EP0584871A1 - Röntgenröhre mit einer Transmissionsanode - Google Patents

Röntgenröhre mit einer Transmissionsanode Download PDF

Info

Publication number
EP0584871A1
EP0584871A1 EP93202435A EP93202435A EP0584871A1 EP 0584871 A1 EP0584871 A1 EP 0584871A1 EP 93202435 A EP93202435 A EP 93202435A EP 93202435 A EP93202435 A EP 93202435A EP 0584871 A1 EP0584871 A1 EP 0584871A1
Authority
EP
European Patent Office
Prior art keywords
ray tube
target layer
angle
anode
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93202435A
Other languages
English (en)
French (fr)
Other versions
EP0584871B1 (de
Inventor
Dagang Dr. Tan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAN, DAGANG, DR.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0584871A1 publication Critical patent/EP0584871A1/de
Application granted granted Critical
Publication of EP0584871B1 publication Critical patent/EP0584871B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • the invention relates to an X-ray tube with a transmission anode, which comprises a target layer made of one or more metals with a high atomic number that is hit by electrons in the operating state and a carrier layer made of one or more substances with a low atomic number connected to the target layer.
  • Such X-ray tubes are known - for example from DE-OS 27 29 833, from US-PS 20 90 636 and from US-PS 3 894 239.
  • the target layer should be as thick as possible in order to convert the impinging electrons as high as possible into X-ray quanta.
  • this layer must be as thin as possible in order to weaken the X-ray quanta generated in it as little as possible.
  • the carrier layer must be thin enough on the one hand to weaken the emerging X-rays as little as possible and on the other hand thick enough to ensure the mechanical stability and the dissipation of the thermal energy generated in the target layer.
  • these X-ray tubes at least for a voltage range between 50 and 500 kV, which is important for medical, but also for industrial examinations - have hardly found their way into practice.
  • X-ray tubes with anodes are used, in which the X-rays are emitted from the side of the anode on which the electrons strike. These anodes are therefore also referred to below as reflection anodes.
  • the object of the present invention is to design an X-ray tube of the type mentioned at the outset, whose operating voltage is in the range between 50 kV and 500 kV, in such a way that with the electrical energy applied to operate the X-ray tube, more X-radiation is generated in the useful radiation beam than in the case of an X-ray tube Reflection anode.
  • the angle ⁇ between the direction of incidence of the electrons and the direction of the X-rays emitted through the carrier layer in the useful beam is between 10 ° and 40 °.
  • the invention is based on the knowledge that the intensity of the X-rays is very dependent on the angle that the emitted X-rays form with the direction of the electrons. Neglecting the weakening by the target results in a pronounced maximum intensity on the lateral surface of a cone, the central axis of which is formed by the direction of the electron beam generating the X-rays.
  • the opening angle of this cone depends on the operating voltage, and the smaller the higher the operating voltage, the smaller it is. For an operating voltage of 60 kV, half the opening angle of the cone with the maximum intensity is approx. 40 °, and for an operating voltage of 500 kV approx. 10 °.
  • the invention takes advantage of this knowledge by determining the angle between the light beam, i.e. selects the part of the X-ray radiation used outside the X-ray tube, and the direction of incidence of the electrons generating the X-ray radiation accordingly.
  • the useful beam has an aperture angle that differs from zero at least in one direction.
  • the angle between an X-ray beam in the center of the useful beam and the direction of incidence of the electrons must be chosen as specified in the claim.
  • the useful beam In the previously known x-ray tubes with a transmission anode, the useful beam generally runs in the extension of the electron path, ie the angle ⁇ is zero.
  • FIG. 7 of DE-OS 27 29 833 describes an X-ray tube with an annular anode, in which the X-radiation is generated by means of two groups of cathodes distributed over the circumference of the anode, which are arranged on both sides of a central plane running through the radiator. This results in an angle ⁇ of 45 °.
  • the invention can be used in different X-ray tubes for different applications. According to a preferred development of the invention, it is provided that it is designed as a rotating anode X-ray tube and that the target layer (for example made of tungsten and / or rhenium) lies on the lateral surface of a truncated cone which encloses an angle with the direction of the X-rays used outside the X-ray tubes , which is smaller than the angle that exists between this direction and the direction of the incident electrons.
  • the target layer for example made of tungsten and / or rhenium
  • the anode has the shape of a bowl which is symmetrical with respect to its axis of rotation, the inner surface of which is provided with the target layer and faces the electron-emitting electron source and the useful beam of rays is preferably emitted from the outer surface at an angle of 90 ° to the axis of rotation.
  • the transmission anode shown in FIG. 1 comprises a target layer 1 made of a metal with a high atomic number, which is applied to a carrier layer 2 made of a material with a low atomic number.
  • the target layer 1 can consist, for example, of tungsten or rhenium or of an alloy of these metals; other metals suitable for the target layer 1 are platinum or thorium.
  • the carrier layer 2 can consist of graphite or beryllum and have such a thickness that, on the one hand, there is sufficient mechanical stability and the X-ray radiation, if possible is weakened little.
  • the arrow 3 denotes an electron beam which strikes the target layer 1 at an angle ⁇ with the normal. This creates X-rays that spread on a sphere around the point of impact.
  • theoretical and experimental studies have shown that neglecting the weakening by the target layer results in the greatest intensity of X-rays, which spread on the surface of a cone (with its tip in the electron impingement point and its axis of symmetry parallel to the direction of the electron beam) with a certain aperture angle ⁇ .
  • the upper limit beam 4a and the lower limit beam 4b of this cone are shown in FIG. 1.
  • Half the opening angle ⁇ of this cone depends on the operating voltage, whereby the table applies approximately: U / kV 60-100 100-150 150-200 200-350 350-500 ⁇ 40 ° - 35 ° 35 ° - 30 ° 30 ° - 25 ° 25 ° - 20 ° 20 ° - 15 °
  • the x-ray tube must be designed so that the direction of the useful beam coincides with the direction of one of the beams on the cone jacket.
  • the X-rays generated in the target layer can run at different angles to the layer planes, the drawing showing the smallest angle ⁇ 1 and the largest angle ⁇ 2.
  • ⁇ 2 90 ° - ⁇ + ⁇ (2)
  • a is the relative atomic weight
  • Z is the atomic number of the metal from which the target layer is made.
  • is the angle of incidence of the electrons, ie the angle that the direction of the electron beam 3 forms with the normal to the target layer. If the target layer consists of an alloy of two or more metals, the mass of the target layer per unit area is calculated by using each metal of the alloy calculates the value w according to equation (3) and the calculated values are weighted according to the respective alloy proportion.
  • the intensity of the X-ray radiation in the useful beam bundle is significantly greater than for an X-ray tube with a reflection anode, with which the angle between Electron incidence direction and beam exit direction is approx. 90 °.
  • the X-ray tube is operated at a voltage other than that for which it is designed, these intensity advantages decrease.
  • the x-ray tube comprises a tube bulb 5 made of glass, in which a cathode arrangement 6 and an anode arrangement 7 are located.
  • the anode arrangement comprises a transmission anode 2 which is fastened in a known manner to a rotor 8 which is rotatably mounted in the interior of the X-ray tube.
  • the rotor is driven by a stator arranged outside the glass bulb and not shown in FIG. 2.
  • the transmission anode comprises a carrier body 2 made of graphite and has a bowl or plate shape which is open towards the cathode arrangement 6.
  • a target layer 1 made of rhenium is applied to the carrier body 2. If the X-ray tube is intended for the purposes of computer tomography and is accordingly designed for an operating voltage of 150 kV and if the electron beam 3 strikes the layer at an angle of 40 ° with the normal direction, then the mass of this layer, based on the unit area, is according to equation (3) 0.024 g / cm2. This is achieved by a 11.5 ⁇ m thick rhenium layer.
  • the X-ray tube is located inside a housing, of which part of the housing wall 10 is shown in FIG. 2 only on the right side.
  • the housing wall comprises a lining made of an X-ray absorbing material, for example lead of sufficient thickness.
  • a radiation exit window 11 made of a material transparent to the X-rays, e.g. made of aluminum, so that useful radiation can only escape in this area.
  • the useful radiation then runs perpendicular to the axis of rotation at an angle of 30 ° to the direction of the electron beam.
  • an almost flat fan-shaped bundle of rays is masked out perpendicular to the plane of the drawing in FIG. 2 through the radiation exit window. In this case, the main direction of expansion of the radiation exit window likewise runs perpendicular to the plane of the drawing.
  • the invention was explained above on the basis of a rotating anode X-ray tube with a glass bulb intended for medical examinations, the invention can also be used in other embodiments.
  • a fixed anode can be used instead of a rotating anode.
  • an X-ray tube with a glass bulb an X-ray tube with a metal bulb can also be used, in which the cathode and / or anode are connected to the metal bulb via insulators.
  • the X-ray tube can also be used for non-destructive examinations in the industrial sector; In the range of tube voltages (200 - 500 kV) used for this purpose, the efficiency is particularly high.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

Die Erfindung betrifft eine Röntgenröhre mit einer Transmissionsanode, die eine im Betriebszustand von Elektronen getroffene Targetschicht aus einem oder mehreren Metallen mit hoher Ordnungszahl und eine mit der Targetschicht verbundene Trägerschicht aus einem oder mehreren Stoffen mit niedriger Ordnungszahl und eine mit der Targetschicht verbundene Trägerschicht aus einem oder mehreren Stoffen mit niedriger Ordnungszahl umfaßt. Dabei wird eine erhöhte Strahlungsintensität dadurch erreicht, daß der Winkel ϑ zwischen der Einfallsrichtung der Elektronen und dem außerhalb der Röntgenröhre ausgenutzten Teil der durch die Trägerschicht emittierten Röntgenstrahlen zwischen der Einfallsrichtung der Elektronen und der außerhalb der Röntgenröhre ausgenutzte Teil der durch die Trägerschicht emittierten Röntgenstrahlen zwischen 10° und 40° beträgt. <IMAGE>

Description

  • Die Erfindung betrifft eine Röntgenröhre mit einer Transmissionsanode, die eine im Betriebszustand von Elektronen getroffene Targetschicht aus einem oder mehreren Metallen mit hoher Ordnungszahl und eine mit der Targetschicht verbundene Trägerschicht aus einem oder mehreren Stoffen mit niedriger Ordnungszahl umfaßt.
  • Solche Röntgenröhren sind bekannt - beispielsweise aus der DE-OS 27 29 833, aus der US-PS 20 90 636 und aus der US-PS 3 894 239. Für die Dicke der beiden Schichten ergeben sich einander widersprechende Forderungen. Einerseits soll die Targetschicht möglichst dick sein, um die auftreffenden Elektronen zu einem möglichst hohen Prozentsatz in Röntgenquanten umzuwandeln. Andererseits muß diese Schicht möglichst dünn sein, um die darin erzeugten Röntgenquanten möglichst wenig zu schwächen. Die Trägerschicht muß einerseits dünn genug sein, um die austretenden Röntgenstrahlen möglichst wenig zu schwächen und andererseits dick genug, um die mechanische Stabilität und die Ableitung der in der Targetschicht erzeugten thermischen Energie zu gewährleisten.
  • Wohl wegen dieser einander widersprechenden Forderungen haben diese Röntgenröhren - jedenfalls für einen Spannungsbereich zwischen 50 und 500 kV, der für medizinische, aber auch für industrielle Untersuchungen wichtig ist - kaum Eingang in die Praxis gefunden. Für diese Zwecke werden Röntgenröhren mit Anoden eingesetzt, bei denen die Röntgenstrahlen von der Seite der Anode emittiert werden, auf die die Elektronen auftreffen. Diese Anoden werden deshalb im folgenden auch als Reflexionsanoden bezeichnet.
  • Bei allen Röntgenröhren wird in dem Spannungsbereich bis zu 500 kV nur ein Kleiner Teil der aufgebrachten elektrischen Energie in Röntgenstrahlung umgesetzt; der Rest der aufgewandten Energie führt zur Erwärmung der Anode. Von der erzeugten Röntgenstrahlung wird außerhalb der Röntgenröhre wiederum nur ein kleiner Bruchteil als Nutzstrahlenbündel ausgenutzt.
  • Aufgabe der vorliegenden Erfindung ist es, eine Röntgenröhre der eingangs genannten Art, deren Betriebsspannung im Bereich zwischen 50 kV und 500 kV liegt, so auszugestalten, daß mit der zum Betrieb der Röntgenröhre aufgebrachten elektrischen Energie im Nutzstrahlenbündel mehr Röntgenstrahlung erzeugt wird als bei einer Röntgenröhre mit Reflexionsanode.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Winkel ϑ zwischen der Einfallsrichtung der Elektronen und der Richtung der durch die Trägerschicht hindurch emittierten Röntgenstrahlen im Nutzstrahlenbündel zwischen 10° und 40° beträgt.
  • Die Erfindung basiert auf der Erkenntnis, daß die Intensität der Röntgenstrahlung sehr stark von dem Winkel abhängig ist, den die emittierte Röntgenstrahlung mit der Richtung der Elektronen einschließt. Unter Vernachlässigung der Schwächung durch das Target ergibt sich ein ausgeprägtes Intensitätsmaximum auf der Mantelfläche eines Kegels, dessen Mittelachse durch die Richtung des die Röntgenstrahlen erzeugenden Elektronenstrahls gebildet wird. Der Öffnungswinkel dieses Kegels ist von der Betriebsspannung abhängig, und zwar wird er umso kleiner, je höher die Betriebsspannung ist. Für eine Betriebsspannung von 60 kV beträgt der halbe Öffnungswinkel des Kegels mit der maximalen Intensität ca. 40°, und für eine Betriebsspannung von 500 kV ca. 10°.
  • Die Erfindung nutzt diese Erkenntnis dadurch aus, daß sie den Winkel zwischen dem Nutzstrahlenbündel, d.h. dem außerhalb der Röntgenröhre ausgenutzten Teil der Röntgenstrahlung, und der Einfallsrichtung der die Röntgenstrahlung erzeugenden Elektronen entsprechend wählt.
  • In der Regel hat das Nutzstrahlenbündel zumindest in einer Richtung einen von Null verschiedenen Öffnungswinkel. In diesem Fall muß der Winkel zwischen einem Röntgenstrahl im Zentrum des Nutzstrahlenbündels und der Einfallsrichtung der Elektronen so gewählt sein, wie im Anspruch angegeben.
  • Bei den bisher bekannten Röntgenröhren mit Transmissionsanode verläuft das Nutzstrahlenbündel in der Regel in der Verlängerung der Elektronenbahn, d.h. der Winkel ϑ ist Null.
  • Jedoch gibt es auch Röntgenröhren mit einer Transmissionsanode, bei denen der Winkel ϑ von Null verschieden ist. So ist aus der US-PS 3 894 239 eine Drehanoden-Röntgenröhre mit einer Transmissionsanode bekannt, bei der ein Elektronenbündel etwa senkrecht auf eine Targetschicht auftrifft, die gegenüber dem Strahlenaustrittsfenster um ca. 80° geneigt. ist. Dadurch soll das in der Targetschicht erzeugte kontinuierliche Bremsstrahlungsspektrum wesentlich stärker geschwächt werden als die in der Targetschicht erzeugte Fluoreszenzstrahlung.
  • Weiterhin ist in Fig. 7 der DE-OS 27 29 833 eine Röntgenröhre mit einer ringförmigen Anode beschrieben, bei der die Röntgenstrahlung mittels zweier auf den Umfang der Anode verteilter Gruppen von Kathoden erzeugt wird, die beiderseits einer durch den Strahler verlaufenden Mittelebene angeordnet sind. Dadurch ergibt sich jeweils ein Winkel ϑ von 45°.
  • In keiner dieser Veröffentlichungen wird die Tatsache ausgenutzt, daß die Röntgenstrahlung in einem Winkelbereich zwischen 15° (bei hohen Röhrenspannungen) und 40° (bei niedrigen Röhrenspannungen) besonders intensiv ist.
  • Schließlich ist aus der WO 92/03837 eine Röntgenröhre mit einer Reflexionsanode bekannt, bei der die Elektronen unter einem Winkel von 10° (statt üblicherweise 70° - 90°) auf die Anode auftreffen und bei der das Nutzstrahlenbündel unter einem Winkel von 5° - 15° in Bezug auf die Anode verläuft. Dabei kann sich aber das Strahlenaustrittsfenster stark durch Streuelektronen erwärmen.
  • In Ausgestaltung der Erfindung ist vorgesehen, daß das für die Röntgenstrahlenausbeute wesentliche Gewicht w der Targetschicht pro Flächeneinheit - ausgedrückt in Gramm/cm² - zumindest annähernd der Beziehung genügt:

    w = 1,08 · 10⁻⁶ · (A/Z) 2,5 · U 1,6 · cosβ,
    Figure imgb0001


    wobei A die relative Atommasse und Z die Ordnungszahl des Metalls der Targetschicht ist, U die Betriebsspannung in kV, für die die Röntgenröhre ausgelegt ist, und β der Winkel ist, den die Einfallsrichtung der Elektronen mit der Normalen auf die Targetschicht einschließt. Für eine Röntgenröhre mit einer Targetschicht aus Wolfram ergibt sich daraus für eine Betriebsspannung U = 100 kV eine Masse pro Flächeneinheit von 0,017 g/cm² bzw. eine Dicke von 8,6 µm (für β=0°).
  • Die Erfindung kann bei unterschiedlichen Röntgenröhren für unterschiedliche Anwendungszwecke eingesetzt werden. Nach einer bevorzugten Weiterbildung der Erfindung ist vorgesehen, daß sie als Drehanoden-Röntgenröhre ausgebildet ist und daß die Targetschicht (beispielsweise aus Wolfram und/oder Rhenium) auf der Mantelfläche eines Kegelstumpfes liegt, der mit der Richtung der außerhalb der Röntgenrohre ausgenutzten Röntgenstrahlen einen Winkel einschließt, der Kleiner ist als der Winkel, der zwischen dieser Richtung und der Richtung der einfallenden Elektronen besteht. Die Anode hat dabei die Form einer zu ihrer Drehachse symmetrischen Schüssel, deren mit der Targetschicht versehene Innenfläche der die Elektronen emittierenden Elektronenquelle zugewandt ist und deren Nutzstrahlenbündel vorzugsweise unter einem Winkel von 90° zur Drehachse aus der Außenfläche emittiert wird.
  • Die Erfindung wird nachstehend anhand der Zeichnungen näher erläutert. Es zeigen
  • Fig. 1
    eine Prinzipzeichnung eines Teils einer Transmissionsanode und
    Fig. 2
    eine Drehanoden-Röntgenröhre mit einer erfindungsgemäßen Transmissionsanode.
  • Die in Fig. 1 dargestellte Transmissionsanode umfaßt eine Targetschicht 1 aus einem Metall mit einer hohen Ordnungszahl, die auf eine Trägerschicht 2 aus einem Stoff mit einer niedrigen Ordnungszahl aufgebracht ist. Die Targetschicht 1 kann beispielsweise aus Wolfram oder Rhenium oder aus einer Legierung dieser Metalle bestehen; andere für die Targetschicht 1 geeignete Metalle sind Platin oder Thorium. Die Trägerschicht 2 kann aus Graphit oder Beryllum bestehen und eine solche Dicke aufweisen, daß sich einerseits eine genügende mechanische Stabilität ergibt und die Röntgenstrahlung möglichst wenig geschwächt wird.
  • Mit dem Pfeil 3 ist ein Elektronenstrahl bezeichnet, der unter einem Winkel β mit der Normalen auf die Targetschicht 1 auftrifft. Dadurch wird Röntgenstrahlung erzeugt, die sich auf einer Kugel um den Auftreffpunkt ausbreitet. Theoretische und experimentelle Untersuchungen haben jedoch gezeigt, daß bei Vernachlässigung der Schwächung durch die Targetschicht die Röntgenstrahlung, die sich auf dem Mantel eines Kegels (mit seiner Spitze im Elektronenauftreffpunkt und seiner Symmetrieachse parallel zur Elektronenstrahlrichtung) mit einem bestimmten Öffnungswinkel ϑ ausbreitet, die größte Intensität hat. Von diesem Kegel sind in Fig. 1 der obere Grenzstrahl 4a und der untere Grenzstrahl 4b dargestellt. Der halbe Öffnungswinkel ϑ dieses Kegels hängt von der Betriebsspannung ab, wobei näherungsweie die Tabelle gilt:
    U/kV 60 - 100 100 - 150 150 - 200 200 - 350 350 - 500
    ϑ 40° - 35° 35° - 30° 30° - 25° 25° - 20° 20° - 15°
  • Deshalb muß die Röntgenröhre so gestaltet werden, daß die Richtung des Nutzstrahlenbündels mit der Richtung eines der Strahlen auf dem Kegelmantel zusammenfällt. Die in der Targetschicht erzeugte Röntgenstrahlung kann dabei unter verschiedenen Winkeln zu den Schichtebenen verlaufen, wobei die Zeichnung den kleinsten Winkel α₁ und den größten Winkel α₂ zeigt. Für diese Winkel gelten die Gleichungen

    α₁ = 90° - β - ϑ   (1)
    Figure imgb0002


    α₂ = 90° - β + ϑ   (2)
    Figure imgb0003


    Die für die Strahlenausbeute optimale Masse der Targetschicht pro Flächeneinheit errechnet sich angenähert nach der Beziehung

    w = 1,08 · 10⁻⁶ · (A/Z) 2,5 · U 1,6 · cosβ   (3)
    Figure imgb0004


    Dabei ist a die relative Atommasse (atomic weight) und Z die Ordnungszahl (atomic number) des Metalls, aus dem die Targetschicht besteht. β ist der Einfallswinkel der Elektronen, d.h. der Winkel, den die Richtung des Elektronenstrahls 3 mit der Normalen auf die Targetschicht bildet. Wenn die Targetschicht aus einer Legierung aus zwei oder mehreren Metallen besteht, errechnet sich die Masse der Targetschicht pro Flächeneinheit, indem man für jedes Metall der Legierung den Wert w entsprechend Gleichung (3) berechnet und die berechneten Werte entsprechend dem jeweiligen Legierungsanteil gewichtet summiert.
  • Wenn die Strahlenaustrittsrichtung entsprechend der Tabelle gewählt und die Dicke der Targetschicht entsprechend Gleichung (3) bemessen ist, ist - bei gleicher Röhrenspannung und bei gleichem Röhrenstrom - die Intensität der Röntgenstrahlung im Nutzstrahlenbündel signifikant größer als bei einer Röntgenröhre mit Reflexionsanode, bei der der Winkel zwischen Elektroneneinfallsrichtung und Strahlenaustrittsrichtung ca. 90° beträgt. Die Zunahme der Intensität ist umso ausgeprägter, je größer die Röhrenspannung ist. - Betreibt man allerdings die Röntgenröhre bei einer anderen Spannung als derjenigen, für die sie ausgelegt ist, dann nehmen diese Intensitätsvorteile ab.
  • In Fig. 2 ist als Ausführungsbeispiel eine Drehanoden-Röntgenröhre mit einer erfindungsgemäßen Transmissionsanode dargestellt. Die Röntgenröhre umfaßt einen Röhrenkolben 5 aus Glas, in dem sich eine Kathodenanordnung 6 und eine Anodenanordnung 7 befinden. Die Anodenanordnung umfaßt eine Transmissionsanode 2, die in bekannter Weise an einem Rotor 8 befestigt ist, der im Innern der Röntgenröhre drehbar gelagert ist. Der Antrieb des Rotors erfolgt durch einen außerhalb des Glaskolbens angeordneten, in Fig. 2 nicht näher dargestellten Stator.
  • Die Transmissionsanode umfaßt einen Trägerkörper 2 aus Graphit und hat eine zur Kathodenanordnung 6 hin offene Schüssel- oder Tellerform. In dem vom Elektronenstrahl 3 aus einem an der Kathodenanordnung 6 befestigten Elektronenemitter bestrichenen Bereich der Transmissionsanode ist eine Targetschicht 1 aus Rhenium auf den Trägerkörper 2 aufgebracht. Wenn die Röntgenröhre für Zwecke der Computertomographie bestimmt ist und dementsprechend für eine Betriebsspannung von 150 kV ausgelegt ist und wenn der Elektronenstrahl 3 unter einem Winkel von 40° mit der normalen Richtung auf die Schicht trifft, dann beträgt die Masse dieser Schicht, bezogen auf die Flächeneinheit gemäß Gleichung (3) 0,024 g/cm². Dies wird durch eine 11,5 µm dicke Rheniumschicht erreicht.
  • Die Röntgenröhre befindet sich im Innern eines Gehäuses, von dem in Fig. 2 nur auf der rechten Seite ein Teil der Gehäusewand 10 dargestellt ist. Die Gehäusewand umfaßt eine Auskleidung aus einem die Röntgenstrahlung absorbierenden Material, beispielsweise Blei von genügender Dicke. Lediglich in Höhe der Targetschicht ist ein Strahlenaustrittsfenster 11 aus einem für die Röntgenstrahlung transparenten Material vorgesehen, z.B. aus Aluminium, so daß nur in diesem Bereich Nutzstrahlung austreten kann. Die Nutzstrahlung verläuft dann senkrecht zur Rotationsachse unter einem Winkel von 30° zur Richtung des Elektronenbündels. Bei Anwendung für CT-Untersuchungen wird durch das Strahlenaustrittsfenster ein nahezu ebenes fächerförmiges Strahlenbündel senkrecht zur Zeichenebene der Fig. 2 ausgeblendet. Die Hauptausdehnungsrichtung des Strahlenaustrittsfensters verläuft in diesem Fall ebenfalls senkrecht zur Zeichenebene.
  • Obwohl die Erfindung vorstehend anhand einer für medizinische Untersuchungen bestimmten Drehanoden-Röntgenröhre mit einem Glaskolben erläutert wurde, ist die Erfindung auch bei anderen Ausführungsformen verwendbar. Beispielsweise kann anstelle einer Drehanode eine Festanode verwendet werden. Anstelle einer Röntgenröhre mit Glaskolben kann auch eine Röntgenröhre mit Metallkolben verwendet werden, bei der Kathode und/oder Anode über Isolatoren mit dem Metallkolben verbunden sind. Die Röntgenröhre kann auch für zerstörungsfreie Untersuchungen im industriellen Bereich eingesetzt werden; in dem für diese Zwecke benutzten Bereich von Röhrenspannungen (200 - 500 kV) ergibt sich ein besonders hoher Wirkungsgrad.

Claims (4)

  1. Röntgenröhre mit einer Transmissionsanode, die eine im Betriebszustand von Elektronen getroffene Targetschicht aus einem oder mehreren Metallen mit hoher Ordnungszahl und eine mit der Targetschicht verbundene Trägerschicht aus einem oder mehreren Stoffen mit niedriger Ordnungszahl umfaßt,
    dadurch gekennzeichnet, daß der Winkel ϑ zwischen der Einfallsrichtung der Elektronen und der Richtung der durch die Trägerschicht hindurch emittierten Röntgenstrahlen im Nutzstrahlenbündel zwischen 10° und 40° beträgt.
  2. Röntgenröhre nach Anspruch 1,
    dadurch gekennzeichnet, daß der Winkel ϑ und die Betriebsspannung U, für die die Röntgenröhre ausgelegt ist, zumindest näherungsweise der Beziehung genügen U/kV 60 - 100 100 - 150 150 - 200 200 - 350 350 - 500 ϑ 40° - 35° 35° - 30° 30° - 25° 25° - 20° 20° - 15°
  3. Röntgenröhre nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß das Gewicht der Targetschicht pro Flächeneinheit - ausgedrückt in Gramm/cm² - zumindest annähernd der Beziehung genügt:

    w = 1,08 · 10⁻⁶ · (A/Z) 2,5 · U 1,6 · cosβ
    Figure imgb0005


    wobei A die relative Atommasse und Z die Ordnungszahl des Metalls der Targetschicht, U die Betriebsspannung in kV, für die die Röntgenröhre ausgelegt ist und β der Winkel ist, den die Einfallsrichtung der Elektronen mit der Normalen auf die Targetschicht einschließt.
  4. Röntgenröhre nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß sie als Drehanoden-Röntgenröhre ausgebildet ist und daß die Targetschicht (1) auf der Mantelfläche eines Kegelstumpfes liegt, der mit der Richtung der außerhalb der Röntgenröhre ausgenutzten Röntgenstrahlen einen Winkel (α₁) einschließt, der kleiner ist als der Winkel ϑ, der zwischen dieser Richtung und der Richtung der einfallenden Elektronen besteht.
EP93202435A 1992-08-27 1993-08-18 Röntgenröhre mit einer Transmissionsanode Expired - Lifetime EP0584871B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4228559A DE4228559A1 (de) 1992-08-27 1992-08-27 Röntgenröhre mit einer Transmissionsanode
DE4228559 1992-08-27

Publications (2)

Publication Number Publication Date
EP0584871A1 true EP0584871A1 (de) 1994-03-02
EP0584871B1 EP0584871B1 (de) 1996-11-20

Family

ID=6466593

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93202435A Expired - Lifetime EP0584871B1 (de) 1992-08-27 1993-08-18 Röntgenröhre mit einer Transmissionsanode

Country Status (3)

Country Link
EP (1) EP0584871B1 (de)
JP (1) JPH06162972A (de)
DE (2) DE4228559A1 (de)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146542A1 (de) * 2000-04-11 2001-10-17 General Electric Company Vorrichtung und Verfahren zur Leistungssteigerung einer Röntgenröhre durch thermische Targetbelastung
US6421422B1 (en) 1999-08-25 2002-07-16 General Electric Company Apparatus and method for increasing X-ray tube power per target thermal load
WO2004053919A2 (en) * 2002-12-11 2004-06-24 Koninklijke Philips Electronics N.V. X-ray source for generating monochromatic x-rays
WO2004097886A2 (en) * 2003-04-25 2004-11-11 Cxr Limited X-ray tubes
US7349525B2 (en) 2003-04-25 2008-03-25 Rapiscan Systems, Inc. X-ray sources
WO2008136749A1 (en) * 2007-05-03 2008-11-13 Lars Lantto Arrangement for generation of x-ray radiation having a large real focus and a virtual focus adjusted according to requirements
US7471769B2 (en) 2001-06-21 2008-12-30 Koninklijke Philips Electronics N.V. X-ray source provided with a liquid metal target
EP2030218A2 (de) * 2006-04-20 2009-03-04 Multi-Dimensional Imaging, Inc. Röntgenröhre mit übertragungsanode
US7512215B2 (en) 2003-04-25 2009-03-31 Rapiscan Systems, Inc. X-ray tube electron sources
US7564939B2 (en) 2003-04-25 2009-07-21 Rapiscan Systems, Inc. Control means for heat load in X-ray scanning apparatus
DE102008007413A1 (de) 2008-02-04 2009-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Röntgentarget
US8085897B2 (en) 2003-04-25 2011-12-27 Rapiscan Systems, Inc. X-ray scanning system
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US8824637B2 (en) 2008-09-13 2014-09-02 Rapiscan Systems, Inc. X-ray tubes
US8885794B2 (en) 2003-04-25 2014-11-11 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US9048061B2 (en) 2005-12-16 2015-06-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US9183647B2 (en) 2003-04-25 2015-11-10 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
US9223049B2 (en) 2002-07-23 2015-12-29 Rapiscan Systems, Inc. Cargo scanning system with boom structure
US9223050B2 (en) 2005-04-15 2015-12-29 Rapiscan Systems, Inc. X-ray imaging system having improved mobility
US9263225B2 (en) 2008-07-15 2016-02-16 Rapiscan Systems, Inc. X-ray tube anode comprising a coolant tube
US9332624B2 (en) 2008-05-20 2016-05-03 Rapiscan Systems, Inc. Gantry scanner systems
US9420677B2 (en) 2009-01-28 2016-08-16 Rapiscan Systems, Inc. X-ray tube electron sources
US9618648B2 (en) 2003-04-25 2017-04-11 Rapiscan Systems, Inc. X-ray scanners
US9675306B2 (en) 2003-04-25 2017-06-13 Rapiscan Systems, Inc. X-ray scanning system
US9726619B2 (en) 2005-10-25 2017-08-08 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
US9791590B2 (en) 2013-01-31 2017-10-17 Rapiscan Systems, Inc. Portable security inspection system
US10007019B2 (en) 2002-07-23 2018-06-26 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US10295483B2 (en) 2005-12-16 2019-05-21 Rapiscan Systems, Inc. Data collection, processing and storage systems for X-ray tomographic images
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US10585207B2 (en) 2008-02-28 2020-03-10 Rapiscan Systems, Inc. Scanning systems
US10585206B2 (en) 2017-09-06 2020-03-10 Rapiscan Systems, Inc. Method and system for a multi-view scanner
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US11212902B2 (en) 2020-02-25 2021-12-28 Rapiscan Systems, Inc. Multiplexed drive systems and methods for a multi-emitter X-ray source
US11551903B2 (en) 2020-06-25 2023-01-10 American Science And Engineering, Inc. Devices and methods for dissipating heat from an anode of an x-ray tube assembly

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860115C2 (de) * 1998-12-23 2000-11-30 Siemens Ag Drehröhre
US7333588B2 (en) * 2001-12-14 2008-02-19 Wisconsin Alumni Research Foundation Virtual spherical anode computed tomography
GB0309385D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray monitoring
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
DE102004013620B4 (de) 2004-03-19 2008-12-04 GE Homeland Protection, Inc., Newark Elektronenfenster für eine Flüssigmetallanode, Flüssigmetallanode, Röntgenstrahler und Verfahren zum Betrieb eines solchen Röntgenstrahlers
DE102004015590B4 (de) * 2004-03-30 2008-10-09 GE Homeland Protection, Inc., Newark Anodenmodul für eine Flüssigmetallanoden-Röntgenquelle sowie Röntgenstrahler mit einem Anodenmodul
DE102005018342B4 (de) * 2005-04-20 2012-05-24 Siemens Ag Vorrichtung und Verfahren zur Erzeugung von Röntgenstrahlung
GB0803641D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
JP5455880B2 (ja) * 2010-12-10 2014-03-26 キヤノン株式会社 放射線発生管、放射線発生装置ならびに放射線撮影装置
JP2012138203A (ja) * 2010-12-24 2012-07-19 Aet Inc X線発生装置とx線発生装置群を用いたx線照射装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683223A (en) * 1968-12-16 1972-08-08 Siemens Ag X-ray tube having a ray transmission rotary anode
US3894239A (en) * 1973-09-04 1975-07-08 Raytheon Co Monochromatic x-ray generator
US3999096A (en) * 1974-12-12 1976-12-21 Atomic Energy Of Canada Limited Layered, multi-element electron-bremsstrahlung photon converter target
EP0432568A2 (de) * 1989-12-11 1991-06-19 General Electric Company Röntgenröhrenanode und Röntgenröhre mit einer solchen Anode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683223A (en) * 1968-12-16 1972-08-08 Siemens Ag X-ray tube having a ray transmission rotary anode
US3894239A (en) * 1973-09-04 1975-07-08 Raytheon Co Monochromatic x-ray generator
US3999096A (en) * 1974-12-12 1976-12-21 Atomic Energy Of Canada Limited Layered, multi-element electron-bremsstrahlung photon converter target
EP0432568A2 (de) * 1989-12-11 1991-06-19 General Electric Company Röntgenröhrenanode und Röntgenröhre mit einer solchen Anode

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421422B1 (en) 1999-08-25 2002-07-16 General Electric Company Apparatus and method for increasing X-ray tube power per target thermal load
EP1146542A1 (de) * 2000-04-11 2001-10-17 General Electric Company Vorrichtung und Verfahren zur Leistungssteigerung einer Röntgenröhre durch thermische Targetbelastung
US7471769B2 (en) 2001-06-21 2008-12-30 Koninklijke Philips Electronics N.V. X-ray source provided with a liquid metal target
US10670769B2 (en) 2002-07-23 2020-06-02 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US9223049B2 (en) 2002-07-23 2015-12-29 Rapiscan Systems, Inc. Cargo scanning system with boom structure
US10007019B2 (en) 2002-07-23 2018-06-26 Rapiscan Systems, Inc. Compact mobile cargo scanning system
WO2004053919A2 (en) * 2002-12-11 2004-06-24 Koninklijke Philips Electronics N.V. X-ray source for generating monochromatic x-rays
WO2004053919A3 (en) * 2002-12-11 2004-12-29 Koninkl Philips Electronics Nv X-ray source for generating monochromatic x-rays
US7436931B2 (en) 2002-12-11 2008-10-14 Koninklijke Philips Electronics N.V. X-ray source for generating monochromatic x-rays
US7664230B2 (en) 2003-04-25 2010-02-16 Rapiscan Systems, Inc. X-ray tubes
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US7512215B2 (en) 2003-04-25 2009-03-31 Rapiscan Systems, Inc. X-ray tube electron sources
US7564939B2 (en) 2003-04-25 2009-07-21 Rapiscan Systems, Inc. Control means for heat load in X-ray scanning apparatus
US11796711B2 (en) 2003-04-25 2023-10-24 Rapiscan Systems, Inc. Modular CT scanning system
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US7349525B2 (en) 2003-04-25 2008-03-25 Rapiscan Systems, Inc. X-ray sources
US9442082B2 (en) 2003-04-25 2016-09-13 Rapiscan Systems, Inc. X-ray inspection system and method
US7903789B2 (en) 2003-04-25 2011-03-08 Rapiscan Systems, Inc. X-ray tube electron sources
US8085897B2 (en) 2003-04-25 2011-12-27 Rapiscan Systems, Inc. X-ray scanning system
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US7505563B2 (en) 2003-04-25 2009-03-17 Rapiscan Systems, Inc. X-ray sources
US8885794B2 (en) 2003-04-25 2014-11-11 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US9183647B2 (en) 2003-04-25 2015-11-10 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US10175381B2 (en) 2003-04-25 2019-01-08 Rapiscan Systems, Inc. X-ray scanners having source points with less than a predefined variation in brightness
GB2417822A (en) * 2003-04-25 2006-03-08 Cxr Ltd X-ray tubes
WO2004097886A3 (en) * 2003-04-25 2005-07-28 Cxr Ltd X-ray tubes
WO2004097886A2 (en) * 2003-04-25 2004-11-11 Cxr Limited X-ray tubes
US9747705B2 (en) 2003-04-25 2017-08-29 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US9675306B2 (en) 2003-04-25 2017-06-13 Rapiscan Systems, Inc. X-ray scanning system
US9618648B2 (en) 2003-04-25 2017-04-11 Rapiscan Systems, Inc. X-ray scanners
US9223050B2 (en) 2005-04-15 2015-12-29 Rapiscan Systems, Inc. X-ray imaging system having improved mobility
US9726619B2 (en) 2005-10-25 2017-08-08 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US10295483B2 (en) 2005-12-16 2019-05-21 Rapiscan Systems, Inc. Data collection, processing and storage systems for X-ray tomographic images
US9638646B2 (en) 2005-12-16 2017-05-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images
US9048061B2 (en) 2005-12-16 2015-06-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
EP2030218A2 (de) * 2006-04-20 2009-03-04 Multi-Dimensional Imaging, Inc. Röntgenröhre mit übertragungsanode
WO2008136749A1 (en) * 2007-05-03 2008-11-13 Lars Lantto Arrangement for generation of x-ray radiation having a large real focus and a virtual focus adjusted according to requirements
DE102008007413A1 (de) 2008-02-04 2009-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Röntgentarget
US10585207B2 (en) 2008-02-28 2020-03-10 Rapiscan Systems, Inc. Scanning systems
US11768313B2 (en) 2008-02-28 2023-09-26 Rapiscan Systems, Inc. Multi-scanner networked systems for performing material discrimination processes on scanned objects
US11275194B2 (en) 2008-02-28 2022-03-15 Rapiscan Systems, Inc. Scanning systems
US10098214B2 (en) 2008-05-20 2018-10-09 Rapiscan Systems, Inc. Detector support structures for gantry scanner systems
US9332624B2 (en) 2008-05-20 2016-05-03 Rapiscan Systems, Inc. Gantry scanner systems
US9263225B2 (en) 2008-07-15 2016-02-16 Rapiscan Systems, Inc. X-ray tube anode comprising a coolant tube
US8824637B2 (en) 2008-09-13 2014-09-02 Rapiscan Systems, Inc. X-ray tubes
US9420677B2 (en) 2009-01-28 2016-08-16 Rapiscan Systems, Inc. X-ray tube electron sources
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
US11550077B2 (en) 2013-01-31 2023-01-10 Rapiscan Systems, Inc. Portable vehicle inspection portal with accompanying workstation
US10317566B2 (en) 2013-01-31 2019-06-11 Rapiscan Systems, Inc. Portable security inspection system
US9791590B2 (en) 2013-01-31 2017-10-17 Rapiscan Systems, Inc. Portable security inspection system
US10585206B2 (en) 2017-09-06 2020-03-10 Rapiscan Systems, Inc. Method and system for a multi-view scanner
US11212902B2 (en) 2020-02-25 2021-12-28 Rapiscan Systems, Inc. Multiplexed drive systems and methods for a multi-emitter X-ray source
US11551903B2 (en) 2020-06-25 2023-01-10 American Science And Engineering, Inc. Devices and methods for dissipating heat from an anode of an x-ray tube assembly

Also Published As

Publication number Publication date
DE59304524D1 (de) 1997-01-02
EP0584871B1 (de) 1996-11-20
DE4228559A1 (de) 1994-03-03
JPH06162972A (ja) 1994-06-10

Similar Documents

Publication Publication Date Title
EP0584871B1 (de) Röntgenröhre mit einer Transmissionsanode
EP0815582B1 (de) Mikrofocus-röntgeneinrichtung
DE69125591T2 (de) Röntgen-röhre
EP0292055B1 (de) Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung
DE102010060484B4 (de) System und Verfahren zum Fokussieren und Regeln/Steuern eines Strahls in einer indirekt geheizten Kathode
DE2902308C2 (de) Röntgenröhre
DE19544203A1 (de) Röntgenröhre, insbesondere Mikrofokusröntgenröhre
DE2154888A1 (de) Roentgenroehre
DE2807735A1 (de) Roentgenroehre mit einem aus metall bestehenden roehrenkolben
DE19957559A1 (de) Wärmeenergiespeicher- und Übertragungsvorrichtung
DE2803347A1 (de) Roentgenstrahlenquelle
DE2719609C3 (de) Röntgenröhre zur Erzeugung monochromatischer Röntgenstrahlen
DE2441968B2 (de) Röntgenröhre zur Erzeugung monochromatischer Röntgenstrahlung
DE69514221T2 (de) Röntgenröhre und anodentarget dafür
EP3629361B1 (de) Röntgenstrahler, verwendung eines röntgenstrahlers und verfahren zur herstellung eines röntgenstrahlers
DE3871913T2 (de) Roentgenroehre mit einer treffplatte aus molybdaen.
DE1033343B (de) Roentgenroehre hoher Strahlungsleistung
DE3884570T2 (de) Röntgenstrahl-Bildverstärkerröhre.
DE69007627T2 (de) Röntgenbildverstärkerröhre mit Selektivfilter.
DD202354A5 (de) Plasmaspritzen von konversionsschirmen
DE2729833A1 (de) Roentgen-schichtbild-aufnahmegeraet
DE102005018342B4 (de) Vorrichtung und Verfahren zur Erzeugung von Röntgenstrahlung
DE19805290C2 (de) Monochromatische Röntgenstrahlenquelle
DE619621C (de) Roentgenroehre mit durchlochter Hohlanode
DE1200962B (de) Drehanodenroentgenroehre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19940825

17Q First examination report despatched

Effective date: 19950620

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TAN, DAGANG, DR.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59304524

Country of ref document: DE

Date of ref document: 19970102

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970129

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971001

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971007

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971022

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980818

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST