 17 and 18 participate in a two-stage concentration field, the reflux of which passes through the tube 30, the tank 17 being an extraction tank as well as the tank 16. Ceramic or silica pieces 33 support the emissive electrodes and isolate them from the earth 45.
  • 20 is the arrival of the gas.
  • 21 is the gas extractor.
  • 22 is the arrival of the recycled liquid after its purification in the liquid treatment line, or that of the process make-up liquid.
  • the reagents are introduced into the accumulation tanks at 23, and possibly and for some of them directly into the spray bars at 24. The undesirable products are eliminated in the liquid treatment line made up of the separation units 25 and 26 operating on the withdrawals from the extraction tanks 16 and 17.
  • the tanks 16 17 and 18 may possibly participate in the reflux concentration of certain pollutants not removed at 26 if the incompletely purified liquid is transported by the line 27 to the accumulation tank 16.
  • the three hopper fields represent a reflux concentration field for these particular pollutants.
  • the undesirable products are extracted from the liquid processing line at 31, and 32, in the form of solid precipitates which may be recoverable, highly concentrated sludge intended for landfill, industrially recyclable solutions, or purified liquid totally or partially recycled in the gas treatment line by pipes such as 22, 28, 27 or 29.
  • FIG. 3 represents the single spray field of a hopper field 10 (itself belonging to a reflux concentration field of at least three stages 16, 17, 18), including the ramps of spraying are of three types: vertical booms 13 disposed frontally in front of the group of planar electrodes 6, booms horizontal 14, watering the first part of the group of electrodes 6 from the top, and supplied with the same recycled liquid from the accumulation tank 17, horizontal ramps 15 watering, continuously or discontinuously, the second part of the group of electrodes 6 also from the top, but supplied by the liquid coming from the accumulation tank 18.
  • This third type of ramps when it exists, constitutes one of the ways of the liquid reflux from stage 11 to stage 9, the other reflux path being that of the pipe 30 which brings directly, by gravity or by means of a pump, the liquid from the tank 18 to the tank 16. 43 is the direction of the gas flow.
  • the reactor includes a hopper field or a final module intended for the cumulative analysis of traces of harmful products, the continuous dosing of which becomes impossible in the event of excessively strict standards
  • the reactor constitutes a mobile unit for cumulative analysis of industrial gaseous effluents.
EP92918939A 1991-08-21 1992-08-20 Precipitateur electrostatique humide Expired - Lifetime EP0600011B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9110616A FR2680474B1 (fr) 1991-08-21 1991-08-21 Reacteur electrostatique a contacts gaz liquide solide a contre courant gaz liquide et a etages multiples pour l'epuration d'un gaz et des liquides de transfert.
FR9110616 1991-08-21
PCT/FR1992/000811 WO1993003849A1 (fr) 1991-08-21 1992-08-20 Precipitateur electrostatique humide

Publications (2)

Publication Number Publication Date
EP0600011A1 EP0600011A1 (fr) 1994-06-08
EP0600011B1 true EP0600011B1 (fr) 1996-11-13

Family

ID=9416392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92918939A Expired - Lifetime EP0600011B1 (fr) 1991-08-21 1992-08-20 Precipitateur electrostatique humide

Country Status (10)

Country Link
US (1) US5624476A (ja)
EP (1) EP0600011B1 (ja)
JP (1) JPH06509976A (ja)
AT (1) ATE145157T1 (ja)
CA (1) CA2115987C (ja)
DE (1) DE69215229T2 (ja)
ES (1) ES2094368T3 (ja)
FR (1) FR2680474B1 (ja)
OA (1) OA09886A (ja)
WO (1) WO1993003849A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101885240B1 (ko) * 2017-10-20 2018-08-03 주식회사 애니텍 배기가스에 포함된 입자상 물질 제거를 위한 정전 분무 방식의 전기 집진 시스템

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406024B (de) * 1995-05-02 2000-01-25 Scheuch Alois Gmbh Anlage zur elektrostatischen reinigung von staubhaltigem abgas
US5827352A (en) * 1997-04-16 1998-10-27 Electric Power Research Institute, Inc. Method for removing mercury from a gas stream and apparatus for same
US20030206837A1 (en) 1998-11-05 2003-11-06 Taylor Charles E. Electro-kinetic air transporter and conditioner device with enhanced maintenance features and enhanced anti-microorganism capability
US6176977B1 (en) 1998-11-05 2001-01-23 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US20050210902A1 (en) 2004-02-18 2005-09-29 Sharper Image Corporation Electro-kinetic air transporter and/or conditioner devices with features for cleaning emitter electrodes
US7695690B2 (en) 1998-11-05 2010-04-13 Tessera, Inc. Air treatment apparatus having multiple downstream electrodes
US6156098A (en) * 1999-02-10 2000-12-05 Richards; Clyde N. Charged droplet gas scrubber apparatus and method
US6302945B1 (en) * 1999-06-11 2001-10-16 Electric Power Research Institute, Incorporated Electrostatic precipitator for removing SO2
JP3564366B2 (ja) * 1999-08-13 2004-09-08 三菱重工業株式会社 除塵装置
US20020001726A1 (en) * 1999-12-27 2002-01-03 Kimberly-Clark Worldwide, Inc. Modified siloxane yielding transferring benefits from soft tissue products
US6488740B1 (en) * 2000-03-01 2002-12-03 Electric Power Research Institute, Inc. Apparatus and method for decreasing contaminants present in a flue gas stream
US7724492B2 (en) 2003-09-05 2010-05-25 Tessera, Inc. Emitter electrode having a strip shape
US7906080B1 (en) 2003-09-05 2011-03-15 Sharper Image Acquisition Llc Air treatment apparatus having a liquid holder and a bipolar ionization device
US7767169B2 (en) 2003-12-11 2010-08-03 Sharper Image Acquisition Llc Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
US20060016333A1 (en) 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with removable driver electrodes
CA2584217C (en) * 2004-10-29 2012-05-22 Eisenmann Corporation Natural gas injection system for regenerative thermal oxidizer
CA2624603A1 (en) * 2005-02-24 2006-08-31 Gary C. Tepper Contaminant extraction systems, methods and apparatuses
WO2006094174A2 (en) * 2005-03-02 2006-09-08 Eisenmann Corporation Dual flow wet electrostatic precipitator
US7297182B2 (en) * 2005-03-02 2007-11-20 Eisenmann Corporation Wet electrostatic precipitator for treating oxidized biomass effluent
WO2006113639A2 (en) * 2005-04-15 2006-10-26 Eisenmann Corporation Method and apparatus for flue gas desulphurization
WO2007008587A2 (en) * 2005-07-08 2007-01-18 Eisenmann Corporation Method and apparatus for particulate removal and undesirable vapor scrubbing from a moving gas stream
US20070122320A1 (en) * 2005-11-09 2007-05-31 Pletcher Timothy A Air purification system and method
WO2007067626A2 (en) * 2005-12-06 2007-06-14 Eisenmann Corporation Wet electrostatic liquid film oxidizing reactor apparatus and method for removal of nox, sox, mercury, acid droplets, heavy metals and ash particles from a moving gas
US7833322B2 (en) 2006-02-28 2010-11-16 Sharper Image Acquisition Llc Air treatment apparatus having a voltage control device responsive to current sensing
US7708453B2 (en) * 2006-03-03 2010-05-04 Cavitech Holdings, Llc Device for creating hydrodynamic cavitation in fluids
US7531027B2 (en) * 2006-05-18 2009-05-12 Sentor Technologies, Inc. Contaminant extraction systems, methods, and apparatuses
JP4111229B2 (ja) * 2006-05-19 2008-07-02 ダイキン工業株式会社 放電装置及び空気浄化装置
JP4023512B1 (ja) * 2006-06-15 2007-12-19 ダイキン工業株式会社 液処理装置、空気調和装置、及び加湿器
SE530738C2 (sv) * 2006-06-07 2008-08-26 Alstom Technology Ltd Våtelfilter samt sätt att rengöra en utfällningselektrod
JP2008212847A (ja) * 2007-03-05 2008-09-18 Hitachi Plant Technologies Ltd 湿式電気集塵装置
EP2072108A1 (en) * 2007-12-18 2009-06-24 B & B INGG. S.p.A. Filter apparatus and method of filtering aeriform substances
US7632341B2 (en) * 2008-03-27 2009-12-15 Babcock & Wilcox Power Generation Group, Inc. Hybrid wet electrostatic precipitator
NL2003259C2 (en) * 2009-07-22 2011-01-25 Univ Delft Tech Method for the removal of a gaseous fluid and arrangement therefore.
CN104069720A (zh) * 2014-07-12 2014-10-01 苏州克利亚环保科技有限公司 工业有机废气废水综合处理装置
CN108273662B (zh) * 2018-01-05 2023-07-18 老肯医疗科技股份有限公司 一种用于城市除雾霾的空气净化器
CN111482146B (zh) * 2020-04-17 2022-02-22 中国石油化工股份有限公司 三相分离器、三相反应器以及三相反应方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE574079C (de) * 1930-05-18 1933-04-08 Siemens Schuckertwerke Akt Ges Mehrstufiges Einkammer-Nasselektrofilter
US2050796A (en) * 1932-10-25 1936-08-11 Kerschbaum Friedrich Paul Recovery of phosphorus
GB769865A (en) * 1954-07-07 1957-03-13 Svenska Flaektfabriken Ab Method of cleaning the electrodes in electrical apparatus
FR1406086A (fr) * 1964-06-05 1965-07-16 Procédé et appareillage pour dépoussiérer et laver les gaz
US3404513A (en) * 1965-02-01 1968-10-08 Cottrell Res Inc Mobile electrostatic precipitator
US3509695A (en) * 1965-07-21 1970-05-05 Cottrell Res Inc Wet bottom precipitator
US3785118A (en) * 1972-03-22 1974-01-15 Mead Corp Apparatus and method for electrical precipitation
AR205152A1 (es) * 1973-02-02 1976-04-12 United States Filter Corp Precipitador electrostatico humedo
FR2229468A1 (en) * 1973-05-16 1974-12-13 Tissmetal Lionel Dupont Particle charged gas treatment process - passes gas between charged plates with electrostatic pulverisation spouts
US4247307A (en) * 1979-09-21 1981-01-27 Union Carbide Corporation High intensity ionization-wet collection method and apparatus
US4305909A (en) * 1979-10-17 1981-12-15 Peabody Process Systems, Inc. Integrated flue gas processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101885240B1 (ko) * 2017-10-20 2018-08-03 주식회사 애니텍 배기가스에 포함된 입자상 물질 제거를 위한 정전 분무 방식의 전기 집진 시스템

Also Published As

Publication number Publication date
EP0600011A1 (fr) 1994-06-08
CA2115987C (fr) 1998-11-03
JPH06509976A (ja) 1994-11-10
OA09886A (fr) 1994-09-15
FR2680474B1 (fr) 1995-09-08
CA2115987A1 (fr) 1993-03-04
DE69215229T2 (de) 1997-03-06
FR2680474A1 (fr) 1993-02-26
DE69215229D1 (de) 1996-12-19
WO1993003849A1 (fr) 1993-03-04
ATE145157T1 (de) 1996-11-15
ES2094368T3 (es) 1997-01-16
US5624476A (en) 1997-04-29

Similar Documents

Publication Publication Date Title
EP0600011B1 (fr) Precipitateur electrostatique humide
US4193774A (en) Electrostatic aerosol scrubber and method of operation
US8206494B2 (en) Device for air/water extraction by semi-humid electrostatic collection and method using same
US7297182B2 (en) Wet electrostatic precipitator for treating oxidized biomass effluent
US3958961A (en) Wet electrostatic precipitators
US4505724A (en) Wet-process dust-collecting apparatus especially for converter exhaust gases
US7459009B2 (en) Method and apparatus for flue gas desulphurization
US20090169440A1 (en) pollution treatment device for volatile organic gas
US20060261265A1 (en) Dual flow wet electrostatic precipitator
US20070009411A1 (en) Method and apparatus for particulate removal and undesirable vapor scrubbing from a moving gas stream
CN208008493U (zh) 一种将烟道余热用于火力发电厂废水零排放处理的设备
US3785125A (en) Multi-concentric wet electrostatic precipitator
US20060236858A1 (en) Rigid electrode ionization for packed bed scrubbers
WO2016177652A1 (de) Abgasbehandlungseinrichtung für abgas einer kleinfeuerungsanlage und verfahren zur behandlung von abgas einer kleinfeuerungsanlage
CN105271589A (zh) 一种废液零排放处理装置及其处理方法
CA2659688C (en) Hybrid wet electrostatic precipitator
CN110227338A (zh) 一种湿式低温等离子体处理污泥干化废气的系统
KR101863676B1 (ko) 전기 집진장치
CN205115207U (zh) 一种废液零排放处理装置
FR2564331A1 (fr) Perfectionnements apportes aux installations de depollution d'un gaz pollue par des particules solides et/ou liquides
EP4135880A2 (en) Gas shut-off in a particulate removal device and method
Moiseev et al. Cleaning and disposal of gas emissions from the production of calcinated soda ash
Pasic et al. MWESP: Membrane tubular wet electrostatic precipitators
CN218269100U (zh) 工业污泥回转窑热干化和高温焚烧烟气的一体化处理系统
US20050123461A1 (en) Apparatus and process for the separation of particles from thermally after-treated process offgases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB GR IE IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 19951103

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES GB GR IE IT LI LU MC NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES GB GR IE IT LI LU MC NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961113

Ref country code: DK

Effective date: 19961113

REF Corresponds to:

Ref document number: 145157

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961113

REF Corresponds to:

Ref document number: 69215229

Country of ref document: DE

Date of ref document: 19961219

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 70623

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2094368

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030805

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030807

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20030808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030814

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030828

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030829

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030831

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030902

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031104

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

BERE Be: lapsed

Owner name: *ECOPROCESS

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040820

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050820

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040821

BERE Be: lapsed

Owner name: *ECOPROCESS

Effective date: 20040831