EP0600011B1 - Precipitateur electrostatique humide - Google Patents

Precipitateur electrostatique humide Download PDF

Info

Publication number
EP0600011B1
EP0600011B1 EP92918939A EP92918939A EP0600011B1 EP 0600011 B1 EP0600011 B1 EP 0600011B1 EP 92918939 A EP92918939 A EP 92918939A EP 92918939 A EP92918939 A EP 92918939A EP 0600011 B1 EP0600011 B1 EP 0600011B1
Authority
EP
European Patent Office
Prior art keywords
liquid
gas
electrodes
accumulator tank
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92918939A
Other languages
German (de)
English (en)
Other versions
EP0600011A1 (fr
Inventor
Charles Eyraud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecoprocess SARL
Original Assignee
Ecoprocess SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecoprocess SARL filed Critical Ecoprocess SARL
Publication of EP0600011A1 publication Critical patent/EP0600011A1/fr
Application granted granted Critical
Publication of EP0600011B1 publication Critical patent/EP0600011B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/32Transportable units, e.g. for cleaning room air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/014Addition of water; Heat exchange, e.g. by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/16Plant or installations having external electricity supply wet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles

Definitions

  • the structural and operational elements of an electrostatic reactor according to the invention are: the gas treatment line, the spray field, the module, the hopper field, the accumulation tank, the extraction tank, the concentration field, residence time, transfer liquid, electric field, liquid processing line.
  • the "gas treatment line” or “effect line” is formed by the succession of spray fields at the level of which the transfers and reactions take place between the gas and the liquid mist, from entry to exit from the device.
  • a "spray field” is the space occupied by a group of electrodes sprayed frontally with a curtain of liquid finely dispersed by sprayer booms distributed in a plane perpendicular to the gas flow. It corresponds to an "effect" of the gas-liquid transfer.
  • additional spraying is carried out at the top of a group of flat electrodes using the same liquid as that of front spraying.
  • the composition of the spray liquid can be the same for all the spray fields flowing in the same accumulation tank. It can be different if an additional chemical reagent is brought directly to the injection ramps, or if the spraying is carried out totally or partially using a liquid coming either from the contiguous accumulation tank or from a tank any extraction after purification.
  • the first case offers the possibility of optimizing the treatment of gas with a particular reagent at a single spray field
  • the second case is a contribution to reflux by a route other than that of the direct transport of liquid from a accumulation tank to the next
  • the third case has the advantage of reducing entrainment by gases, from one spray field to another, pollutants contained in excessively concentrated liquid vesicles.
  • the “concentration field”, which ends with an extraction tank, is the section of apparatus to which the concentration of certain transfer pollutants by liquid-gas reflux contact with multiple stages is allocated. It therefore includes several hopper fields, that is to say several accumulation tanks materializing the stages.
  • the electrostatic reactor according to the invention necessarily has at least one concentration field.
  • a “sequential residence time” is the average time it takes the gas to travel through a particular section of the treatment line: spray field, hopper field, concentration field or gas treatment line.
  • spray field hopper field
  • concentration field or gas treatment line In the case of dusting it varies proportionally to the "volume area of electrodes of the corresponding section", ie of the area of electrodes contained in this section by normal cubic meters of gas passing through the device in one hour .
  • modular construction it can be varied by assigning more or less modules in series or in parallel to a particular processing sequence. If the residence time necessary to remove a gaseous pollutant is greater than that necessary for the electrostatic precipitation of the dust which accompanies it, a gas washer (not electrostatic) can be placed at the head or tail of the electric purifier. We thus have the number of degree of freedom necessary to adjust the characteristics of the purifier according to the speeds of the chemical reactions in question and the anti-pollution standards in force.
  • composition of the "transfer liquid”, in either a nebulized or a runoff state collected in accumulation tanks, varies along the gas treatment line due, on the one hand, to the specificity of the reactions in question.
  • other part of the multistage concentration and gas-liquid counter-current achieved either by direct transport of the liquid from one accumulation tank to the next or by continuous or discontinuous partial spraying of a group of electrodes by means of the liquid from the accumulation tank of the adjoining floor or from a racking and purification operation carried out at the level of an extraction tank; during the spraying sequence the end of the group of electrodes is properly washed, but part of the liquid mist and the pollutants it contains are entrained from one stage to the next by convection, an effect unfavorable to a high concentration of sludge and to a thorough purification of the gas; during the spraying stop sequence the drops are electrostatically precipitated on the floor where they are produced and therefore do not participate in the re-training of impurities conveyed by the liquid mist.
  • the composition can also vary from one spray field to another if reagents are introduced directly into the spray bars in addition to those introduced into the tanks.
  • the composition of the "spray liquid" is determined by the nature and kinetics of the transfer reactions which are assigned to a spray field, a hopper field, or a concentration field. It is most generally a water containing soluble reagents, reactive or inert solids in the dispersed state, catalysts, optionally ionic or nonionic surfactants or even oleophilic emulsified substances.
  • the "liquid processing line” is that of the physical and chemical operations carried out on the concentrated liquids drawn off at the level of the extraction tanks in view on the one hand to eliminate undesirable products on the other hand to partially or totally recycle, at suitably chosen points of the gas treatment line, washing liquids thus totally or partially purified, and optionally regenerated reagents.
  • Figure 1 is a longitudinal vertical sectional view of a wet electrofilter with liquid-gas counter-current.
  • Figure 2 is a top view of the electrostatic filter shown in the previous figure.
  • Figure 3 is a vertical sectional view of a spray field with vertical booms and horizontal booms, the runoff of the electrodes being collected by two hoppers in a single accumulation tank constituting one of the stages for concentrating a flat wet electrostatic precipitator against liquid-gas counter-current.
  • FIG. 1 and FIG. 2 show diagrammatically and in section, respectively vertical and horizontal, an apparatus with plane geometry with three "electric fields” 46, 47, and 48. It consists of an envelope 44, four spray fields 5, 6, 7, 8, three hopper fields 9, 10, 11, the first two 9 and 10 each consisting of a single spray field, the third 11 of two spray fields, 7 and 8. All the spray fields have three "streets” such as 12 and are each watered by vertical ramps such as 13. Other ramps such as 19 ensure the saturation in water vapor of the gas entering the device. These spray bars 19 can advantageously be part of a head stage assigned to the drying of the sludge by the sensible heat of the gas in order to finally obtain solid or pasty products.
  • Two accumulation tanks 17 and 18 participate in a two-stage concentration field, the reflux of which passes through the tube 30, the tank 17 being an extraction tank as well as the tank 16. Ceramic or silica pieces 33 support the emissive electrodes and isolate them from the earth 45.
  • 20 is the arrival of the gas.
  • 21 is the gas extractor.
  • 22 is the arrival of the recycled liquid after its purification in the liquid treatment line, or that of the process make-up liquid.
  • the reagents are introduced into the accumulation tanks at 23, and possibly and for some of them directly into the spray bars at 24. The undesirable products are eliminated in the liquid treatment line made up of the separation units 25 and 26 operating on the withdrawals from the extraction tanks 16 and 17.
  • the tanks 16 17 and 18 may possibly participate in the reflux concentration of certain pollutants not removed at 26 if the incompletely purified liquid is transported by the line 27 to the accumulation tank 16.
  • the three hopper fields represent a reflux concentration field for these particular pollutants.
  • the undesirable products are extracted from the liquid processing line at 31, and 32, in the form of solid precipitates which may be recoverable, highly concentrated sludge intended for landfill, industrially recyclable solutions, or purified liquid totally or partially recycled in the gas treatment line by pipes such as 22, 28, 27 or 29.
  • FIG. 3 represents the single spray field of a hopper field 10 (itself belonging to a reflux concentration field of at least three stages 16, 17, 18), including the ramps of spraying are of three types: vertical booms 13 disposed frontally in front of the group of planar electrodes 6, booms horizontal 14, watering the first part of the group of electrodes 6 from the top, and supplied with the same recycled liquid from the accumulation tank 17, horizontal ramps 15 watering, continuously or discontinuously, the second part of the group of electrodes 6 also from the top, but supplied by the liquid coming from the accumulation tank 18.
  • This third type of ramps when it exists, constitutes one of the ways of the liquid reflux from stage 11 to stage 9, the other reflux path being that of the pipe 30 which brings directly, by gravity or by means of a pump, the liquid from the tank 18 to the tank 16. 43 is the direction of the gas flow.
  • the reactor includes a hopper field or a final module intended for the cumulative analysis of traces of harmful products, the continuous dosing of which becomes impossible in the event of excessively strict standards
  • the reactor constitutes a mobile unit for cumulative analysis of industrial gaseous effluents.

Landscapes

  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)

Description

  • On peut épurer très efficacement un gaz en dispersant un réactif liquide entre les électrodes d'un électrofiltre. Plusieurs méthodes ont été employées, proposées ou brevetées pour réaliser un brouillard liquide dans ce type de contacteur entre trois milieux, respectivement gazeux liquide et solide:
    • 1°) nébulisation électrostatique, aux aspérités des électrodes haute tension, d'un liquide provenant d'un réservoir en charge hydraulique et électrique (brevet français n° 1.406.086 du 05/06/1964)
    • 2°) nébulisation électrostatique, aux aspérités des électrodes au potentiel de la terre, d'un liquide amené par des canalisations au sommet de ces électrodes.
    • 3°) aspersion (primaire) au moyen de pulvérisateurs mécaniques, pneumatiques ou sous pression hydraulique au potentiel de la terre (U.S. patent n° 2,874,802 du 02/24/1959 et brevet français n° 73.18584 du 22/05/73)
    • 4°) nébulisation électrostatique, aux aspérités des électrodes haute tension, du ruissellement liquide alimenté par aspersion primaire au moyen de pulvérisateurs au potentiel de la terre (brevet français n° 2229468 du 16/05/74 qui divulgue le préambule des revendications 1 et 5)
    • 5°) nébulisations électrostatiques "va et vient", aux aspérités portées par les deux familles d'électrodes respectivement à la haute tension et au potentiel de la terre (U.S. patent n° 3,785,118 du 01/15/1974). Cette disposition dite "en champ bi-ionisé" favorise l'agglomération des particules en suspension, au détriment de leur sédimentation électrique. Elle n'est en général pas souhaitable car elle favorise la remise en suspension des boues dans le gaz.
    AVANTAGES DE LA DISPERSION D'UN LIQUIDE DANS UN ELECTROFILTRE
  • Les avantages escomptés de la dispersion d'une solution, d'une suspension aqueuse ou d'une émulsion entre les électrodes d'un électrofiltre sont les suivants:
    • 1°) lavage des électrodes collectrices quand le dépôt ne peut être éliminé par des moyens mécaniques;
    • 2°) diminution de la température des gaz traités, et par conséquent réduction de leur débit volumique dans l'électrofiltre;
    • 3°) agglomération des poussières par les gouttes liquides soit par effet de choc soit par attraction électrostatique mutuelle.
    • 4°) absorption et traitement chimique de constituants gazeux pouvant participer à la corrosion électrochimique des structures métalliques;
    • 5°) conduction ionique par le film liquide quand les structures de l'électrofiltre ne sont pas conductrices électroniques. C'est le cas par exemple lorsque l'enveloppe est une maçonnerie intérieurement recouverte d'un enduit et que les électrodes sont des plaques ou des tubes en matériaux polymères afin d'éviter la corrosion électrochimique de l'appareil;
    • 6°) élimination de gaz nocifs tels que: HCl, HF, SO2, NH3, NOx, odeurs, etc.., l'électrofiltre humide faisant alors fonction de réacteur di- ou triphasique.
    INCONVENIENTS
  • Les électrofiltres humides n'ont cependant rencontré qu'un succès modéré jusqu'à ce jour pour les raisons suivantes:
    • 1°) Ils réalisent le transfert des substances polluantes d'un effluent gazeux a un effluent liquide, et de ce fait ne résolvent un problème qu'en en suscitant un autre;
    • 2°) Leur prix élevé est dissuasif tant que les normes de pollution restent peu contraignantes et la surveillance des installations industrielles peu sévère;
    • 3°) la consommation de liquide de lavage, de l'eau en général, est élevée et souvent incompatible avec les possibilités locales d'approvisionnement;
    • 4°) la technologie des appareils proposés ne tient compte ni de la spécificité de certains réactifs utilisés en aspersion, ni de la nécessaire dépollution de l'effluent liquide.
    LA NOUVELLE DONNE
  • La levé des préventions concernant les électrofiltreslaveurs est due aux faits nouveaux suivants:
    • 1°) l'obligation faite à tout pollueur potentiel de se conformer désormais à des normes européennes beaucoup plus restrictives, et par conséquent d'investir dans des appareils plus performants;
    • 2°) en conséquence l'opportunité pour les équipementiers d'investir dans la recherche en vue de perfectionner les techniques actuellement les plus prometteuses, sans être tenus par des contraintes financières aussi sévères que par le passé;
    • 3°) les recherches, les investissements et les progrès actuels en matière de traitement des eaux, qui contribuent à minimiser les inconvénients liés au transfert de pollution;
    • 4°) le concept de "contacteur à étages multiples et à contre courant entre un gaz et un brouillard liquide", exploité dans le présent brevet sous la forme d'un réacteur électrostatique entre trois états respectivement liquide solide et gazeux, constitue une solution technologique appropriée au problème du traitement physico-chimique des milieux gazeux et liquides au sein d'un même procédé.
    CARACTERISTIQUES FONCTIONNELLES D'UN REACTEUR ELECTROSTATIQUE SELON L'INVENTION
  • Un réacteur électrostatique selon l'invention présente deux particularités fonctionnelles:
    • a) Il assure la purification d'un gaz et simultanément la concentration du ou des liquides de transfert selon un procédé de contact à étages multiples et à contre-courant gaz-liquide (reflux liquide). Les transferts de polluants s'effectuant au sein d'aérosols, le reflux est nécessairement réalisé à partir du liquide contenu dans des bacs d'accumulation qui recueillent par l'intermédiaire de trémies le ruissellement des électrodes planes de l'électrofiltre-laveur et le recycle en partie dans les champs d'aspersion correspondants;
    • b) Il associe à la ligne de traitement du gaz une ligne de traitement des liquides soutirés aux niveaux de bacs d'accumulations particuliers dits "bacs d'extraction", en vue d'une part d'éliminer totalement ou partiellement les constituants indésirables par des techniques de séparation appropriées, d'autre part de recycler au niveau d'étages particuliers un liquide de procédé partiellement ou totalement purifié, et éventuellement de renvoyer dans la ligne de traitement du gaz des réactifs régénérés ou des résidus liquides ou gazeux provenant du traitement des liquides et des boues.
    CARACTERISTIQUES STRUCTURALES ET AVANTAGES D'UN REACTEUR ELECTROSTATIQUE SELON L'INVENTION
  • Les éléments structuraux et opérationnels d'un réacteur électrostatique selon l'invention sont: la ligne de traitement du gaz, le champ d'aspersion, le module, le champ de trémie, le bac d'accumulation, le bac d'extraction, le champ de concentration, le temps de séjour, le liquide de transfert, le champ électrique, la ligne de traitement du liquide. Ces mots auront dans le texte la définition qui leur est donnée ci-après.
  • La "ligne de traitement du gaz" ou "ligne d'effets" est formée de la succession des champs d'aspersion au niveau desquels s'effectuent les transferts et les réactions entre le gaz et le brouillard liquide, de l'entrée à la sortie de l'appareil.
  • Un "champ d'aspersion" est l'espace occupé par un groupe d'électrodes arrosé frontalement grâce à un rideau de liquide finement dispersé par des rampes de pulvérisateurs répartis dans un plan perpendiculaire au flux gazeux. Il correspond à un "effet" du transfert gaz-liquide. Généralement une aspersion complémentaire est réalisée à la partie supérieure d'un groupe d'électrodes planes au moyen du même liquide que celui d'aspersion frontale. La composition du liquide d'aspersion peut être la même pour tous les champs d'aspersion s'écoulant dans le même bac d'accumulation. Elle peut être différente si un réactif chimique d'appoint est amené directement aux rampes d'injection, ou si l'aspersion est réalisée totalement ou partiellement au moyen d'un liquide provenant soit du bac d'accumulation contigu, soit d'un bac d'extraction quelconque après purification. Le premier cas offre la possibilité d'optimiser le traitement du gaz par un réactif particulier au niveau d'un seul champ d'aspersion, le deuxième cas est une contribution au reflux par une voie autre que celle du transport direct de liquide d'un bac d'accumulation au suivant, le troisième cas présente l'avantage de diminuer l'entraînement par les gaz, d'un champ d'aspersion à l'autre, des polluants contenus dans des vésicules liquides trop concentrés.
  • La multiplication des champs d'aspersion présente deux avantages:
    • a) Le débit, la composition et la distribution spatiale du brouillard primaire peuvent être adaptés, au niveau de chaque champ d'aspersion, aux caractéristiques locales et temporelles de la veine gazeuse (température, hygrométrie, composition chimique des gaz, régime continu ou discontinu d'émission);
    • b) Il est possible de réaliser un film liquide continu à la surface des électrodes collectrices et émissives, en évitant d'une part un ruissellement excédentaire responsables de court-circuits trop fréquents par filet liquide ininterrompu entre le bas d'une électrode haute tension et l'enveloppe, d'autre part des zones d'assèchement responsables du brûlage local des électrodes quand celles-ci sont fabriquées en un matériau organique électriquement isolant.
  • Le "module" est une section d'une ligne de traitement du gaz. Il présente lui-même tous les attributs d'un électrofiltre-laveur à savoir une enveloppe contenant les électrodes, les entrées et sorties de fluides et les alimentations électriques. Un réacteur électrostatique selon l'invention peut être constitué d'un seul module, mais il comporte nécessairement au moins un champ de concentration à reflux et à étages multiples. Dans un appareil à géométrie plane un module peut comporter un ou plusieurs champs de concentration à reflux.
    La construction modulaire présente de nombreux avantages:
    • a) l'appareil qui répond aux prescriptions du cahier des charges peut être avantageusement réalisé par association convenable de modules standards, disposés en série et/ou en parallèle.
    • b) les matériaux de construction de chaque module peuvent être choisis en fonction des compositions locales plus ou moins agressives du gaz et du liquide le long de la ligne de traitement des deux fluides.
    • c) en ce qui concerne les électrofiltres à géométrie plane, la conception modulaire palie dans une certaine mesure au renardage des gaz au sommet et à la base de l'enveloppe.
  • Un "champ de trémies" est la section d'appareil à laquelle est affectée un bac d'accumulation qui recueille au moyen d'une ou de plusieurs trémies les boues ou les solutions concentrées qui s'écoulent à la base d'un champ ou de plusieurs champs d'aspersion. Le liquide recueilli est en partie recyclé par aspersion dans le même champ de trémies moyennant d'éventuelles adaptations de sa composition chimique, en partie prélevé pour réaliser le reflux liquide d'étage en étage, et en partie soutiré aux bacs d'extraction en vue d'éliminer les produits de transfert indésirables au moyen de méthodes de séparation appropriées (précipitation, sédimentation, filtration, centrifugation, ajustement du pH, réactions chimiques,...etc).
    La multiplication des champs de trémies, c'est à dire des bacs d'accumulation, présente plusieurs avantages que nous allons préciser:
    • a) La possibilité de soumettre le gaz à des traitements successifs et en ligne par des liquides de compositions différentes, qui constitue l'une des originalités de l'appareil, répond au souci de traiter le gaz le plus chargés par les réactifs les moins couteux, d'adapter la composition du réactif liquide à la composition locale et temporelle du gaz et de réserver aux derniers champs d'aspersion l'emploi de réactifs très spécifiques du transfert de certains polluants gazeux résiduels;
    • b) La concentration des polluants jusqu'à des bacs d'extraction, obtenue en jouant à la fois sur deux mécanismes d'une part le recyclage du liquide d'aspersion au niveau d'un même champ de trémies d'autre part le reflux à multiples étages réalisé par transport du liquide d'un bac d'accumulation au suivant, qui constitue également une originalité de l'appareil, permet d'optimiser les traitements spécifiques des gaz et ceux des liquides en vue de l'élimination des produits indésirables sous la forme soit de solides soit de solutions concentrées valorisables. Le reflux de liquide peut emprunter deux voies, celle du transport direct d'un bac d'accumulation au suivant, ou celle qui consiste à prélever du liquide d'un bac d'accumulation pour réaliser une aspersion complémentaire partielle, continue ou discontinue, s'écoulant dans le bac d'accumulation contigu.
  • Le "champ de concentration", qui se termine par un bac d'extraction, est la section d'appareil à laquelle est dévolue la concentration de certains polluants de transfert par contact liquide-gaz à reflux à étages multiples. Il comprend donc plusieurs champs de trémies, c'est à dire plusieurs bacs d'accumulation matérialisant les étages. Le réacteur électrostatique selon l'invention a nécessairement au moins un champ de concentration.
  • Un "temps de séjour séquentiel" est le temps moyen que met le gaz à parcourir une section particulière de la ligne de traitement: champ d'aspersion, champ de trémies, champ de concentration ou ligne de traitement du gaz. Dans le cas du dépoussiérage il varie proportionnellement à la "surface volumique d'électrodes de la section correspondante", c'est à dire de la surface d'électrodes contenues dans cette section par normaux mètres cubes de gaz traversant l'appareil en une heure. En réalisation modulaire on peut le faire varier en affectant plus ou moins de modules en série ou en parallèle à une séquence particulière de traitement. Si le temps de séjour nécessaire pour éliminer un polluant gazeux est plus élevé que celui nécessaire à la précipitation électrostatique des poussières qui l'accompagnent, un laveur (non électrostatique) du gaz peut être placé en tête ou en queue de l'épurateur électrique. On dispose ainsi du nombre de degré de liberté nécessaires pour ajuster les caractéristiques de l'épurateur en fonction des vitesses des réactions chimiques en cause et des normes anti-pollution en vigueur.
  • Le composition du "liquide de transfert", à l'état soit nébulisé soit de ruissellement recueilli dans des bacs d'accumulation, varie le long de la ligne de traitement du gaz du fait d'une part de la spécificité des réaction en cause d'autre part de la concentration à étages multiples et contre-courant gaz-liquide réalisée soit par transport direct du liquide d'un bac d'accumulation au suivant soit par aspersion partielle continue ou discontinue d'un groupe d'électrodes au moyen du liquide issu du bac d'accumulation de l'étage contigu ou issu d'une opération de soutirage et de purification effectuée au niveau d'un bac d'extraction; pendant la séquence d'aspersion l'extrémité du groupe d'électrodes est correctement lavée, mais une partie du brouillard liquide et les polluants qu'il contient sont entrainés d'un étage au suivant par convection, effet défavorable à une concentration poussée des boues et à une épuration poussée du gaz; pendant la séquence d'arrêt de l'aspersion les gouttes sont précipitées électrostatiquement à l'étage où elles sont produites et ne participent donc pas au réentrainement d'impuretés véhiculées par la brouillard liquide. La composition peut également varier d'un champ d'aspersion à l'autre si des réactifs sont introduits directement dans les rampes d'arrosage en complément de ceux introduits dans les bacs. La composition du "liquide d'aspersion" est déterminée par la nature et les caractères cinétiques des réactions de transfert qui sont affectées à un champ d'aspersion, un champ de trémie, ou un champ de concentration. Il s'agit le plus généralement d'une eau contenant des réactifs solubles, des solides réactifs ou inertes à l'état dispersé, des catalyseurs, éventuellement des produits tensioactifs ioniques ou non ioniques ou encore des substances oléophyles émulsionnées.
  • Un "champ électrique", selon sa définition classique, est l'espace occupé par un ou plusieurs groupes d'électrodes alimentés par un même générateur électrique. La multiplication des champs électriques présente des avantages bien connus:
    • a) Elle évite l'arrêt de la précipitation des particules simultanément dans toutes les sections de l'appareil. L'interruption temporaire de la sédimentation, consécutive à un amorçage électrique local, ne concerne que les électrodes alimentées par un même transformateur, c'est à dire qu'un seul champ électrique.
    • b) Il est possible de régler la tension électrique aussi près que possible de la tension locale de claquage, afin d'optimiser la vitesse de sédimentation des particules solides ou liquides en suspension dans le gaz. Cette tension disruptive est en effet fonction de nombreux facteurs tels que: densité de particules en suspension dans le gaz, distribution de la taille de ces particules, composition chimique, température et homogénéité du gaz, anomalies de centrage ou de parallélisme des électrodes, configuration des arrêtes et des pointes émissives. Dans un réacteur électrostatique triphasique la composition chimique du gaz peut varier considérablement entre l'entrée et la sortie de l'appareil. Dans le cas d'un champ électrique unique c'est la section de la veine gazeuse qui présente la plus basse tension de claquage qui impose cette tension à toutes les autres sections au détriment du rendement global de l'appareil. On sait par exemple qu'une forte teneur en SO2 abaisse notablement la tension disruptive. Le (ou les) premier champ d'aspersion aura donc pour fonction d'arrêter la plus grande partie de SO2 au moyen d'un réactif approprié mais sous une tension électrique relativement basse, alors que les champs suivants supporteront des tensions plus élevées adaptées à des efficacités locales optimales. Une "rue" est l'espace compris entre deux électrodes collectrices de part et d'autre d'une électrode émissive dans le cas d'un électrofiltre à géométrie plane.
  • La "ligne de traitement des liquides" est celle des opérations physiques et chimiques effectuées sur les liquides concentrés soutirés au niveau des bacs d'extraction en vue d'une part d'éliminer des produits indésirables d'autre part de recycler partiellement ou totalement, en des points convenablement choisis de la ligne de traitement du gaz, des liquides de lavage ainsi totalement ou partiellement épurés, et éventuellement des réactifs régénérés.
  • ENONCE DES FIGURES
  • Figure 1: est une vue en coupe verticale longitudinale d'un électrofiltre humide à contre-courant liquide-gaz.
  • Figure 2: est une vue de dessus de l'électrofiltre représenté par la figure précédente.
  • Figure 3: est une vue en coupe verticale d'un champ d'aspersion avec des rampes verticales et des rampes horizontales d'aspersion, le ruissellement des électrodes étant recueilli par deux trémies dans un bac d'accumulation unique constituant l'un des étages de concentration d'un électrofiltre humide plan à contre-courant liquide-gaz.
  • FIGURES
  • A titre d'exemple non limitatif la figure 1 et la figure 2 représentent schématiquement et en coupe, respectivement verticale et horizontale, un appareil à géométrie plane à trois "champs électriques" 46, 47, et 48. Il est constitué d'une enveloppe 44, quatre champs d'aspersion 5, 6, 7, 8, trois champs de trémie 9, 10, 11, les deux premiers 9 et 10 étant constitués chacun d'un seul champ d'aspersion, le troisième 11 de deux champs d'aspersion, 7 et 8. Tous les champs d'aspersion comportent trois "rues" telles que 12 et sont arrosés chacun par des rampes verticales telles que 13. D'autres rampes telles que 19 assurent la saturation en vapeur d'eau du gaz entrant dans l'appareil. Ces rampes d'aspersion 19 peuvent avantageusement faire partie d'un étage de tête affecté au séchage des boues par la chaleur sensible du gaz pour obtenir finalement des produits solides ou pateux. Deux bacs d'accumulation 17 et 18 participent à un champ de concentration à deux étages dont le reflux passe par la tubulure 30, le bac 17 étant un bac d'extraction de même que le bac 16. Des pièces 33 en céramique ou en silice supportent les électrodes émissives et les isolent de la terre 45. 20 est l'arrivée du gaz. 21 est l'extracteur de gaz. 22 est l'arrivée du liquide recyclé après sa purification dans la ligne de traitement des liquides, ou celle du liquide d'appoint du procédé. Les réactifs sont introduits dans les bacs d'accumulation en 23, et éventuellement et pour certains d'entre eux directement dans les rampes d'aspersion en 24. Les produits indésirables sont éliminés dans la ligne de traitement des liquides constituée des unités de séparation 25 et 26 opérant sur les soutirages des bacs d'extraction 16 et 17. Dans l'exemple fourni les bac 16 17 et 18 peuvent éventuellement participer à la concentration à reflux de certains polluants non éliminés en 26 si le liquide incomplètement purifié est transporté par la canalisation 27 au bac d'accumulation 16. Dans ce cas les trois champs de trémie représentent un champ de concentration à reflux pour ces polluants particuliers. Les produits indésirables sont extraits de la ligne de traitement des liquides en 31, et 32, sous forme de précipités solides éventuellement valorisables, de boues très concentrées destinées à la décharge, de solutions industriellement recyclables, ou de liquide purifié totalement ou partiellement recyclé dans la ligne de traitement du gaz par des canalisations telles que 22, 28, 27 ou 29.
  • A titre d'exemple non limitatif la figure 3 représente le champ d'aspersion unique d'un champ de trémies 10 (appartenant luimême à un champ de concentration à reflux d'au moins trois étages 16, 17, 18), dont les rampes de pulvérisation sont de trois types: des rampes verticales 13 disposées frontalement en avant du groupe d'électrodes planes 6, des rampes horizontales 14, arrosant la première partie du groupe d'électrodes 6 par le sommet, et alimentées par le même liquide recyclé du bac d'accumulation 17, des rampes horizontales 15 arrosant, de façon continue ou discontinue, la deuxième partie du groupe d'électrodes 6 également par le sommet, mais alimentées par le liquide provenant du bac d'accumulation 18. Ce troisième type de rampes, quand il existe, constitue l'une des voies du reflux liquide de l'étage 11 à l'étage 9, l'autre voie du reflux étant celle de la canalisation 30 qui amène directement, par gravité ou au moyen d'une pompe, le liquide du bac 18 au bac 16. 43 est le sens du flux gazeux.
  • Le réacteur comporte un champ de trémies ou un module final destiné à l'analyse cumulative de traces de produits nocifs, dont le dosage continu devient impossible en cas de normes trop sévères
  • Le réacteur constitue une unité mobile d'analyse cumulative d'effluents gazeux industriels.

Claims (12)

  1. Procédé d'épuration d'effluents gazeux dans un réacteur, tels que ceux rejetés par les industries chimiques ou métallurgiques, les centrales énergétiques, les installations de traitement thermique ou les incinérateurs de déchets agricoles ou domestiques, mettant les effluents gazeux en circulation dans une enceinte, mettant le gaz en contact intime avec un liquide absorbant très divisé, constitué généralement par un milieu aqueux contenant des réactifs chimiques pulvérisé d'une part mécaniquement au moyen de buses à la périphérie de groupes d'électrodes planes disposées en uns paralléles constituant un électrofiltre humide, d'autre part électrostatiquement entre les électrodes émissives et collectrices en regard, respectivement à une haute tension (de préférence négative) et au potentiel de la terre, et collectant les ruissellements liquides formés par la précipitation sur les électrodes collectrices tout au long du parcours du gaz, des gouttes de liquide générées et ionisées, et des poussières en suspension dans le gaz pollué, par effet couronne, caractérisé en ce que, d'une part, les ruissellements liquides sont collectés dans des bacs d'accumulation distincts, correspondant chacun à un étage du réacteur, disposés en dessous de celui-ci, chaque bac d'accumulation servant à l'alimentation en liquide de lavage des moyens mécaniques de pulvérisation à la périphérie des électrodes de cet étage et reçoit les ruissellements liquides provenant de celui-ci, et, d'autre part, du liquide reflue en sens opposé au sens du flux gazeux, par pompage ou par gravité, d'un bac d'accumulation, dans le bac d'accumulation voisin, le dernier bac d'accumulation étant un bac d'extraction duquel est soutiré du liquide pour être recyclé.
  2. Procédé selon la revendication 1, caractérisé en ce qu'il consiste, en outre, à réaliser un reflux du liquide de lavage à contre-courant du gaz, par aspersion, de façon continue ou discontinue, de l'extrémité des électrodes planes, par du liquide issu du bac d'accumulation, de l'étage voisin de celui correspondant aux électrodes arrosées, et contenant du liquide moins concentré en substances polluantes.
  3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le liquide de lavage est soutiré à des bacs d'extraction pour être soumis à des traitements chimiques et/ou des opérations de séparation au sein d'unités formant une ligne de traitement des liquides en vue soit de retirer certains constituants indésirables, soit de transformer le rejet issu d'un bac d'extraction en produits admis dans une décharge contrôlée ou en produits à recycler dans l'industrie ou dans l'électrofiltre lui-même.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le milieu liquide support des réactifs chimiques présents à l'état de solutés et/ou de solides divisés est constitué soit par de l'eau, soit par une émulsion du type huile dans l'eau associant les affinités de dissolution et/ou de capture propres aux différentes phases liquides en présence, les unes oléophiles, les autres hydrophiles.
  5. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, pour l'épuration d'un gaz dans un réacteur, comportant des sections successives (5,6,7,8) d'électrodes planes disposées en rues parallèles (12), un champ de concentration à reflux à plusieurs étages (9,10,11) contenus dans une enveloppe (44), chaque section étant constituée d'électrodes collectrices suspendues planes (3) et au potentiel de la terre (45), en regard d'électrodes émissives (1) fixées à des poutrelles (36) raccordées à une haute tension de préférence négative et suspendues à des isolateurs (33) confinés chacun dans une enceinte (38) balayée par un courant de gaz ou d'air sec, des aspérités pointes et/ou arêtes (35) régulièrement réparties sur les électrodes émissives et ayant pour fonction de nébuliser électrostatiquement le liquide résultant de l'interception d'une partie des gouttes émises par des rampes (13) au potentiel de la terre disposées sur le parcours du gaz et assurant une pulvérisation mécanique primaire de liquide dirigée dans le sens du flux gazeux (43) et/ou des rampes (14) placées au-dessus des électrodes et assurant une pulvérisation de même nature mais dirigée de haut en bas, un ventilateur (21) imposant la circulation du gaz, avantageusement en dépression dans l'électrofiltre, des rampes de pulvérisation (19) saturant et refroidissant si nécessaire l'effluent gazeux avant l'accès au premier groupe d'électrodes, caractérisé en ce qu'il comporte des bacs d'accumulation distincts (16,17,18) pour le liquide de lavage, correspondant chacun à un étage (9,10,11) du réacteur, disposés en dessous de celui-ci, et dont chacun alimente au moyen de pompes individuelles les rampes de pulvérisation (13,14) de cet étage et reçoit les ruissellements liquides provenant de celui-ci, une canalisation pour l'arrivée d'un liquide propre d'appoint, une canalisation pour l'extraction d'un effluent liquide concentré ou d'une boue épaisse, ainsi qu'une canalisation (27,30) reliant chaque bac d'accumulation (16,17,18) à un Lac voisin, afin de permettre la circulation du liquide de lavage de bac d'accumulation en Lac d'accumulation par gravité ou à l'aide de pompes, dans le sens opposé au sens du flux gazeux.
  6. Dispositif selon la revendication 5, caractérisé en ce qu'il comporte des rampes d'aspersion complémentaires (15), alimentées par le liquide d'un bac d'accumulation (17,18), et disposées, au sommet et en extrémité aval d'un groupe d'électrodes planes (5,6) de l'étage contigu et situé en amont de celui correspondant au bac d'accumulation considéré.
  7. Dispositif selon l'une quelconque des revendications 5 ou 6, caractérisé en ce que les bacs d'accumulation successifs (16,17,18) sont pourvus de canalisations (23) pour l'introduction contrôlée des réactifs chimiques appropriés, si possible spécifiques de la nature des polluants à éliminer aux étages correspondants, et que les rampes d'aspersion (13) sont éventuellement pourvues de piquages (24) pour l'introduction plus directe de ces réactifs en vue de répondre en temps réel à des régimes non stationnaires de débit et/ou de composition gazeuse.
  8. Dispositif selon l'une quelconque des revendications 5 à 7, caractérisé en ce que le liquide de lavage d'un Lac intermédiaire (17) est dérivé dans une unité de traitement (26) destinée à le débarrasser de certaines substances indésirables sans rupture du reflux qui reste assuré par la canalisation (27), les produits de cette séparation étant extraits sous forme de liquide à recycler dans l'épurateur, de solides à recycler dans l'industrie ou à admettre à la décharge contrôlée, ou encore de gaz polluant à traiter dans le même épurateur.
  9. Dispositif selon l'une quelconque des revendications 5 à 8, caractérisé en ce que l'électrofiltre est constitué d'un ou plusieurs champs de concentration et d'un ou plusieurs étages indépendants en série dans la même ligne de traitement du gaz.
  10. Dispositif selon l'une quelconque des revendications 5 à 9, caractérisé en ce que l'électrofiltre comporte plusieurs champs électriques, c'est-à-dire plusieurs sources indépendantes de haute tension (46,47,48), chacune d'elles alimentant un seul groupe d'électrodes (5,6), ou plusieurs groupes (7,8) en vue d'ajuster séparément les tensions d'alimentation des étages successifs pour un rendement optimal de chacun d'eux.
  11. Dispositif selon l'une quelconque des revendications 5 à 10, caractérisé en ce que l'électrofiltre comporte en tête un étage de séchage des boues au moyen de la chaleur sensible du gaz à épurer.
  12. Dispositif selon l'une quelconque des revendications 5 à 11, caractérisé en ce qu'un laveur non électrostatique d'entrée ou de sortie assiste l'électrofiltre.
EP92918939A 1991-08-21 1992-08-20 Precipitateur electrostatique humide Expired - Lifetime EP0600011B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9110616 1991-08-21
FR9110616A FR2680474B1 (fr) 1991-08-21 1991-08-21 Reacteur electrostatique a contacts gaz liquide solide a contre courant gaz liquide et a etages multiples pour l'epuration d'un gaz et des liquides de transfert.
PCT/FR1992/000811 WO1993003849A1 (fr) 1991-08-21 1992-08-20 Precipitateur electrostatique humide

Publications (2)

Publication Number Publication Date
EP0600011A1 EP0600011A1 (fr) 1994-06-08
EP0600011B1 true EP0600011B1 (fr) 1996-11-13

Family

ID=9416392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92918939A Expired - Lifetime EP0600011B1 (fr) 1991-08-21 1992-08-20 Precipitateur electrostatique humide

Country Status (10)

Country Link
US (1) US5624476A (fr)
EP (1) EP0600011B1 (fr)
JP (1) JPH06509976A (fr)
AT (1) ATE145157T1 (fr)
CA (1) CA2115987C (fr)
DE (1) DE69215229T2 (fr)
ES (1) ES2094368T3 (fr)
FR (1) FR2680474B1 (fr)
OA (1) OA09886A (fr)
WO (1) WO1993003849A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101885240B1 (ko) * 2017-10-20 2018-08-03 주식회사 애니텍 배기가스에 포함된 입자상 물질 제거를 위한 정전 분무 방식의 전기 집진 시스템

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406024B (de) * 1995-05-02 2000-01-25 Scheuch Alois Gmbh Anlage zur elektrostatischen reinigung von staubhaltigem abgas
US5827352A (en) * 1997-04-16 1998-10-27 Electric Power Research Institute, Inc. Method for removing mercury from a gas stream and apparatus for same
US20030206837A1 (en) 1998-11-05 2003-11-06 Taylor Charles E. Electro-kinetic air transporter and conditioner device with enhanced maintenance features and enhanced anti-microorganism capability
US20050210902A1 (en) 2004-02-18 2005-09-29 Sharper Image Corporation Electro-kinetic air transporter and/or conditioner devices with features for cleaning emitter electrodes
US7695690B2 (en) 1998-11-05 2010-04-13 Tessera, Inc. Air treatment apparatus having multiple downstream electrodes
US6176977B1 (en) 1998-11-05 2001-01-23 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US6156098A (en) * 1999-02-10 2000-12-05 Richards; Clyde N. Charged droplet gas scrubber apparatus and method
US6302945B1 (en) * 1999-06-11 2001-10-16 Electric Power Research Institute, Incorporated Electrostatic precipitator for removing SO2
JP3564366B2 (ja) 1999-08-13 2004-09-08 三菱重工業株式会社 除塵装置
US20020001726A1 (en) * 1999-12-27 2002-01-03 Kimberly-Clark Worldwide, Inc. Modified siloxane yielding transferring benefits from soft tissue products
US6488740B1 (en) * 2000-03-01 2002-12-03 Electric Power Research Institute, Inc. Apparatus and method for decreasing contaminants present in a flue gas stream
US7724492B2 (en) 2003-09-05 2010-05-25 Tessera, Inc. Emitter electrode having a strip shape
US7906080B1 (en) 2003-09-05 2011-03-15 Sharper Image Acquisition Llc Air treatment apparatus having a liquid holder and a bipolar ionization device
US7767169B2 (en) 2003-12-11 2010-08-03 Sharper Image Acquisition Llc Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
US20060016333A1 (en) 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with removable driver electrodes
US7833010B2 (en) * 2004-10-29 2010-11-16 Eisenmann Corporation Natural gas injection system for regenerative thermal oxidizer
US7717980B2 (en) * 2005-02-24 2010-05-18 Sentor Technologies, Inc. Contaminant extraction systems, methods and apparatuses
US7318857B2 (en) * 2005-03-02 2008-01-15 Eisenmann Corporation Dual flow wet electrostatic precipitator
US7297182B2 (en) * 2005-03-02 2007-11-20 Eisenmann Corporation Wet electrostatic precipitator for treating oxidized biomass effluent
US7459009B2 (en) * 2005-04-15 2008-12-02 Eisenmann Corporation Method and apparatus for flue gas desulphurization
WO2007008587A2 (fr) * 2005-07-08 2007-01-18 Eisenmann Corporation Methode et appareil d'elimination de particulats et d'epuration de vapeurs indesirables d'un flux circulant de gaz
US20070122320A1 (en) * 2005-11-09 2007-05-31 Pletcher Timothy A Air purification system and method
WO2007067626A2 (fr) * 2005-12-06 2007-06-14 Eisenmann Corporation Reacteur d'oxydation a film liquide electrostatique humide et procede d'elimination de nox, sox, mercure, gouttelettes d’acide, metaux lourds et particules de cendres d’un gaz en mouvement
US7833322B2 (en) 2006-02-28 2010-11-16 Sharper Image Acquisition Llc Air treatment apparatus having a voltage control device responsive to current sensing
US7708453B2 (en) * 2006-03-03 2010-05-04 Cavitech Holdings, Llc Device for creating hydrodynamic cavitation in fluids
US7531027B2 (en) * 2006-05-18 2009-05-12 Sentor Technologies, Inc. Contaminant extraction systems, methods, and apparatuses
JP4111229B2 (ja) * 2006-05-19 2008-07-02 ダイキン工業株式会社 放電装置及び空気浄化装置
JP4023512B1 (ja) * 2006-06-15 2007-12-19 ダイキン工業株式会社 液処理装置、空気調和装置、及び加湿器
SE530738C2 (sv) * 2006-06-07 2008-08-26 Alstom Technology Ltd Våtelfilter samt sätt att rengöra en utfällningselektrod
JP2008212847A (ja) * 2007-03-05 2008-09-18 Hitachi Plant Technologies Ltd 湿式電気集塵装置
EP2072108A1 (fr) * 2007-12-18 2009-06-24 B & B INGG. S.p.A. Appareil de filtre et procédé de filtrage de substances aériformes
US7632341B2 (en) * 2008-03-27 2009-12-15 Babcock & Wilcox Power Generation Group, Inc. Hybrid wet electrostatic precipitator
NL2003259C2 (en) 2009-07-22 2011-01-25 Univ Delft Tech Method for the removal of a gaseous fluid and arrangement therefore.
CN104069720A (zh) * 2014-07-12 2014-10-01 苏州克利亚环保科技有限公司 工业有机废气废水综合处理装置
CN108273662B (zh) * 2018-01-05 2023-07-18 老肯医疗科技股份有限公司 一种用于城市除雾霾的空气净化器
CN111482146B (zh) * 2020-04-17 2022-02-22 中国石油化工股份有限公司 三相分离器、三相反应器以及三相反应方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE574079C (de) * 1930-05-18 1933-04-08 Siemens Schuckertwerke Akt Ges Mehrstufiges Einkammer-Nasselektrofilter
US2050796A (en) * 1932-10-25 1936-08-11 Kerschbaum Friedrich Paul Recovery of phosphorus
DE1009163B (de) * 1954-07-07 1957-05-29 Svenska Flaektfabriken Ab Verfahren zur Reinigung der Elektroden in Elektro-Filtern
FR1406086A (fr) * 1964-06-05 1965-07-16 Procédé et appareillage pour dépoussiérer et laver les gaz
US3404513A (en) * 1965-02-01 1968-10-08 Cottrell Res Inc Mobile electrostatic precipitator
US3509695A (en) * 1965-07-21 1970-05-05 Cottrell Res Inc Wet bottom precipitator
US3785118A (en) * 1972-03-22 1974-01-15 Mead Corp Apparatus and method for electrical precipitation
AR205152A1 (es) * 1973-02-02 1976-04-12 United States Filter Corp Precipitador electrostatico humedo
FR2229468A1 (en) * 1973-05-16 1974-12-13 Tissmetal Lionel Dupont Particle charged gas treatment process - passes gas between charged plates with electrostatic pulverisation spouts
US4247307A (en) * 1979-09-21 1981-01-27 Union Carbide Corporation High intensity ionization-wet collection method and apparatus
US4305909A (en) * 1979-10-17 1981-12-15 Peabody Process Systems, Inc. Integrated flue gas processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101885240B1 (ko) * 2017-10-20 2018-08-03 주식회사 애니텍 배기가스에 포함된 입자상 물질 제거를 위한 정전 분무 방식의 전기 집진 시스템

Also Published As

Publication number Publication date
EP0600011A1 (fr) 1994-06-08
WO1993003849A1 (fr) 1993-03-04
ES2094368T3 (es) 1997-01-16
FR2680474A1 (fr) 1993-02-26
FR2680474B1 (fr) 1995-09-08
JPH06509976A (ja) 1994-11-10
ATE145157T1 (de) 1996-11-15
CA2115987A1 (fr) 1993-03-04
DE69215229T2 (de) 1997-03-06
OA09886A (fr) 1994-09-15
CA2115987C (fr) 1998-11-03
DE69215229D1 (de) 1996-12-19
US5624476A (en) 1997-04-29

Similar Documents

Publication Publication Date Title
EP0600011B1 (fr) Precipitateur electrostatique humide
US4193774A (en) Electrostatic aerosol scrubber and method of operation
US8206494B2 (en) Device for air/water extraction by semi-humid electrostatic collection and method using same
US7297182B2 (en) Wet electrostatic precipitator for treating oxidized biomass effluent
US3958961A (en) Wet electrostatic precipitators
US4505724A (en) Wet-process dust-collecting apparatus especially for converter exhaust gases
US20220118463A1 (en) Gas Shut-Off In A Particulate Removal Device And Method
US7459009B2 (en) Method and apparatus for flue gas desulphurization
US20090169440A1 (en) pollution treatment device for volatile organic gas
US20060261265A1 (en) Dual flow wet electrostatic precipitator
US20090178968A1 (en) Water treatment apparatus
CN208008493U (zh) 一种将烟道余热用于火力发电厂废水零排放处理的设备
US20070009411A1 (en) Method and apparatus for particulate removal and undesirable vapor scrubbing from a moving gas stream
US3785125A (en) Multi-concentric wet electrostatic precipitator
EP3291910A1 (fr) Dispositif de traitement des gaz brûlés issus d'une petite installation de combustion et procédé de traitement des gaz brûlés issus d'une petite installation de combustion
CN105271589A (zh) 一种废液零排放处理装置及其处理方法
CA2659688C (fr) Separateur hybride electrostatique immerge
CN110227338A (zh) 一种湿式低温等离子体处理污泥干化废气的系统
KR200343967Y1 (ko) 정전분사세정집진장치
KR101863676B1 (ko) 전기 집진장치
CN205115207U (zh) 一种废液零排放处理装置
FR2564331A1 (fr) Perfectionnements apportes aux installations de depollution d'un gaz pollue par des particules solides et/ou liquides
EP4135880A2 (fr) Coupure de gaz dans un dispositif et un procédé d'élimination de particules
Pasic et al. MWESP: Membrane tubular wet electrostatic precipitators
CN218269100U (zh) 工业污泥回转窑热干化和高温焚烧烟气的一体化处理系统

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB GR IE IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 19951103

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES GB GR IE IT LI LU MC NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES GB GR IE IT LI LU MC NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961113

Ref country code: DK

Effective date: 19961113

REF Corresponds to:

Ref document number: 145157

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961113

REF Corresponds to:

Ref document number: 69215229

Country of ref document: DE

Date of ref document: 19961219

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 70623

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2094368

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030805

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030807

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20030808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030814

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030828

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030829

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030831

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030902

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031104

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

BERE Be: lapsed

Owner name: *ECOPROCESS

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040820

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050820

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040821

BERE Be: lapsed

Owner name: *ECOPROCESS

Effective date: 20040831