WO1993003849A1 - Precipitateur electrostatique humide - Google Patents

Precipitateur electrostatique humide Download PDF

Info

Publication number
WO1993003849A1
WO1993003849A1 PCT/FR1992/000811 FR9200811W WO9303849A1 WO 1993003849 A1 WO1993003849 A1 WO 1993003849A1 FR 9200811 W FR9200811 W FR 9200811W WO 9303849 A1 WO9303849 A1 WO 9303849A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
electrodes
gas
tank
spraying
Prior art date
Application number
PCT/FR1992/000811
Other languages
English (en)
Inventor
Charles Eyraud
Original Assignee
Ecoprocess
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecoprocess filed Critical Ecoprocess
Priority to JP5504154A priority Critical patent/JPH06509976A/ja
Priority to EP92918939A priority patent/EP0600011B1/fr
Priority to DE69215229T priority patent/DE69215229T2/de
Priority to US08/196,256 priority patent/US5624476A/en
Publication of WO1993003849A1 publication Critical patent/WO1993003849A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/32Transportable units, e.g. for cleaning room air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/014Addition of water; Heat exchange, e.g. by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/16Plant or installations having external electricity supply wet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles

Definitions

  • a gas can be purified very effectively by dispersing a liquid reagent between the electrodes of an electrostatic precipitator.
  • Several methods have been used, proposed or patented to produce a liquid mist in this type of contactor between three media, respectively gaseous liquid and solid:
  • electrostatic nebulization at the roughness of the high voltage electrodes, of a liquid coming from a hydraulic and electrically charged tank (French patent n ° 1.406.086 dated 05/06/1964) 2 °) electrostatic nebulization, at the roughness electrodes at earth potential, of a liquid brought by pipes to the top of these electrodes.
  • the technology of the proposed devices takes into account neither the specificity of certain reagents used in spraying, nor the necessary depollution of the liquid effluent.
  • An electrostatic reactor has two functional features: a) It ensures the purification of a gas and simultaneously the concentration of the transfer liquid (s) according to a multi-stage contact process and in gas-liquid counter-current (reflux liquid). The transfer of pollutants taking place within aerosols, the reflux is necessarily carried out from the liquid contained in accumulation tanks which collect by means of hoppers the runoff of the flat or tubular electrodes of the electrofilter-washer and partially recycles it in the corresponding spray fields; b) It associates with the gas treatment line a line for treating liquids drawn off at the levels of particular storage tanks called “extraction tanks", with a view firstly to totally or partially eliminating the undesirable constituents by appropriate separation techniques, on the other hand to recycle at the level of particular stages a partially or completely purified process liquid, and optionally to return to the gas treatment line regenerated reagents or liquid or gaseous residues originating from the treatment liquids and sludge.
  • the "gas treatment line” or “effect line” is formed by the succession of spray fields at the level of which the transfers and reactions take place between the gas and the liquid mist, from entry to leaving the device.
  • a “spray field” is the space occupied by a group of electrodes sprayed frontally with a curtain of liquid finely dispersed by sprayer booms distributed in a plane perpendicular to the gas flow. It corresponds to an "effect" of the gas-liquid transfer.
  • additional spraying is carried out at the top of a group of flat electrodes using the same liquid as that of front spraying. Additional spraying is also possible at the top of a group of tubular collecting electrodes, the front spraying being carried out in this case at the base, that is to say at the gas inlet.
  • the composition of the spray liquid can be the same for all the spray fields flowing in the same accumulation tank.
  • the first case offers the possibility of optimizing the treatment of gas with a particular reagent at a single spray field
  • the second case is a contribution to reflux by a route other than that of the direct transport of liquid from a accumulation tank to the next
  • the third case has the advantage of reducing entrainment by gases, from one spray field to another, pollutants contained in excessively concentrated liquid vesicles.
  • the multiplication of the spray fields has two advantages: a) The flow rate, the composition and the spatial distribution of the primary mist can be adapted, at the level of each spray field, to the local and temporal characteristics of the gas stream (temperature, hygrometry, chemical composition of gases, continuous or discontinuous emission regime); b) It is possible to produce a continuous liquid film on the surface of the collecting and emitting electrodes, on the one hand avoiding excess runoff responsible for too frequent short-circuits by uninterrupted liquid net between the bottom of a high voltage electrode and the envelope, on the other hand of the drying zones responsible for the local burning of the electrodes when the latter are made of an electrically insulating organic material.
  • the "module” is a section of a gas processing line.
  • An electrostatic reactor according to the invention may consist of a single module in the case of planar electrodes, it is necessarily of several in the case of cylindrical electrodes, but it necessarily includes in all cases at least one field multi-stage reflux concentration.
  • a module can include one or more concentration fields at reflux.
  • a reflux concentration field is necessarily formed of several modules, each constituting a spray field. Modular construction has many advantages: a) the device which meets the specifications of the specifications can be advantageously produced by association suitable for standard modules, arranged in series and / or in parallel.
  • each module can be chosen as a function of the more or less aggressive local compositions of the gas and of the liquid along the treatment line for the two fluids.
  • the modular design fades to some extent from the gas flaring at the top and bottom of the enclosure.
  • a "hopper field” is the section of apparatus to which is assigned an accumulation tank which collects by means of one or more hoppers the sludge or the concentrated solutions which flow at the base of a field or several spray fields.
  • the collected liquid is partly recycled by sprinkling in the same hopper field with possible adaptations of its chemical composition, partly withdrawn to carry out the liquid reflux from stage to stage, and partly withdrawn from the extraction tanks in view eliminate unwanted transfer products by means of appropriate separation methods (precipitation, sedimentation, filtration, centrifugation, pH adjustment, chemical reactions, etc.).
  • the multiplication of hopper fields has several advantages which we will specify: a) The possibility of subjecting the gas to successive treatments and in line with liquids of different compositions, which constitutes one of the original features of the device, responds to the concern to treat the most loaded gas with the least expensive reagents, to adapt the composition of the liquid reagent to the local and temporal composition of the gas and to reserve for the last fields of 'sprinkling the use of very specific reagents for the transfer of certain residual gaseous pollutants; b) The concentration of pollutants up to extraction tanks, obtained by playing on two mechanisms at the same time on the one hand recycling the spraying liquid at the same hopper field on the other hand multiple reflux stages carried out by transporting the liquid from one accumulation tank to the next, which also constitutes an originality of the device, makes it possible to optimize the specific treatments of gases and those of liquids with a view to eliminating undesirable products under the forms either solids or concentrated solutions which can be upgraded.
  • the reflux of liquid can take two ways, that of direct transport from one
  • the “concentration field”, which ends with an extraction tank, is the section of apparatus to which the concentration of certain transfer pollutants by liquid-gas reflux contact with multiple stages is allocated.
  • it therefore comprises several fields of hoppers, that is to say several accumulation tanks materializing the stages.
  • cylindrical collecting electrodes it necessarily comprises several modules and as many accumulation tanks.
  • the electrostatic reactor according to the invention necessarily has at least one concentration field.
  • a “sequential residence time” is the average time it takes the gas to travel through a particular section of the treatment line: spray field, hopper field, concentration field or gas treatment line.
  • spray field hopper field
  • concentration field or gas treatment line In the case of dusting it varies proportionally to the "volume area of electrodes of the corresponding section", ie of the area of electrodes contained in this section by normal cubic meters of gas passing through the device in one hour .
  • modular construction it can be varied by assigning more or less modules in series or in parallel to a particular processing sequence. If the residence time necessary to remove a gaseous pollutant is greater than that necessary for the electrostatic precipitation of the dust which accompanies it, a gas washer (not electrostatic) can be placed at the head or tail of the electric purifier.
  • composition of the "transfer liquid”, in either a nebulized or a runoff state collected in accumulation tanks, varies along the gas treatment line due, on the one hand, to the specificity of the reactions in question.
  • the composition can also vary from one spray field to another if reagents are introduced directly into the spray bars in addition to those introduced into the tanks.
  • the composition of the "spray liquid" is determined by the nature and kinetics of the transfer reactions which are assigned to a spray field, a hopper field, or a concentration field. It is most generally a water containing soluble reagents, reactive or inert solids in the dispersed state, catalysts, optionally ionic or nonionic surfactants or oleophyl emulsified substances.
  • An "electric field”, according to its classic definition, is the space occupied by one or more groups of electrodes powered by the same electric generator.
  • the multiplication of electric fields has well known advantages: a) It avoids stopping the precipitation of particles simultaneously in all sections of the device. The temporary interruption of sedimentation, following a local electrical ignition, only concerns the electrodes supplied by the same transformer, ie only one electric field. b) It is possible to adjust the electrical voltage as close as possible to the local breakdown voltage, in order to optimize the rate of sedimentation of solid or liquid particles suspended in the gas.
  • This disruptive voltage is indeed a function of many factors such as: density of particles in suspension in the gas, distribution of the size of these particles, chemical composition, temperature and homogeneity of the gas, anomalies of centering or parallelism of the electrodes, configuration of the stops and emissive points.
  • the chemical composition of the gas can vary considerably between the inlet and the outlet of the device. In the case of a single electric field, it is the section of the gas stream which has the lowest breakdown voltage which imposes this voltage on all the other sections to the detriment of the overall efficiency of the device. We know, for example, that a high SO2 content significantly lowers the breakdown voltage.
  • a “street” is the space between two collecting electrodes on either side of an emissive electrode in the case of an electrostatic precipitator with planar geometry.
  • the "liquid processing line” is that of the physical and chemical operations carried out on the concentrated liquids drawn off at the level of the extraction tanks in view on the one hand to eliminate undesirable products on the other hand to partially or totally recycle, at suitably chosen points of the gas treatment line, washing liquids thus totally or partially purified, and optionally regenerated reagents.
  • Figure 1 is a longitudinal vertical sectional view of a wet electrofilter with liquid-gas counter-current.
  • Figure 2 is a top view of the electrostatic filter shown in the previous figure.
  • Figure 3 is a vertical sectional view of a bundle of tubular electrodes constituting one of the stages of a wet electrostatic filter against liquid-gas counter-current.
  • Figure 4 is a top view of the floor shown in the previous figure.
  • Figure 5 is a vertical sectional view of a cylindrical collecting electrode and the corresponding emissive counter-electrode, with different spraying devices.
  • Figure 6 is a vertical sectional view of a spray field with vertical booms and horizontal booms, the runoff of the electrodes being collected by two hoppers in a single accumulation tank constituting one of the stages for concentrating a flat wet electrostatic precipitator against liquid-gas counter-current.
  • FIG. 1 and FIG. 2 show diagrammatically and in section, respectively vertical and horizontal, an apparatus with plane geometry with three "electric fields” 46, 47, and 48. It consists of an envelope 44, four spray fields 5, 6, 7, 8, three hopper fields 9, 10, 11, the first two 9 and 10 each consisting of a single spray field, the third 11 of two spray fields, 7 and 8. All the spray fields have three "streets” such as 12 and are each watered by vertical ramps such as 13. Other ramps such as 19 ensure the saturation in water vapor of the gas entering the device. These spray bars 19 can advantageously be part of a head stage assigned to the drying of the sludge by the sensible heat of the gas in order to finally obtain solid or pasty products.
  • Two accumulation tanks 17 and 18 participate in a two-stage concentration field, the reflux of which passes through the tube 30, the tank 17 being an extraction tank as well as the tank 16. Ceramic or silica pieces 33 support the emissive electrodes and isolate them from the earth 45.
  • 20 is the arrival of the gas.
  • 21 is the gas extractor.
  • 22 is the arrival of the recycled liquid after • its purification in the liquid treatment line, or that of the process make-up liquid.
  • the reagents are introduced into the accumulation tanks at 23, and possibly and for some of them directly into the spray bars at 24. The undesirable products are eliminated in the liquid treatment line made up of the separation units 25 and 26 operating on the withdrawals from the extraction tanks 16 and 17.
  • the tanks 16 17 and 18 may possibly participate in the reflux concentration of certain pollutants not removed at 26 if the incompletely purified liquid is transported by the line 27 to the accumulation tank 16.
  • the three hopper fields represent a reflux concentration field for these particular pollutants.
  • the undesirable products are extracted from the liquid treatment line at 31, and 32, in the form of solid precipitates which may be recoverable, highly concentrated sludge intended for landfill, industrially recyclable solutions, or purified liquid totally or partially recycled in the gas treatment line by pipes such as 22, 28, 27 or 29.
  • FIG. 3 and FIG. 4 show schematically and in section, respectively vertical and horizontal, all at the same time a module and a spray field 6. 13 is a front spray boom.
  • the three accumulation tanks 16, 17, 18 participate in a reflux concentration field consisting of three modules such as 6.
  • Cylindrical electrodes such as 4 are fixed to a plate 34.
  • the emissive electrodes such as 2, which carry asperities such as 35 with an electric field effect, are suspended from a trellis of beams 36 supported and isolated from the ground by ceramic or fused silica blocks such as 33.
  • 37 is an air intake sweeping the protective housing 38 insulation 33 which is also optionally heated and thus protected from contact with the gas to be treated and from humidity. 20 and 21 respectively represent the arrival and departure of the gas.
  • 39 is the high-voltage terminal.
  • FIG. 5, which relates to the case of a cylindrical collecting electrode 4, represents the front spraying boom 13 arranged at the base of the cylinder at the gas inlet, and the device for additional spraying to supply the top of the emissive electrode 2 with runoff liquid.
  • This liquid is supplied either by primary spraying carried out by means of sprayers such as 14 and it is then partly collected by a conical collar 40 flared upwards and perforated at its connection with the electrode 2, or by electrostatic nebulization of the liquid 41 coming from the same primary spray and collected by trickling in the conical collar 42, flared upwards and fixed by its base to the top of the collecting electrode.
  • FIG. 6, which relates to planar electrodes, represents the single spray field of a hopper field 10 (itself belonging to a reflux concentration field of at least three stages 16, 17, 18), of which the spraying booms are of three types: vertical booms 13 disposed frontally in front of the group of planar electrodes 6, booms horizontal 14, watering the first part of the group of electrodes 6 from the top, and supplied with the same recycled liquid from the accumulation tank 17, horizontal booms 15 watering, continuously or discontinuously, the second part of the group of electrodes 6 also from the top, but supplied by the liquid coming from the accumulation tank 18.
  • This third type of ramps when it exists, constitutes one of the ways of the liquid reflux from stage 11 to stage 9, the other reflux path being that of the pipe 30 which brings directly, by gravity or by means of a pump, the liquid from the tank 18 to the tank 16. 43 is the direction of the gas flow.
  • the reactor includes a hopper field or a final module intended for the cumulative analysis of traces of harmful products, the continuous dosing of which becomes impossible in the event of excessively strict standards
  • the reactor constitutes a mobile unit for cumulative analysis of industrial gaseous effluents.

Landscapes

  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Le lavage du gaz est assuré à la fois par le liquide pulvérisé mécaniquement entre groupes d'électrodes (5, 6, 7, 8), par les ruissellements le long des électrodes, enfin et surtout par le liquide dispersé par pulvérisation électrostatique à des aspérités disposées à cet effet à la surface des électrodes émissives. Selon l'invention la concentration du liquide de lavage entre la canalisation d'appoint (22) et de rejet (31) est obtenue d'une part par recyclage, aux rampes de pulvérisation d'un groupe d'électrode tel que (6), du liquide de ruissellement recueilli par le bac d'accumulation tel que (17), d'autre part par reflux de liquide entre bacs d'accumulation successifs (18, 17, 16) à travers des canalisations telles que (30). Une ligne de traitement physique et/ou chimique des liquides et des boues, constituée d'unités telles que (32 et 31), est associée à la ligne de traitement du gaz.

Description

Prédpltateur électrostatique humide.
ETAT ACTUEL DES CONNAISSANCES CONCERNANT LES ELECTROFILTRES A
PULVERISATION DE LIQUIDE
MODES DE REALISATION D'UN BROUILLARD LIQUIDE ENTRE ELECTRODES
On peut épurer très efficacement un gaz en dispersant un réactif liquide entre les électrodes d'un électrofiltre. Plusieurs méthodes ont été employées, proposées ou brevetées pour réaliser un brouillard liquide dans ce type de contacteur entre trois milieux, respectivement gazeux liquide et solide:
1°) nébulisation électrostatique, aux aspérités des électrodes haute tension, d'un liquide provenant d'un réservoir en charge hydraulique et électrique (brevet français n° 1.406.086 du 05/06/1964) 2°) nébulisation électrostatique, aux aspérités des électrodes au potentiel de la terre, d'un liquide amené par des canalisations au sommet de ces électrodes.
3°) aspersion (primaire) au moyen de pulvérisateurs mécaniques, pneumatiques ou sous pression hydraulique au potentiel de la terre (U.S. patent n° 2,874,802 du 02/24/1959 et brevet français n° 73.18584 du 22/05/73)
4°) nébulisation électrostatique, aux aspérités des électrodes haute tension, du ruissellement liquide alimenté par aspersion primaire au moyen de pulvérisateurs au potentiel de la terre (brevet français n° 74.17094 du 16/05/74)
5°) nébulisations électrostatiques "va et vient", aux aspérités portées par les deux familles d'électrodes respectivement à la haute tension et au potentiel de la terre (U.S. patent n° 3,785,118 du 01/15/1974). Cette disposition dite "en champ bi-ionisé" favorise l'agglomération des particules en suspension, au détriment de leur sédimentation électrique. Elle n'est en général pas souhaitable car elle favorise la remise en suspension des boues dans le gaz.
AVANTAGES DE LA DISPERSION D'UN LIQUIDE DANS UN ELECTROFILTRE
Les avantages escomptés de la dispersion d'une solution, d'une suspension aqueuse ou d'une émulsion entre les électrodes d'un électrofiltre sont les suivants:
1°) lavage des électrodes collectrices quand le dépôt ne peut être éliminé par des moyens mécaniques; 2°) diminution de la température des gaz traités, et par conséquent réduction de leur débit voluraique dans 1'électrofiltre;
3°) agglomération des poussières par les gouttes liquides soit par effet de choc soit par attraction électrostatique mutuelle.
4°) absorption et traitement chimique de constituants gazeux pouvant participer à la corrosion électrochimique des structures métalliques;
5°) conduction ionique par le film liquide quand les structures de 1 'électrofiltre ne sont pas conductrices électroniques. C'est le cas par exemple lorsque l'enveloppe est une maçonnerie intérieurement recouverte d'un enduit et que les électrodes sont des plaques ou des tubes en matériaux polymères afin d'éviter la corrosion électrochimique de 1 'appareil;
6°) élimination de gaz nocifs tels que: HC1, HF, SO2, NH3, N0X, odeurs, etc., l 'électrofiltre humide faisant alors fonction de réacteur di- ou triphasique. INCONVENIENTS
Les électrofiltres humides n'ont cependant rencontré qu'un succès modéré jusqu'à ce jour pour les raisons suivantes:
1°) Ils réalisent le transfert des substances polluantes d'un effluent gazeux à un effluent liquide, et de ce fait ne résolvent un problème qu'en en suscitant un autre;
2°) Leur prix élevé est dissuasif tant que les normes de pollution restent peu contraignantes et la surveillance des installations industrielles peu sévère;
3°) la consommation de liquide de lavage, de l'eau en général, est élevée et souvent incompatible avec les possibilités locales d'approvisionnement;
4°) la technologie des appareils proposés ne tient compte ni de la spécificité de certains réactifs utilisés en aspersion, ni de la nécessaire dépollution de 1 'effluent liquide.
LA NOUVELLE DONNE
La levé des préventions concernant les électrofiltres- laveurs est due aux faits nouveaux suivants:
1°) l'obligation faite à tout pollueur potentiel de se conformer désormais à des normes européennes beaucoup plus restrictives, et par conséquent d'investir dans des appareils plus performants; 2°) en conséquence l'opportunité pour les équipementiers d'investir dans la recherche en vue de perfectionner les techniques actuellement les plus prometteuses, sans être tenus par des contraintes financières aussi sévères que par le passé; 3°) les recherches, les investissements et les progrès actuels en matière de traitement des eaux, qui contribuent à minimiser les inconvénients liés au transfert de pollution; 4°) le concept de "contacteur à étages multiples et à contre courant entre un gaz et un brouillard liquide", exploité dans le présent brevet sous la forme d'un réacteur électrostatique entre trois états respectivement liquide solide et gazeux, constitue une solution technologique appropriée au problème du traitement physico-chimique des milieux gazeux et liquides au sein d'un même procédé.
CARACTERISTIQUES FONCTIONNELLES D'UN REACTEUR ELECTROSTATIQUE SELON L'INVENTION
Un réacteur électrostatique selon 1 'invention présente deux particularités fonctionnelles: a) Il assure la purification d'un gaz et simultanément la concentration du ou des liquides de transfert selon un procédé de contact à étages multiples et à contre-courant gaz-liquide (reflux liquide). Les transferts de polluants s'effectuant au sein d'aérosols, le reflux est nécessairement réalisé à partir du liquide contenu dans des bacs d'accumulation qui recueillent par l'intermédiaire de trémies le ruissellement des électrodes planes ou tubulaires de 1'électrofiltre-laveur et le recycle en partie dans les champs d'aspersion correspondants; b) Il associe à la ligne de traitement du gaz une ligne de traitement des liquides soutirés aux niveaux de bacs d'accumulations particuliers dits "bacs d'extraction", en vue d'une part d'éliminer totalement ou partiellement les constituants indésirables par des techniques de séparation appropriées, d'autre part de recycler au niveau d'étages particuliers un liquide de procédé partiellement ou totalement purifié, et éventuellement de renvoyer dans la ligne de traitement du gaz des réactifs régénérés ou des résidus liquides ou gazeux provenant du traitement des liquides et des boues.
CARACTERISTIQUES STRUCTURALES ET AVANTAGES D'UN REACTEUR ELECTROSTATIQUE SELON L'INVENTION Les éléments structuraux et opérationnels d'un réacteur électrostatique selon l'invention sont: la ligne de traitement du gaz, le champ d'aspersion, le module, le champ de trémie, le bac d'accumulation, le bac d'extraction, le champ de concentration, le temps de séjour, le liquide de transfert, le champ électrique, la ligne de traitement du liquide. Ces mots auront dans le texte la définition qui leur est donnée ci-après.
La "ligne de traitement du gaz" ou "ligne d'effets" est formée de la succession des champs d'aspersion au niveau desquels s'effectuent les transferts et les réactions entre le gaz et le brouillard liquide, de l'entrée à la sortie de 1'apparei1.
Un "champ d'aspersion" est l'espace occupé par un groupe d'électrodes arrosé frontalement grâce à un rideau de liquide finement dispersé par des rampes de pulvérisateurs répartis dans un plan perpendiculaire au flux gazeux. Il correspond à un "effet" du transfert gaz-liquide. Généralement une aspersion complémentaire est réalisée à la partie supérieure d'un groupe d'électrodes planes au moyen du même liquide que celui d'aspersion frontale. Une aspersion complémentaire est également possible au sommet d'un groupe d'électrodes collectrices tubulaires, l'aspersion frontale étant réalisée dans ce cas à la base c'est à dire à l'entrée des gaz. La composition du liquide d'aspersion peut être la même pour tous les champs d'aspersion s'écoulant dans le même bac d'accumulation. Elle peut être différente si un réactif chimique d'appoint est amené directement aux rampes d'injection, ou si l'aspersion est réalisée totalement ou partiellement au moyen d'un liquide provenant soit du bac d'accumulation contigu, soit d'un bac d'extraction quelconque après purification. Le premier cas offre la possibilité d'optimiser le traitement du gaz par un réactif particulier au niveau d'un seul champ d'aspersion, le deuxième cas est une contribution au reflux par une voie autre que celle du transport direct de liquide d'un bac d'accumulation au suivant, le troisième cas présente l'avantage de diminuer l'entraînement par les gaz, d'un champ d'aspersion à l'autre, des polluants contenus dans des vésicules liquides trop concentrés.
La multiplication des champs d'aspersion présente deux avantages: a) Le débit, la composition et la distribution spatiale du brouillard primaire peuvent être adaptés, au niveau de chaque champ d'aspersion, aux caractéristiques locales et temporelles de la veine gazeuse (température, hygrométrie, composition chimique des gaz, régime continu ou discontinu d'émission); b) Il est possible de réaliser un film liquide continu à la surface des électrodes collectrices et émissives, en évitant d'une part un ruissellement excédentaire responsables de court-circuits trop fréquents par filet liquide ininterrompu entre le bas d'une électrode haute tension et l'enveloppe, d'autre part des zones d'assèchement responsables du brûlage local des électrodes quand celles-ci sont fabriquées en un matériau organique électriquement isolant. Le "module" est une section d'une ligne de traitement du gaz. Il présente lui-même tous les attributs d'un électrofiltre-laveur à savoir une enveloppe contenant les électrodes, les entrées et sorties de fluides et les alimentations électriques. Un réacteur électrostatique selon l'invention peut être constitué d'un seul module dans le cas d'électrodes planes, il l'est nécessairement de plusieurs dans le cas d'électrodes cylindriques, mais il comporte nécessairement dans tous les cas au moins un champ de concentration à reflux et à étages multiples. Dans le cas d'un appareil à géométrie plane un module peut comporter un ou plusieurs champs de concentration à reflux. Dans le cas d'un appareil à géométrie cylindrique un champ de concentration à reflux est formé nécessairement de plusieurs modules, chacun constituant un champ d'aspersion. La construction modulaire présente de nombreux avantages: a) l'appareil qui répond aux prescriptions du cahier des charges peut être avantageusement réalisé par association convenable de modules standards, disposés en série et/ou en parallèle. b) les matériaux de construction de chaque module peuvent être choisis en fonction des compositions locales plus ou moins agressives du gaz et du liquide le long de la ligne de traitement des deux fluides. c) en ce qui concerne les électrofiltres à géométrie plane, la conception modulaire pâlie dans une certaine mesure au renardage des gaz au sommet et à la base de l'enveloppe. Un "champ de trémies" est la section d'appareil à laquelle est affectée un bac d'accumulation qui recueille au moyen d'une ou de plusieurs trémies les boues ou les solutions concentrées qui s'écoulent à la base d'un champ ou de plusieurs champs d'aspersion. Le liquide recueilli est en partie recyclé par aspersion dans le même champ de trémies moyennant d'éventuelles adaptations de sa composition chimique, en partie prélevé pour réaliser le reflux liquide d'étage en étage, et en partie soutiré aux bacs d'extraction en vue d'éliminer les produits de transfert indésirables au moyen de méthodes de séparation appropriées (précipitation, sédimentation, filtration, centrifugation, ajustement du pH, réactions chimiques, ...etc).
La multiplication des champs de trémies, c'est à dire des bacs d'accumulation, présente plusieurs avantages que nous allons préciser: a) La possibilité de soumettre le gaz à des traitements successifs et en ligne par des liquides de compositions différentes, qui constitue l'une des originalités de l'appareil, répond au souci de traiter le gaz le plus chargés par les réactifs les moins coûteux, d'adapter la composition du réactif liquide à la composition locale et temporelle du gaz et de réserver aux derniers champs d'aspersion l'emploi de réactifs très spécifiques du transfert de certains polluants gazeux résiduels; b) La concentration des polluant jusqu'à des bacs d'extraction, obtenue en jouant à la fois sur deux mécanismes d'une part lβ' recyclage du liquide d'aspersion au niveau d'un même champ de trémies d'autre part le reflux à multiples étages réalisé par transport du liquide d'un bac dl ccumulation au suivant, qui constitue également une originalité de l'appareil, permet d'optimiser les traitements spécifiques des gaz et ceux des liquides en vue de l'élimination des produits indésirables sous la forme soit de solides soit de solutions concentrées valorisables. Le reflux de liquide peut emprunter deux voies, celle du transport direct d'un bac d'accumulation au suivant, ou celle qui consiste à prélever du liquide d'un bac d'accumulation pour réaliser une aspersion complémentaire partielle, continue ou discontinue, s'écoulant dans le bac d'accumulation contigu.
Le "champ de concentration", qui se termine par un bac d'extraction, est la section d'appareil à laquelle est dévolue la concentration de certains polluants de transfert par contact liquide-gaz à reflux à étages multiples. Dans le cas d'électrodes à géométrie plane il comprend donc plusieurs champs de trémies, c'est à dire plusieurs bacs d'accumulation matérialisant les étages. Dans le cas d'électrodes collectrices cylindriques il comprend nécessairement plusieurs modules et autant de bac d'accumulation. Le réacteur électrostatique selon 1 'invention a nécessairement au moins un champ de concentration.
Un "temps de séjour séquentiel" est le temps moyen que met le gaz à parcourir une section particulière de la ligne de traitement: champ d'aspersion, champ de trémies, champ de concentration ou ligne de traitement du gaz. Dans le cas du dépoussiérage il varie proportionnellement à la "surface volumique d'électrodes de la section correspondante", c'est à dire de la surface d'électrodes contenues dans cette section par normaux mètres cubes de gaz traversant l'appareil en une heure. En réalisation modulaire on peut le faire varier en affectant plus ou moins de modules en série ou en parallèle à une séquence particulière de traitement. Si le temps de séjour nécessaire pour éliminer un polluant gazeux est plus élevé que celui nécessaire à la précipitation électrostatique des poussières qui l'accompagnent, un laveur (non électrostatique) du gaz peut être placé en tête ou en queue de l'épurateur électrique. On dispose ainsi du nombre de degré de liberté nécessaires pour ajuster les caractéristiques de l'épurateur en fonction des vitesses des réactions chimiques en cause et des normes anti-pollution en vigueur. Le composition du "liquide de transfert", à l'état soit nébulisé soit de ruissellement recueilli dans des bacs d'accumulation, varie le long de la ligne de traitement du gaz du fait d'une part de la spécificité des réaction en cause d'autre part de la concentration à étages multiples et contre-courant gaz-liquide réalisée soit par transport direct du liquide d'un bac d'accumulation au suivant soit par aspersion partielle continue ou discontinue d'un groupe d'électrodes au moyen du liquide issu du bac d'accumulation de l'étage contigu ou issu d'une opération de soutirage et de purification effectuée au niveau d'un bac d'extraction; pendant la séquence d'aspersion l'extrémité du groupe d'électrodes est correctement lavée, mais une partie du brouillard liquide et les polluants qu'il contient sont entrainés d'un étage au suivant par convection, effet défavorable à une concentration poussée des boues et à une épuration poussée du gaz; pendant la séquence d'arrêt de' l'aspersion les gouttes sont précipitées électrostatiquement à l'étage où elles sont produites et ne participent donc pas au réentrainement d'impuretés véhiculées par la brouillard liquide. La composition peut également varier d'un champ d'aspersion à l'autre si des réactifs sont introduits directement dans les rampes d'arrosage en complément de ceux introduits dans les bacs. La composition du "liquide d'aspersion" est déterminée par la nature et les caractères cinétiques des réactions de transfert qui sont affectées à un champ d'aspersion, un champ de trémie, ou un champ de concentration. Il s'agit le plus généralement d'une eau contenant des réactifs solubles, des solides réactifs ou inertes à l'état dispersé, des catalyseurs, éventuellement des produits tensioactifs ioniques ou non ioniques ou encore des substances oléophyles émulsionnées.
Un "champ électrique", selon sa définition classique, est l'espace occupé par un ou plusieurs groupes d'électrodes alimentés par un même générateur électrique. La multiplication des champs électriques présente des avantages bien connus: a) Elle évite l'arrêt de la précipitation des particules simultanément dans toutes les sections de l'appareil. L'interruption temporaire de la sédimentation, consécutive à un amorçage électrique local, ne concerne que les électrodes alimentées par un même transformateur, c'est à dire qu'un seul champ électrique. b) Il est possible de régler la tension électrique aussi près que possible de la tension locale de claquage, afin d'optimiser la vitesse de sédimentation des particules solides ou liquides en suspension dans le gaz. Cette tension disruptive est en effet fonction de nombreux facteurs tels que: densité de particules en suspension dans le gaz, distribution de la taille de ces particules, composition chimique, température et homogénéité du gaz, anomalies de centrage ou de parallélisme des électrodes, configuration des arrêtes et des pointes émissives. Dans un réacteur électrostatique triphasique la composition chimique du gaz peut varier considérablement entre l'entrée et la sortie de l'appareil. Dans le cas d'un champ électrique unique c'est la section de la veine gazeuse qui présente la plus basse tension de claquage qui impose cette tension à toutes les autres sections au détriment du rendement global de l'appareil. On sait par exemple qu'une forte teneur en SO2 abaisse notablement la tension disruptive. Le (ou les) premier champ d'aspersion aura donc pour fonction d'arrêter la plus grande partie de SO2 au moyen d'un réactif approprié mais sous une tension électrique relativement basse, alors que les champs suivants supporteront des tensions plus élevées adaptées à des efficacités locales optimales. Une "rue" est l'espace compris entre deux électrodes collectrices de part et d'autre d'une électrode é issive dans le cas d'un électrofiltre à géométrie plane.
La "ligne de traitement des liquides" est celle des opérations physiques et chimiques effectuées sur les liquides concentrés soutirés au niveau des bacs d'extraction en vue d'une part d'éliminer des produits indésirables d'autre part de recycler partiellement ou totalement, en des points convenablement choisis de la ligne de traitement du gaz, des liquides de lavage ainsi totalement ou partiellement épurés, et éventuellement des réactifs régénérés. ENONCE DES FIGURES
Figure 1: est une vue en coupe verticale longitudinale d'un électrofiltre humide à contre-courant liquide-gaz.
Figure 2: est une vue de dessus de l 'électrofiltre représenté par la figure précédente.
Figure 3: est une vue en coupe verticale d'un faisceau d'électrodes tubulaires constituant l'un des étages d'un électrofiltre humide à contre-courant liquide-gaz.
Figure 4: est une vue de dessus de l'étage représenté par la figure précédente.
Figure 5: est une vue en coupe verticale d'une électrode collectrice cylindrique et de la contre-électrode émissive correspondante, avec différents dispositifs d'aspersion.
Figure 6: est une vue en coupe verticale d'un champ d'aspersion avec des rampes verticales et des rampes horizontales d'aspersion, le ruissellement des électrodes étant recueilli par deux trémies dans un bac d'accumulation unique constituant l'un des étages de concentration d'un électrofiltre humide plan à contre-courant liquide-gaz.
FIGURES
A titre d'exemple non limitatif la figure 1 et la figure 2 représentent schématiquement et en coupe, respectivement verticale et horizontale, un appareil à géométrie plane à trois "champs électriques" 46, 47, et 48. Il est constitué d'une enveloppe 44, quatre champs d'aspersion 5, 6, 7, 8, trois champs de trémie 9, 10, 11, les deux premiers 9 et 10 étant constitués chacun d'un seul champ d'aspersion, le troisième 11 de deux champs d'aspersion, 7 et 8. Tous les champs d'aspersion comportent trois "rues" telles que 12 et sont arrosés chacun par des rampes verticales telles que 13. D'autres rampes telles que 19 assurent la saturation en vapeur d'eau du gaz entrant dans l'appareil. Ces rampes d'aspersion 19 peuvent avantageusement faire partie d'un étage de tête affecté au séchage des boues par la chaleur sensible du gaz pour obtenir finalement des produits solides ou pâteux. Deux bacs d'accumulation 17 et 18 participent à un champ de concentration à deux étages dont le reflux passe par la tubulure 30, le bac 17 étant un bac d'extraction de même que le bac 16. Des pièces 33 en céramique ou en silice supportent les électrodes émissives et les isolent de la terre 45. 20 est l'arrivée du gaz. 21 est l'extracteur de gaz. 22 est l'arrivée du liquide recyclé après • sa purification dans la ligne de traitement des liquides, ou celle du liquide d'appoint du procédé. Les réactifs sont introduits dans les bacs d'accumulation en 23, et éventuellement et pour certains d'entre eux directement dans les rampes d'aspersion en 24. Les produits indésirables sont éliminés dans la ligne de traitement des liquides constituée des unités de séparation 25 et 26 opérant sur les soutirages des bacs d'extraction 16 et 17. Dans l'exemple fourni les bac 16 17 et 18 peuvent éventuellement participer à la concentration à reflux de certains polluants non éliminés en 26 si le liquide incomplètement purifié est transporté par la canalisation 27 au bac d'accumulation 16. Dans ce cas les trois champs de trémie représentent un champ de concentration à reflux pour ces polluants particuliers. Les produits indésirables sont extraits de la ligne de traitement des liquides en 31, et 32, sous forme de précipités solides éventuellement valorisables, de boues très concentrées destinées à la décharge, de solutions industriellement recyclables, ou de liquide purifié totalement ou partiellement recyclé dans la ligne de traitement du gaz par des canalisations telles que 22, 28, 27 ou 29. A titre d'exemple non limitatif la figure 3 et la figure 4 représentent schématiquement et en coupe, respectivement verticale et horizontale, tout à la fois un module et un champ d'aspersion 6. 13 est une rampe d'aspersion frontale. Les trois bacs d'accumulation 16, 17, 18 participent à un champ de concentration à reflux constitué de trois modules tels que 6. Des électrodes cylindriques telles que 4 sont fixées à un plateau 34. Les électrodes émissives telles que 2, qui portent des aspérités telles que 35 à effet de champ électrique, sont suspendues à un treillis de poutrelles 36 supporté et isolé de la terre par des blocs de céramique ou de silice fondue tels que 33. 37 est une arrivée d'air balayant le boîtier de protection 38 de l'isolant 33 qui est d'autre part éventuellement chauffé et ainsi protégé du contact avec le gaz à traiter et de l'humidité. 20 et 21 représentent respectivement l'arrivée et le départ du gaz. 39 est la borne haute-tension.
A titre d'exemple non limitatif la figure 5, qui se rapporte au cas d'une électrode collectrice cylindrique 4, représente la rampe d'aspersion frontale 13 disposée à la base du cylindre à l'entrée du gaz, et le dispositif d'aspersion complémentaire permettant d'alimenter- le sommet de l'électrode émissive 2 en liquide de ruissellement. Ce liquide est fourni soit par aspersion primaire réalisée au moyen de pulvérisateurs tels que 14 et il est alors recueilli en partie par une collerette conique 40 évasée vers le haut et perforée au niveau de son raccordement avec 1'électrode 2, soit par nébulisation électrostatique du liquide 41 provenant de la même aspersion primaire et recueilli par ruissellement dans la collerette conique 42, évasée vers le haut et fixée par sa base au sommet de l'électrode collectrice.
A titre d'exemple non limitatif la figure 6, qui se rapporte à des électrodes planes, représente le champ d'aspersion unique d'un champ de trémies 10 (appartenant lui- même à un champ de concentration à reflux d'au moins trois étages 16, 17, 18), dont les rampes de pulvérisation sont de trois types: des rampes verticales 13 disposées frontalement en avant du groupe d'électrodes planes 6, des rampes horizontales 14, arrosant la première partie du groupé d'électrodes 6 par le sommet, et alimentées par le même liquide recyclé du bac d'accumulation 17, des rampes horizontales 15 arrosant, de façon continue ou discontinue, la deuxième partie du groupe d'électrodes 6 également par le sommet, mais alimentées par le liquide provenant du bac d'accumulation 18. Ce troisième type de rampes, quand il existe, constitue l'une des voies du reflux liquide de l'étage 11 à l'étage 9, l'autre voie du reflux étant celle de la canalisation 30 qui amène directement, par gravité ou au moyen d'une pompe, le liquide du bac 18 au bac 16. 43 est le sens du flux gazeux.
Le réacteur comporte un champ de trémies ou un module final destiné à l'analyse cumulative de traces de produits nocifs, dont le dosage continu devient impossible en cas de normes trop sévères
Le réacteur constitue une unité mobile d'analyse cumulative d'effluents gazeux industriels.

Claims

REVENDICATIONS
1 - Procédé d'épuration d'effluents gazeux tels que ceux rejetés par les industries chimiques ou métallurgiques, les centrales énergétiques, des installations de traitement thermique ou les incinérateurs de déchets industriels agricoles ou domestiques, ou tels que ceux traités dans des unités mobiles placées sur site industriel pour effectuer les analyses et essais nécessaires en vue d'adapter à chaque cas le procédé en question, selon lequel l'élimination des constituants gazeux nocifs par lavage de l'effluent gazeux est entièrement réalisé dans l'espace compris entre les électrodes d'un électrofiltre humide sous certaines conditions qui doivent être nécessairement réunies pour assurer d'une part l'absorption rapide des polluants par des réactifs liquides appropriés et d'autre part des rejets minimum d'effluents liquides, caractérisé en ce que • le liquide de lavage généralement constitué par un milieu aqueux contenant les réactifs chimiques à l'état de solution et/ou de dispersions est amené aux électrodes par impact de gouttelettes fournies par une pulvérisation primaire en vue de former des ruissellements superficiels importants aussi uniformément répartis que possible et aussitôt remis en suspension dans le gaz par une pulvérisation secondaire de nature électrostatique aux aspérités ménagées à cet effet sur les électrodes émissives, la pulvérisation primaire étant réalisée en général et comme on le sait mécaniquement au moyen de buses placées le plus près possible d'un paquet d'électrodes planes ou d'un faisceau d'électrodes cylindriques pour favoriser la pénétration des gouttes dans le champ des électrodes et leur interception par celles-ci, cette pulvérisation primaire pouvant être complétée par une pulvérisation électrostatique primaire formée à des aspérités ménagées à cet effet au sommet des électrodes collectrices qui jouent alors localement le rôle d'électrodes émissives alors que le sommet des électrodes émissives en regard jouent localement le rôle d'électrodes collectrices, le siège du transfert gaz/liquide des constituants nocifs gazeux étant principalement la surface développée des gouttelettes liquides qui constituent le brouillard secondaire uniforme et qui sont précipitées à grande vitesse par le champ électrique intense en direction des électrodes collectrices de même que les particules initialement présentes dans le gaz, et accessoirement la surface développée des ruissellements liquides le long des électrodes, les liquides de ruissellement issus de sections successives de 1 'électrofiltre étant recueillis individuellement à la base des électrodes et recyclés afin d'alimenter en continu les pulvérisations successivement primaires et secondaires, chaque section d'électrofiltre présentant ainsi une dispersion stationnaire quasi homogène rapidement renouvelée du liquide dans le gaz et constituant de ce fait un étage de transfert, le liquide étant amené à refluer d'un étage à l'autre à contre-courant du gaz en permettant ainsi d'obtenir simultanément une concentration plus grande de l'effluent liquide facilitant son traitement physique et/ou chimique, une épuration plus poussée du gaz en sortie d'appareil, enfin une plus faible consommation de liquide support et de réactifs chimiques, le temps de séjour du gaz entre les électrodes pour un rendement d'épuration conforme aux normes en vigueur n'étant plus calculé uniquement à partir du temps de charge et du temps de vol des particules suspendues dans le gaz comme c'est le cas pour les électrofiltres classiques, mais en tenant compte également de la vitesse d'absorption de chacun des constituants gazeux à éliminer au sein de ce qu'il est convenu d'appeler un champ de concentration plus ou moins spécifique d'une famille de polluants, l'association des conditions ci-dessus précisées conférant à l'espace compris entre les électrodes tous les caractères d'un réacteur chimique électrique à étages multiples et à contact intime d'un gaz et d'un liquide circulant à contre-courant l'un de l'autre. 2 - Procédé selon la revendication 1, caractérisé en ce que le reflux du liquide à contre-courant du gaz est assuré non seulement par circulation du liquide de bac en bac successifs, mais aussi en partie par aspersion de l'extrémité des électrodes planes ou du sommet des électrodes tubulaires par un liquide qui n'est pas issu du bac de l'étage correspondant mais du bac de l'étage contigu moins concentré en substances polluantes. 3 - Procédé selon l'une ou l'autre des revendications 1 et 2, caractérisé en ce que la ligne de traitement du gaz comporte un ou plusieurs champs de concentration entre l'entrée et la sortie de 1 'électrofiltre, chacun d'eux étant plus particulièrement affecté à l'élimination d'une famille de polluants au moyen de réactifs plus ou moins spécifiques de ceux-ci.
4 - Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le liquide de lavage est soutiré à des bacs d'extraction pour être soumis à des traitements chimiques et/ou des opérations de séparation au sein d'unités formant une ligne de traitement des liquides en vue soit de retirer certains constituants indésirables à l'étage où ils présentent la plus forte concentration, soit de transformer le rejet issu d'un bac d'extraction en produits admis dans une décharge contrôlée ou en produits à recycler dans l'industrie ou dans 1'électrofiltre lui-même.
5 - Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le milieu liquide support des réactifs chimiques présents à l'état de solutés et/ou de solides divisés est avantageusement constitué soit par de l'eau soit par une émulsion du type huile dans l'eau associant les affinités de dissolution et/ou de capture propres aux différentes phases liquides en présence les unes oléophiles les autres hydrophiles. 6 - Dispositif pour l'exécution du procédé suivant l'une quelconque des revendications 1 à 6 caractérisé en ce que 1'électrofiltre est constitué soit de sections successives 5, 6, 7, 8 d'électrodes planes disposées en rues parallèles telles que 12, soit de faisceaux d'électrodes cylindriques successives formant dans un cas comme dans l'autre un champ de concentration à reflux à plusieurs étages tels 9, 10, 11 contenus dans une ou plusieurs enveloppes 44, chaque section étant constituée d'électrodes collectrices suspendues planes 3 ou cylindriques 4 serties sur un plateau 34 et dans les deux cas au potentiel de la terre 45, en regard d'électrodes émissives 1 ou 2 fixées à des poutrelles telles que 36 raccordées à une haute tension de préférence négative et suspendues à des isolateurs 33 ou supportées par des isolateurs 39 confinés chacun dans une enceinte 38 balayée par un courant de gaz ou d'air sec introduit par 37, des aspérités pointes et/ou arêtes telles que 35 régulièrement réparties sur les électrodes émissives et ayant pour fonction de nebuliser electrostatiquement le liquide résultant de l'interception d'une partie des gouttes émises par des rampes 13 au potentiel de la terre disposées sur le parcours du gaz et assurant une pulvérisation mécanique primaire de liquide dirigée dans le sens du flux gazeux 43 et/ou des rampes 14 placées au dessus des électrodes et assurant une pulvérisation de même nature mais dirigée de haut en bas, ces rampes étant alimentées par les liquides de ruissellement recueillis au bas des électrodes par des trémies d'étages 9, 10, 11 dans des bacs d'accumulation successifs 16, 17, 18 puis recyclés aux étages correspondants au moyen de pompes individuelles, un ventilateur 21 imposant la circulation du gaz avantageusement en dépression dans 1'électrofiltre et entrant par 20, des rampes de pulvérisation 19 saturant et refroidissant si nécessaire 1'effluent gazeux avant l'accès au premier groupe d'électrodes, le liquide de lavage étant amené à circuler d'étage en étage à contre-courant gaz- liquide par gravité ou au moyen de pompes par des canalisations telles que 30 et 27 depuis l'arrivée par 22 au bac 18 d'un liquide propre d'appoint jusqu'à l'extraction au bac 16 d'un effluent liquide concentré ou d'une boue épaisse. 7 - Dispositif selon la revendication 6, caractérisé en ce que l'apport de liquide au électrodes émissives 1 ou 2 par pulvérisation mécanique par les in ecteurs de rampes 13, peut être complété ou même remplacé par un apport de liquide fourni par une pulvérisation électrostatique primaire à des aspérités telles que 42 occupant le sommet des électrodes collectrices et alimentées en liquide 41 soit indirectement par pulvérisation mécanique par les injecteurs de rampes 14 et encore plus indirectement par une couronne de pulvérisation électrostatique telle que 40, soit directement par des canalisations individuelles irriguant par simple écoulement le sommet des électrodes collectrices. 8 - Dispositif selon l'une ou l'autre des revendications 6 et 7, caractérisé en ce que le liquide de lavage qui s'écoule d'étage en étage à contre-courant du flux de gaz emprunte non seulement la voie directe de bac en bac par des canalisations telles que 30, mais également et partiellement la voie indirecte allant d'un bac tel que 18 de l'étage 11 à des rampes d'aspersion complémentaires 15 disposées au sommet et en extrémité aval du groupe d'électrodes planes de l'étage contigu 10 d'un électrofiltre plan, ou à des rampes complémentaires 14 disposées en sommet des électrodes d'un électrofiltre cylindrique.
9 - Dispositif selon l'une quelconque des revendications 6 à 8 caractérisé en ce que les bacs d'accumulation successifs tels que 16, 17, 18 sont pourvus de canalisations 23 pour l'introduction contrôlée des réactifs chimiques appropriés si possible spécifiques de la nature des polluants à éliminer aux étages correspondants, et que les rampes d'aspersion 13 sont éventuellement pourvues de piquages 24 pour l'introduction plus directe de ces réactifs en vue de répondre en temps réel à des régimes non stationnaires de débit et/ou de composition gazeuse.
10 - Dispositif selon l'une quelconque des revendications 6 à 9 caractérisé en ce que le liquide de lavage d'un bac intermédiaire tel que 17 est dérivé dans une unité de traitement 26 destinée à le débarrasser de certaines substances indésirables avant son retour par 28 sans rupture du reflux qui reste assuré par 27, les produits de cette séparation étant extraits par 32 sous forme de liquide à recycler dans l'épurateur, de solides à recycler dans l'industrie ou à admettre à la décharge contrôlée, ou encore de gaz polluant à traiter dans le même épurateur, cette configuration restant celle d'un champ de concentration à trois étages 11, 10 et 9 vis à vis des effluents éliminés par 31 après traitement dans l'unité 25, et à deux étages 11 et 10 vis à vis des effluents déjà éliminés par 32.
11 - Dispositif selon l'une quelconque des revendications 6 à 10 caractérisé en ce que 1 'électrofiltre est constitué d'un ou plusieurs champs de concentration et d'un ou plusieurs étages indépendants en série dans la même ligne de traitement du gaz, ce qui implique une rupture du reflux liquide entre chacun de ces éléments au niveau du dernier étage de concentration tel que 10, le liquide d'appoint nécessaire pour compenser par exemple la perte de liquide par extraction au bac 16 de l'étage indépendant suivant 9 ne provenant plus alors de l'étage précédent par 27 mais d'une autre source, le débit de ce liquide d'appoint étant relativement faible si une unité de traitement 25 permet de recycler partiellement au bac 16 par 29 le liquide épuré en évacuant par ailleurs par 31 les polluants concentrés.
12 - Dispositif selon l'une quelconque des revendications 6 à 11 caractérisé en ce que 1 'électrofiltre comporte plusieurs champs électriques c'est à dire plusieurs sources indépendantes de haute tension 46, 47, 48, chacune d'elles alimentant un seul groupe d'électrodes tel que 5 ou 6, ou plusieurs groupes tels que 7 et 8, en vue d'ajuster séparément les tensions d'alimentation des étages successifs pour un rendement optimal de chacun d'eux.
13 - Dispositif selon l'une quelconque des revendications 6 à 12, caractérisé en ce que 1'électrofiltre comporte en tête un étage de séchage des boues au moyen de la chaleur sensible du gaz à épurer, et en faisant éventuellement appel à l'action d'un réactif associé.
14 - Dispositif selon l'une quelconque des revendications 6 à 13, caractérisé en ce qu'un laveur non électrique d'entrée ou de sortie assiste 1 'électrofiltre, de sorte que le temps de séjour nécessaire à l'élimination d'un polluant particulier, dispersé ou gazeux, puisse être respecté pour un coût minimum de l'appareillage.
PCT/FR1992/000811 1991-08-21 1992-08-20 Precipitateur electrostatique humide WO1993003849A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5504154A JPH06509976A (ja) 1991-08-21 1992-08-20 湿式電気集塵器機
EP92918939A EP0600011B1 (fr) 1991-08-21 1992-08-20 Precipitateur electrostatique humide
DE69215229T DE69215229T2 (de) 1991-08-21 1992-08-20 Elektrostatischer nassabscheider
US08/196,256 US5624476A (en) 1991-08-21 1992-08-20 Method and device for purifying gaseous effluents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR91/10616 1991-08-21
FR9110616A FR2680474B1 (fr) 1991-08-21 1991-08-21 Reacteur electrostatique a contacts gaz liquide solide a contre courant gaz liquide et a etages multiples pour l'epuration d'un gaz et des liquides de transfert.

Publications (1)

Publication Number Publication Date
WO1993003849A1 true WO1993003849A1 (fr) 1993-03-04

Family

ID=9416392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/000811 WO1993003849A1 (fr) 1991-08-21 1992-08-20 Precipitateur electrostatique humide

Country Status (10)

Country Link
US (1) US5624476A (fr)
EP (1) EP0600011B1 (fr)
JP (1) JPH06509976A (fr)
AT (1) ATE145157T1 (fr)
CA (1) CA2115987C (fr)
DE (1) DE69215229T2 (fr)
ES (1) ES2094368T3 (fr)
FR (1) FR2680474B1 (fr)
OA (1) OA09886A (fr)
WO (1) WO1993003849A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406024B (de) * 1995-05-02 2000-01-25 Scheuch Alois Gmbh Anlage zur elektrostatischen reinigung von staubhaltigem abgas

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827352A (en) * 1997-04-16 1998-10-27 Electric Power Research Institute, Inc. Method for removing mercury from a gas stream and apparatus for same
US20030206837A1 (en) 1998-11-05 2003-11-06 Taylor Charles E. Electro-kinetic air transporter and conditioner device with enhanced maintenance features and enhanced anti-microorganism capability
US6176977B1 (en) 1998-11-05 2001-01-23 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US20050210902A1 (en) 2004-02-18 2005-09-29 Sharper Image Corporation Electro-kinetic air transporter and/or conditioner devices with features for cleaning emitter electrodes
US7695690B2 (en) 1998-11-05 2010-04-13 Tessera, Inc. Air treatment apparatus having multiple downstream electrodes
US6156098A (en) * 1999-02-10 2000-12-05 Richards; Clyde N. Charged droplet gas scrubber apparatus and method
US6302945B1 (en) * 1999-06-11 2001-10-16 Electric Power Research Institute, Incorporated Electrostatic precipitator for removing SO2
JP3564366B2 (ja) * 1999-08-13 2004-09-08 三菱重工業株式会社 除塵装置
US20020001726A1 (en) * 1999-12-27 2002-01-03 Kimberly-Clark Worldwide, Inc. Modified siloxane yielding transferring benefits from soft tissue products
US6488740B1 (en) * 2000-03-01 2002-12-03 Electric Power Research Institute, Inc. Apparatus and method for decreasing contaminants present in a flue gas stream
US7724492B2 (en) 2003-09-05 2010-05-25 Tessera, Inc. Emitter electrode having a strip shape
US7906080B1 (en) 2003-09-05 2011-03-15 Sharper Image Acquisition Llc Air treatment apparatus having a liquid holder and a bipolar ionization device
US7767169B2 (en) 2003-12-11 2010-08-03 Sharper Image Acquisition Llc Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
US20060016333A1 (en) 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with removable driver electrodes
CA2584217C (fr) * 2004-10-29 2012-05-22 Eisenmann Corporation Systeme d'injection de gaz naturel d'un oxydeur thermique regeneratif
CA2624603A1 (fr) * 2005-02-24 2006-08-31 Gary C. Tepper Systemes, procedes et dispositifs d'extraction de contaminants
WO2006094174A2 (fr) * 2005-03-02 2006-09-08 Eisenmann Corporation Electrofiltre humide double flux
US7297182B2 (en) * 2005-03-02 2007-11-20 Eisenmann Corporation Wet electrostatic precipitator for treating oxidized biomass effluent
WO2006113639A2 (fr) * 2005-04-15 2006-10-26 Eisenmann Corporation Procede et appareil de desulfuration de gaz de combustion
WO2007008587A2 (fr) * 2005-07-08 2007-01-18 Eisenmann Corporation Methode et appareil d'elimination de particulats et d'epuration de vapeurs indesirables d'un flux circulant de gaz
US20070122320A1 (en) * 2005-11-09 2007-05-31 Pletcher Timothy A Air purification system and method
WO2007067626A2 (fr) * 2005-12-06 2007-06-14 Eisenmann Corporation Reacteur d'oxydation a film liquide electrostatique humide et procede d'elimination de nox, sox, mercure, gouttelettes d’acide, metaux lourds et particules de cendres d’un gaz en mouvement
US7833322B2 (en) 2006-02-28 2010-11-16 Sharper Image Acquisition Llc Air treatment apparatus having a voltage control device responsive to current sensing
US7708453B2 (en) * 2006-03-03 2010-05-04 Cavitech Holdings, Llc Device for creating hydrodynamic cavitation in fluids
US7531027B2 (en) * 2006-05-18 2009-05-12 Sentor Technologies, Inc. Contaminant extraction systems, methods, and apparatuses
JP4111229B2 (ja) * 2006-05-19 2008-07-02 ダイキン工業株式会社 放電装置及び空気浄化装置
JP4023512B1 (ja) * 2006-06-15 2007-12-19 ダイキン工業株式会社 液処理装置、空気調和装置、及び加湿器
SE530738C2 (sv) * 2006-06-07 2008-08-26 Alstom Technology Ltd Våtelfilter samt sätt att rengöra en utfällningselektrod
JP2008212847A (ja) * 2007-03-05 2008-09-18 Hitachi Plant Technologies Ltd 湿式電気集塵装置
EP2072108A1 (fr) * 2007-12-18 2009-06-24 B & B INGG. S.p.A. Appareil de filtre et procédé de filtrage de substances aériformes
US7632341B2 (en) * 2008-03-27 2009-12-15 Babcock & Wilcox Power Generation Group, Inc. Hybrid wet electrostatic precipitator
NL2003259C2 (en) * 2009-07-22 2011-01-25 Univ Delft Tech Method for the removal of a gaseous fluid and arrangement therefore.
CN104069720A (zh) * 2014-07-12 2014-10-01 苏州克利亚环保科技有限公司 工业有机废气废水综合处理装置
KR101885240B1 (ko) * 2017-10-20 2018-08-03 주식회사 애니텍 배기가스에 포함된 입자상 물질 제거를 위한 정전 분무 방식의 전기 집진 시스템
CN108273662B (zh) * 2018-01-05 2023-07-18 老肯医疗科技股份有限公司 一种用于城市除雾霾的空气净化器
CN111482146B (zh) * 2020-04-17 2022-02-22 中国石油化工股份有限公司 三相分离器、三相反应器以及三相反应方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE574079C (de) * 1930-05-18 1933-04-08 Siemens Schuckertwerke Akt Ges Mehrstufiges Einkammer-Nasselektrofilter
US3404513A (en) * 1965-02-01 1968-10-08 Cottrell Res Inc Mobile electrostatic precipitator
US3509695A (en) * 1965-07-21 1970-05-05 Cottrell Res Inc Wet bottom precipitator
FR2229468A1 (en) * 1973-05-16 1974-12-13 Tissmetal Lionel Dupont Particle charged gas treatment process - passes gas between charged plates with electrostatic pulverisation spouts
US4305909A (en) * 1979-10-17 1981-12-15 Peabody Process Systems, Inc. Integrated flue gas processing system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2050796A (en) * 1932-10-25 1936-08-11 Kerschbaum Friedrich Paul Recovery of phosphorus
GB769865A (en) * 1954-07-07 1957-03-13 Svenska Flaektfabriken Ab Method of cleaning the electrodes in electrical apparatus
FR1406086A (fr) * 1964-06-05 1965-07-16 Procédé et appareillage pour dépoussiérer et laver les gaz
US3785118A (en) * 1972-03-22 1974-01-15 Mead Corp Apparatus and method for electrical precipitation
AR205152A1 (es) * 1973-02-02 1976-04-12 United States Filter Corp Precipitador electrostatico humedo
US4247307A (en) * 1979-09-21 1981-01-27 Union Carbide Corporation High intensity ionization-wet collection method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE574079C (de) * 1930-05-18 1933-04-08 Siemens Schuckertwerke Akt Ges Mehrstufiges Einkammer-Nasselektrofilter
US3404513A (en) * 1965-02-01 1968-10-08 Cottrell Res Inc Mobile electrostatic precipitator
US3509695A (en) * 1965-07-21 1970-05-05 Cottrell Res Inc Wet bottom precipitator
FR2229468A1 (en) * 1973-05-16 1974-12-13 Tissmetal Lionel Dupont Particle charged gas treatment process - passes gas between charged plates with electrostatic pulverisation spouts
US4305909A (en) * 1979-10-17 1981-12-15 Peabody Process Systems, Inc. Integrated flue gas processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406024B (de) * 1995-05-02 2000-01-25 Scheuch Alois Gmbh Anlage zur elektrostatischen reinigung von staubhaltigem abgas

Also Published As

Publication number Publication date
EP0600011A1 (fr) 1994-06-08
CA2115987C (fr) 1998-11-03
JPH06509976A (ja) 1994-11-10
OA09886A (fr) 1994-09-15
EP0600011B1 (fr) 1996-11-13
FR2680474B1 (fr) 1995-09-08
CA2115987A1 (fr) 1993-03-04
DE69215229T2 (de) 1997-03-06
FR2680474A1 (fr) 1993-02-26
DE69215229D1 (de) 1996-12-19
ATE145157T1 (de) 1996-11-15
ES2094368T3 (es) 1997-01-16
US5624476A (en) 1997-04-29

Similar Documents

Publication Publication Date Title
WO1993003849A1 (fr) Precipitateur electrostatique humide
US4193774A (en) Electrostatic aerosol scrubber and method of operation
US8206494B2 (en) Device for air/water extraction by semi-humid electrostatic collection and method using same
US7297182B2 (en) Wet electrostatic precipitator for treating oxidized biomass effluent
US7318857B2 (en) Dual flow wet electrostatic precipitator
US20090169440A1 (en) pollution treatment device for volatile organic gas
US7459009B2 (en) Method and apparatus for flue gas desulphurization
JP2002536168A (ja) 荷電小滴ガス・スクラバ装置および方法
JPH10174899A (ja) 除塵装置
US20070009411A1 (en) Method and apparatus for particulate removal and undesirable vapor scrubbing from a moving gas stream
WO2016177652A1 (fr) Dispositif de traitement des gaz brûlés issus d'une petite installation de combustion et procédé de traitement des gaz brûlés issus d'une petite installation de combustion
KR101852163B1 (ko) 정전분무 시스템과 전기집진기가 결합된 미세먼지 제거장치
WO1995007132A1 (fr) Procede et installation d'epuration d'un gaz par lavage avec une colonne venturi
US7632341B2 (en) Hybrid wet electrostatic precipitator
FR2564331A1 (fr) Perfectionnements apportes aux installations de depollution d'un gaz pollue par des particules solides et/ou liquides
KR100561550B1 (ko) 정전분사세정집진방법 및 그 장치
US20050123461A1 (en) Apparatus and process for the separation of particles from thermally after-treated process offgases
US20230100405A1 (en) Electrostatic precipitator with rotary collecting walls
CN218269100U (zh) 工业污泥回转窑热干化和高温焚烧烟气的一体化处理系统
CN218108012U (zh) 一种射流混动双极喷淋湿式静电复合式净化装置
CA1114313A (fr) Depoussiereur aerosol par voie electrostatique
RU2147527C1 (ru) Способ и устройство для очистки загрязненного газа
CN112516719A (zh) 一种烟气洗涤装置
FR2508347A1 (fr) Appareil et procede pour l'epuration de gaz et installation comprenant ledit appareil
CN114699909A (zh) 一种人造板干燥尾气处理系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2115987

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992918939

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08196256

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1992918939

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992918939

Country of ref document: EP