EP0581895B1 - Zusammensetzung teilchenförmiger waschmittel - Google Patents

Zusammensetzung teilchenförmiger waschmittel Download PDF

Info

Publication number
EP0581895B1
EP0581895B1 EP92913595A EP92913595A EP0581895B1 EP 0581895 B1 EP0581895 B1 EP 0581895B1 EP 92913595 A EP92913595 A EP 92913595A EP 92913595 A EP92913595 A EP 92913595A EP 0581895 B1 EP0581895 B1 EP 0581895B1
Authority
EP
European Patent Office
Prior art keywords
weight
particulate composition
composition according
sodium
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92913595A
Other languages
English (en)
French (fr)
Other versions
EP0581895A4 (de
EP0581895A1 (de
Inventor
Gerard Marcel Baillely
Michael Alan John Moss
Carole Patricia Denise Wilkinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10693748&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0581895(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0581895A1 publication Critical patent/EP0581895A1/de
Publication of EP0581895A4 publication Critical patent/EP0581895A4/de
Application granted granted Critical
Publication of EP0581895B1 publication Critical patent/EP0581895B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1273Crystalline layered silicates of type NaMeSixO2x+1YH2O
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof

Definitions

  • This invention relates to particulate compositions that incorporate crystalline layered sodium silicates and are suitable for use as, or as a component of, solid detergent compositions, particularly, but not exclusively those designed as fabric cleaning products.
  • Detergent compositions incorporating crystalline layered sodium silicates are known in the art, being disclosed in, for example, DE-A-3742043 and EP-A-0337219. These disclosures teach that the layered crystalline forms of sodium silicate display superior mineral hardness sequestration ability relative to the corresponding silicate salts in amorphous form and are thus advantageous as detergent builder materials.
  • Dishwashing agents consisting of a mixture of a crystalline sodium silicate in combination with a proton donor, wherein a 0.5% aqueous solution of the agent has a pH value of less than 10 are known from EP-A-0416366.
  • the proton donor can be of a wide variety of types including mineral acids, organic acids and their water soluble acid salts.
  • the objective of EP-A-00416366 is the reduction of the wash liquid pH in order to minimise the irritating effect of the agents on skin and eyes.
  • crystalline layered silicates dissolve more slowly in aqueous media than corresponding amorphous silicates. This can result in layered silicate particles adhering to fabrics thus giving rise to localised regions of high pH (> 12) under the conditions existing in an automatic fabric washing machine at the beginning of the wash cycle. Such high pH regions can cause damage to certain fabrics such as wool and to certain fabric dyes, particularly where the detergent composition is introduced into the washing machine by a dispensing device placed in the drum of the machine with the fabrics.
  • the Applicant has now surprisingly found that the above mentioned problems of damage to fabrics and fabric dyes can be mitigated, if not altogether overcome by forming a particulate of the crystalline layered silicate and a solid water-soluble ionisable material of defined characteristics, but without the necessity of reducing the pH of a 1 % solution of the particulate to a value less than 10.
  • the pH of a 1 % wt solution in 20°C distilled water of preferred particulate compositions in accordance with the invention is approximately 11.8, i.e. only slightly more than half of a pH unit less than the pH of a 1 % solution of the crystalline layered silicate material under the same conditions.
  • a particulate composition having a pH as about a 1 % by weight solution in 20°C distilled water of at least 10, for use as, or as a component of, a solid laundry detergent composition said particulate composition being an intimate mixture of components selected from the group consisting of
  • the weight ratio of the crystalline silicate material to water-soluble ionisable material is from about 5:1 to about 2:3.
  • the particulate composition is substantially free of unbound (free) moisture, that is it contains no more than 10% by weight, more preferably no more than 5 % by weight and most preferably no more than 3% by weight of unbound (free) moisture.
  • a preferred particulate composition in accordance with the invention includes from about 75 to about 80% by weight of ⁇ -Na 2 Si 2 O 5 of mean particle size no greater than about 300 micrometers and from about 20 to about 25 % by weight of citric acid or sodium bicarbonate of mean particle size no greater than 300 micrometers.
  • a preferred process for making a particulate laundry detergent composition being an intimate admixture of componenets selected from the group consisting of
  • the invention also encompasses solid, particularly granular, laundry detergent compositions comprising from 5 to 30% by weight of organic surfactant, from 25 % to 60 % by weight of detergent builder and from 10% to 45 % by weight of a particulate composition as hereinbefore described.
  • the particulate laundry detergent compositions of the invention comprise two essential components, viz. the crystalline layered silicate and the solid water soluble ionisable material.
  • a material is defined as water soluble if it dissolves to form a solution of at least 10g per 100g of distilled water at 20°C.
  • the crystalline layered sodium silicate material has the general formula NaMSi x O 2x+1 .yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20.
  • Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
  • x in the general formula above preferably has a value of 2, 3 or 4 and is preferably 2. More preferably M is sodium and y is 0 and preferred examples of this formula comprise the ⁇ -, ⁇ -, ⁇ - and ⁇ -forms of Na 2 Si 2 O 5 .
  • These materials are available from Hoechst AG FRG as respectively NaSKS-5, NaSKS-7, NaSKS-11 and NaSKS-6.
  • the most preferred material is ⁇ -Na 2 Si 2 O 5 , NaSKS-6.
  • These materials are processed into free flowing solids with a particle size of generally from 150 to 1000 micrometers and a bulk density of generally at least 800 g/litre preferably approximately 900 g/litre. However, as made, the crystals are fragile and break down easily into particles of size less than 100 micrometers.
  • the crystalline layered sodium silicate comprises from 10% to 95% by weight of the particulate, more preferably from about 50% to about 90% and most preferably from about 60% to about 80% by weight.
  • the solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof.
  • the primary requirement is that the material should contain at least one functional acidic group of which the pKa should generally be less than 9, providing a capability for at least partial neutralisation of the hydroxyl ions released by the crystalline layered silicate.
  • the ionisable material need not have a pH ⁇ 7 in solution, or be present in an amount capable of providing hydrogen ions in stoichiometric parity with the hydroxyl ions produced by dissolution of the crystalline silicate. In fact neutralisation of the ionisable material during storage of the particulate, whilst causing a loss in fabric damage benefit, does not eliminate it.
  • the ionisable material should also have a mean particle size not greater than 300 micrometers and preferably not greater than 100 micrometers. This facilitates uniform distribution of the ionisable material and the crystalline silicate and is believed to enhance localised pH reduction when the particulate dissolves in the wash liquor.
  • Suitable organic acids include ascorbic, citric, glutaric, gluconic, glycolic, malic, maleic, malonic, oxalic, succinic and tartaric acids, 1 hydroxy ethane 1,1-diphosphonic acid (EHDP), amino poly methylene phosphonic acids such as NTMP, EDTMP & DETPMP, and mixtures of any of the foregoing.
  • Suitable acid salts include sodium hydrogen carbonate, sodium hydrogen oxalate, sodium hydrogen sulphate, sodium acid pyrophosphate, sodium acid orthophosphate, sodium hydrogen tartrate or mixtures of any of the foregoing.
  • the solid water soluble ionisable acid material is in intimate admixture with the crystalline layered sodium silicate. Coating of the silicate by the ionisable material or mere admixture of the two components has not between found to be adequate to provide the benefits of the present invention. Thorough mixing of the two components to provide thorough distribution of one with the other has been found to be necessary and preferred techniques for so doing are described hereinafter.
  • the resulting particulate mixture of crystalline layered silicate and solid water soluble ionisable material will have a pH of at least 10 (as measured on a 1 % solution in 20°C distilled water) and more usually will have a pH of at least about 11, normally at least about 11.5.
  • the particulate compositions of the present invention also comprise from 0% to 20% by weight of one or more binder agents.
  • binder agents assist in binding the silicate and ionisable water soluble material so as to produce particulates of the desired physical characteristics.
  • the binder agents when present, will be in intimate admixture with the silicate and ionisable water soluble material.
  • Preferred binder agents have a melting point between 30°C-70°C.
  • the binder agents are preferably present in amounts from about 1-20% by weight of the composition more preferably from about 1-10% by weight of the composition and most preferably from about 2-5 % by weight of the composition.
  • Preferred binder agents in accord with the invention include the C 10 -C 20 alcohol ethoxylates containing from about 5-100 moles of ethylene oxide per mole of alcohol and more preferably the C 15 -C 20 primary alcohol ethoxylates containing from about 20-100 moles of ethylene oxide per mole of alcohol.
  • binder agents in accord with the invention include certain polymeric materials.
  • Polyvinylpyrrolidones with an average molecular weight of from about 12,000 to 700,000 and polyethylene glycols with an average weight of from about 600 to 10,000 are examples of such polymeric materials.
  • Copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the polymer are further examples of polymeric materials useful as binder agents.
  • These polymeric materials may be used as such or in combination with solvents such as water, propylene glycol and the above mentioned C 10 -C 20 alcohol ethoxylates containing from about 5-100 moles of ethylene oxide per mole.
  • Further examples of binder agents in accord with the invention include the C 10 -C 20 mono- and diglycerol ethers and also the C 10 -C 20 fatty acids. Solutions of certain inorganic salts including sodium silicate are also of use for this purpose.
  • Cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acid or their salts are other examples of binder agents in accord with the invention.
  • the particulate can also include other components that are conventional in detergent compositions, provided that these are not incompatible per se and do not interfere with the building function of the crystalline layered silicate.
  • the particulate can include up to 50% by weight of the particulate of an anionic, nonionic, ampholytic or zwitterionic surfactant or a mixture of any of these and certain preferred particulate embodiments incorporate surfactants. Examples of such surfactants are described more fully hereinafter.
  • any surfactant material that is incorporated into the particulate does not introduce a level of free (unbound) moisture that can even partially dissolve the crystalline layered silicate.
  • the surfactant should be solid and should preferably contain no more than about 5% free (unbound) moisture, preferably no more than 2% free moisture and most preferably less than 1 % free moisture.
  • detergent ingredients can also be incorporated in a total amount of up to 50% by weight of the particulate, subject to the same conditions set out above for the inclusion of surfactants.
  • optional ingredients should preferably be solid at normal (ambient) temperatures, and should contain no more than about 5 % by weight of free (unbound) moisture, preferably less than 1%.
  • Non-aqueous liquid components can be incorporated in amounts of up to 20% by weight of the particulate provided that the crystalline layered silicate does not have an appreciable solubility in such components. This also applies to normally solid components applied in a molten form to serve as agglomeration/coating agents for the particulate.
  • the particulate compositions of the present invention can take a variety of physical forms such as extrudates, marumes, agglomerates, flakes or compacted granules. All of these forms share several characteristics of the compositions of the invention, viz. that they have a pH of at least 10, as a 1 % solution in distilled water at 20°C, that they comprise an intimate mixture of the crystalline layered silicate and the ionisable material, and that they are substantially free of unbound moisture.
  • compositions in accordance with the invention are mixed, subjected to a dry compaction step to form a flake and then comminuted to provide a finished particulate of particle size no greater than 1200 micrometers.
  • the crystalline layered silicate preferably ⁇ -Na 2 Si 2 O 5 (NaSKS-6) is added, together with anhydrous powdered citric acid or sodium bicarbonate in a weight ratio ranging from 80:20 to 75:25, to a powder mixer such as a cube mixer or Nautamixer (Trade Name).
  • the layered silicate is in fine powder form, i.e. has a particle size in which 90% is less than 100 micrometers and the citric acid or sodium bicarbonate is also a fine powder (mean particle size approx. 50 micrometers).
  • the intimate mixture of the powders is then fed to a compacting roll (Model L200/50P manufactured by Bepex GmbH, Postfach 1142, Daimlerstrasse 8, Leingarten, Heilbron, FDR) and subjected to a nip pressure of from 10 to 30 kN/cm roll width, preferably approximately 25 kN/cm roll width.
  • a compacting roll Model L200/50P manufactured by Bepex GmbH, Postfach 1142, Daimlerstrasse 8, Leingart, Heilbron, FDR
  • the resultant flake product is treated in a prebreaker before being comminuted in a hammer mill (Condux (Trade Name) swing hammer mill Type LHM20/16 manufactured by Condux-Werk GmbH, D6450 Wolfgang bei Hanau, FDR) to give a compacted granule having a particle size in the range from 150 to 1140 micrometers with a weight mean particle size of approximately 600 micrometers. Particles of size less than 150 micrometers are recycled to the compaction stage, while particles of size more than 1140 micrometers are subjected to comminution in a second hammer mill set up to provide material within the desired particle size range.
  • a hammer mill Condux (Trade Name) swing hammer mill Type LHM20/16 manufactured by Condux-Werk GmbH, D6450 Wolfgang bei Hanau, FDR
  • Particulate compositions made in accordance with the above described process are exemplified hereinafter and possess satisfactory physical robustness whilst providing the desired protection against damage to fabrics and dyes. Particles made in accordance with the above described process are also substantially free of unbound water as the starting materials are effectively anhydrous and no water is added during processing.
  • the incorporation of other ingredients additional to the crystalline layered silicate and ionisable water soluble compound can be advantageous particularly in the processing of the particulate and also in enhancing the stability of detergent compositions in which the particulates are included.
  • certain types of agglomerates may require the addition of one or more binder agents in order to assist in binding the silicate and ionisable water soluble material so as to produce particulates with acceptable physical characteristics.
  • the binder agents in accord with the invention may be present at a level of from 0% to about 20% by weight of the composition. Preferred examples of binder agents together with preferred levels of incorporation have been hereinbefore described.
  • the preparation of extrudates and marumes involves the mixing of component materials in a closed vessel and the forcing of the mixture through orifices under pressure in order to produce the particulates and an auxiliary component additional to the crystalline layered silicate and ionisable material and having wax-like properties will normally be necessary in order to facilitate handling in the extrusion or marumerising equipment.
  • This component will usually be added at a level of from about 0.5 % to about 10% by weight of the particulate, more preferably at a level of from about 1.0% to about 5.0% by weight.
  • Ethoxylated nonionic surfactants such as C 14 -C 18 alcohol ethoxylates and polymeric organic materials such as polyethylene glycols and maleic anhydride acrylic acid copolymers represent suitable auxiliary components for this purpose.
  • a detergent composition incorporating the crystalline layered silicate particulate composition as one of the components.
  • Detergent compositions formulated for fabric cleaning purposes conventionally incorporate organic surfactants, detergent builders, oxygen bleach systems and ancillary materials such as anti-redeposition and soil suspension agents, suds suppressors, heavy metal ion chelating agents, enzymes, optical brighteners, photoactivated bleaches, perfumes and colours. Some products also include fabric softening and antistatic agents
  • Such detergent compositions conventionally have a pH as measured on a 1 % by weight solution in 20°C distilled water of at least about 9.5, preferably from about 10.0 to 10.5.
  • a wide range of surfactants can be used in the detergent compositions.
  • a list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
  • Mixtures of anionic surfactants are suitable herein, particularly blends of sulphate, sulphonate and/or carboxylate surfactants.
  • Mixtures of sulphonate and sulphate surfactants are normally employed in a sulphonate to sulphate weight ratio of from about 5:1 to 1:2, preferably from about 5:1 to 2:3 more preferably from about 3:1 to 2:3, most preferably from 3:1 to 1:1.
  • Preferred sulphonates include alkyl benzene sulphonates having from 9 to 15, especially 11 to 13 carbon atoms in the alkyl radical, and alpha-sulphonated methyl fatty acid esters in which the fatty acid is derived from a C 12 -C 18 fatty source, preferably from a C 16 -C 18 fatty source.
  • the cation is an alkali metal, preferably sodium.
  • Preferred sulphate surfactants in such sulphonate sulphate mixtures are alkyl sulphates having from 12 to 22, preferably 16 to 18 carbon atoms in the alkyl radical.
  • Another useful surfactant system comprises a mixture of two alkyl sulphate materials whose respective mean chain lengths differ from each other.
  • One such system comprises a mixture of C 14 -C 15 alkyl sulphate and C 16 -C 18 alkyl sulphate in a weight ratio of C 14 -C 15 : C 16 -C 18 of from 3:1 to 1:1.
  • the alkyl sulphates may also be combined with alkyl ethoxy sulphates having from 10 to 20, preferably 10 to 16 carbon atoms in the alkyl radical and an average degree of ethoxylation of 1 to 6.
  • the cation in each instance is again an alkali metal, preferably sodium.
  • alkali metal sarcosinates of formula R-CON (R 1 ) CH 2 COOM wherin R is a C 9 -C 17 linear or branched alkyl or alkenyl group, R' is a C 1 -C 4 alkyl group and M is an alkali metal ion.
  • R is a C 9 -C 17 linear or branched alkyl or alkenyl group
  • R' is a C 1 -C 4 alkyl group
  • M is an alkali metal ion.
  • Preferred examples are the lauroyl, Cocoyl (C 12 -C 14 ), myristyl and oleyl methyl sarcosinates in the form of their sodium salts.
  • One class of nonionic surfactants useful in the present invention comprises condensates of ethylene oxide with a hydrophobic moiety, providing surfactants having an average hydrophilic-lipophilic balance (HLB) in the range from 8 to 17, preferably from 9.5 to 13.5, more preferably from 10 to 12.5.
  • HLB hydrophilic-lipophilic balance
  • the hydrophobic (lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
  • Especially preferred nonionic surfactants of this type are the C 9 -C 15 primary alcohol ethoxylates containing 3-8 moles of ethylene oxide per mole of alcohol, particularly the C 14 -C 15 primary alcohols containing 6-8 moles of ethylene oxide per mole of alcohol and the C 12 -C 14 primary alcohols containing 3-5 moles of ethylene oxide per mole of alcohol.
  • Nonionic surfactants comprises alkyl polyglucoside compounds of general formula RO(C n H 2n O) t Z x wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.1 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
  • Compounds of this type and their use in detergent compositions are disclosed in EP-B 0070074, 0070077, 0075996 and 0094118.
  • Another preferred nonionic surfactant is a polyhydroxy fatty acid amide surfactant compound having the structural formula: wherein: R 1 is H, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferably C 1 -C 4 alkyl, more preferably C 1 or C 2 alkyl, most preferably C 1 alkyl (i.e., methyl); and R 2 is a C 5 -C 31 hydrocarbyl, preferably straight chain C 7 -C 19 alkyl or alkenyl, more preferably straight chain C 9 -C 17 alkyl or alkenyl, most preferably straight chain C 11 -C 17 alkyl or alkenyl, or mixture thereof: and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxlylated derivative (preferably ethoxylated or propoxylated) thereof.
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH, -CH(CH 2 OH)-(CHOH) n-1 -CH 2 OH, -CH 2 -(CHOH) 2 (CHOR')(CHOH)-CH 2 OH, where n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly -CH 2 -(CHOH) 4 -CH 2 OH.
  • R 1 can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
  • R 2 -CO-N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, etc.
  • Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxymaltotriotityl, etc.
  • Preferred compound are N-methyl N-1deoxyglucityl C 14 -C 18 fatty acid amides.
  • a further class of surfactants are the semi-polar surfactants such as amine oxides.
  • Suitable amine oxides are selected from mono C 8 -C 20 , preferably C 10 -C 14 N-alkyl or alkenyl amine oxides and propylene-1,3-diamine dioxides wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxpropyl groups.
  • Cationic surfactants can also be used in the detergent compositions herein and suitable quaternary ammonium surfactants are selected from mono C 8 -C 16 , preferably C 10 -C 14 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • the detergent compositions comprise from about 5% to about 30% of surfactant but more usually comprise from about 7% to about 20%, more preferably from about 10% to about 15% surfactant by weight of the compositions.
  • Combinations of surfactant types are preferred, more especially anionic-nonionic and also anionic-nonionic-cationic blends. Particularly preferred combinations are described in GB-A-2040987 and EP-A-0087914. Although the surfactants can be incorporated into the compositions as mixtures, it is preferable to control the point of addition of each surfactant in order to optimise the physical characteristics of the composition and avoid processing problems.
  • a detergent builder system comprising one or more other non-phosphate detergent builders.
  • these can include, but are not restricted to, alkali metal aluminosilicates, monomeric polycarboxylates, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more than two carbon atoms, organic phosphonates and aminoalkylene poly (alkylene phosphonates), carbonates, silicates and mixtures of any of the foregoing.
  • the builder system is present in an amount of from about 25 % to about 60% by weight of the system, more preferably from about 30% to about 60 % by weight.
  • preferred sodium aluminosilicate zeolites have the unit cell formula Na z [(Al0 2 ) z (SiO 2 ) y ] xH 2 O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
  • the aluminosilicate materials are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22 % water in bound form.
  • the above aluminosilicate ion exchange materials are further characterised by a particle size diameter of from 0.1 to 10 micrometers, preferably from 0.2 to 4 micrometers.
  • particle size diameter herein represents the average particle size diameter of a given ion exchange material as determined by conventional analytical techniques such as, for example, microscopic determination utilizing a scanning electron microscope or by means of a laser granulometer.
  • the aluminosilicate ion exchange materials are further characterised by their calcium ion exchange capacity, which is at least 200 mg equivalent of CaCO 3 water hardness/g of aluminosilicate, calculated on an anhydrous basis, and which generally is in the range of from 300 mg eq./g to 352 mg eq./g.
  • the aluminosilicate ion exchange materials herein are still further characterised by their calcium ion exchange rate which is at least 130 mg equivalent of CaCO 3 /litre/minute/(g/litre) [2 grains Ca ++ /gallon/minute/gram/gallon)] of aluminosilicate (anhydrous basis), and which generally lies within the range of from 130 mg equivalent of CaCO 3 /litre/minute/(gram/litre) [2 grains/gallon/minute/ (gram/gallon)] to 390 mg equivalent of CaCO 3 /litre/minute/ (gram/litre) [6 grains/gallon/minute/(gram/gallon)], based on calcium ion hardness.
  • Optimum aluminosilicates for builder purposes exhibit a calcium ion exchange rate of at least 260 mg equivalent of CaCO 3 /litre/ minute/ (gram/litre) [4 grains/gallon/minute/(gram/gallon)].
  • Aluminosilicate ion exchange materials useful in the practice of this invention are commercially available and can be naturally occurring materials, but are preferably synthetically derived. A method for producing aluminosilicate ion exchange materials is discussed in US Patent No. 3,985,669.
  • Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof.
  • the crystalline aluminosilicate ion exchange material is Zeolite A and has the formula Na 12 [(AlO 2 ) 12 (SiO 2 ) 12 ]. xH 2 O wherein x is from 20 to 30, especially 27.
  • Suitable water-soluble monomeric or oligomeric carboxylate builders can be selected from a wide range of compounds but such compounds preferably have a first carboxyl logarithmic acidity/constant (pK 1 ) of less than 9, preferably of between 2 and 8.5, more preferably of between 4 and 7.5.
  • pK 1 first carboxyl logarithmic acidity/constant
  • the logarithmic acidity constant is defined by reference to the equilibrium where A is the fully ionized carboxylate anion of the builder salt.
  • acidity constants are defined at 25°C and at zero ionic strength.
  • Literature values are taken where possible (see Stability Constants of Metal-Ion Complexes, Special Publication No. 25, The Chemical Society, London): where doubt arises they are determined by potentiometric titration using a glass electrode.
  • the polycarboxylate has a pK Ca++ in the range from about 2 to about 7, especially from about 3 to about 6.
  • the stability constant is defined at 25°C and at zero ionic strength using a glass electrode method of measurement as described in Complexation in Analytical Chemistry by Anders Ringbom (1963).
  • the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Monomeric and oligomeric builders can be selected from acyclic, alicyclic, heterocyclic and aromatic carboxylates having the general formulae or wherein
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and 821,370.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623.
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3 3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran - cis - dicarboxylates, 2,2,5,5-tetrahydrofuran-tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
  • Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
  • the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts e.g. citric acid or citrate/citric acid mixtures are also contemplated as components of builder systems of detergent compositions in accordance with the present invention.
  • Suitable water soluble organic salts are the homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of the latter type are disclosed in GB-A-1,596,756.
  • Examples of such salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000. These materials are normally used at levels of from about 0.5 % to about 10% by weight more preferably from about 0.75 % to about 8 %, most preferably from about 1 % to about 6% by weight of the composition.
  • Organic phosphonates and amino alkylene poly (alkylene phosphonates) include alkali metal ethane 1-hydroxy diphosphonates, nitrilo trimethylene phosphonates, ethylene diamine tetra methylene phosphonates and diethylene triamine penta methylene phosphonates, although these materials are less preferred where the minimisation of phosphorus compounds in the compositions is desired.
  • soluble silicates serve a variety of purposes in conventional formulations, their presence is unnecessary in compositions in accordance with the present invention.
  • crystalline layered silicate which forms part of the builder system of the detergent composition, must be added as a dry mix ingredient
  • soluble silicates may still be useful as structurants in the spray dried granules that normally form part of a detergent composition. This is particularly desirable if the spray dried granule does not incorporate an aluminosilicate builder and would otherwise comprise only organic materials.
  • Suitable silicates are those having an SiO 2 :Na 2 O ratio in the range from 1.6 to 3.4, ratios from 2.0 to 2.8 being preferred.
  • the non-phosphate builders will comprise from about 25 % to about 60% by weight of the compositions, more preferably from about 30% to about 60% by weight.
  • sodium aluminosilicate such as Zeolite A will comprise from about 20% to about 60% by weight of the total amount of builder
  • a monomeric or oligomeric carboxylate will comprise from about 5 % to about 30% by weight of the total amount of builder
  • the crystalline layered silicate will comprise from about 10 % to about 65 % by weight of the total amount of builder.
  • the builder system preferably also incorporates a combination of auxiliary inorganic and organic builders such as sodium carbonate and maleic anhydride/acrylic acid copolymers in amounts of up to about 35 % by weight of the total builder.
  • Detergent compositions incorporating the crystalline layered silicate particulate compositions of the present invention will generally include an inorganic perhydrate bleach, normally in the form of the sodium salt.
  • the perhydrate is usually incorporated at a level of from about 3 % to about 22 % by weight, more preferably from 5 % to 20% by weight and most preferably from 8 % to 18 % by weight of the composition.
  • the perhydrate may be any of the inorganic salts such as perborate, percarbonate, perphosphate and persilicate salts but is conventionally an alkali metal normally sodium, perborate or percarbonate.
  • Sodium perborate can be in the form of the monohydrate of nominal formula NaBO 2 H 2 O 2 or the tetrahydrate NaBO 2 H 2 O 2 .3H 2 O.
  • Sodium percarbonate which is the preferred perhydrate, is an addition compound having a formula corresponding to 2Na 2 CO 3 .3H 2 O 2 , and is available commercially as a crystalline solid. Most commercially available material includes a low level of a heavy metal sequestrant such as EDTA, 1-hydroxyethylidene 1, 1-diphosphonic acid (HEDP) or an amino-phosphonate, that is incorporated during the manufacturing process.
  • EDTA 1-hydroxyethylidene 1, 1-diphosphonic acid
  • HEDP 1-diphosphonic acid
  • the percarbonate can be incorporated into detergent compositions without additional protection, preferred executions of such compositions utilise a coated form of the material.
  • a variety of coatings can be used, but the most economical is sodium silicate of SiO 2 :Na 2 O ration from 1.6:1 to 3.4:1, preferably 2.8:1, applied as an aqueous solution to give a level of from about 2% to about 10%, (normally from 3 % to 5 %) of silicate solids by weight of the percarbonate.
  • Magnesium silicate can also be included in the coating.
  • Other suitable coating materials include the alkali and alkaline earth metal sulphates and carbonates.
  • the percarbonate Whilst heavy metals present in the sodium carbonate used to manufacture the percarbonate can be controlled by the inclusion of sequestrants in the reaction mixture, the percarbonate still requires protection from heavy metals present as impurities in other ingredients of the product. Accordingly, in detergent compositions utilising percarbonate as the perhydrate salt, the total level of Iron, Copper and Manganese ions in the product should not exceed 25 ppm and preferably should be less than 20 ppm in order to avoid an unacceptably adverse effect on percarbonate stability. Detergent compositions in which alkali metal percarbonate bleach has enhanced stability are disclosed in the Applicant's copending British Patent Application No. 9021761.3
  • Bleach systems incorporated into detergent compositions of the present invention preferably include solid peroxyacid bleach precursors (bleach activators).
  • N- or O- acyl groups which precursors can be selected from a wide range of classes.
  • Suitable classes include anhydrides, esters, imides and acylated derivatives of imidazoles and oximes, and examples of useful materials within these classes are disclosed in GB-A-1586789.
  • the most preferred classes are esters such as are disclosed in GB-A-836988, 864,798, 1147871 and 2143231 and imides such as are disclosed in GB-A-855735 & 1246338.
  • Particularly preferred precursor compounds are the N,N,N 1 N 1 tetra acetylated compounds of formula wherein x can be O or an integer between 1 & 6.
  • TAMD tetra acetyl methylene diamine
  • TAED tetra acetyl ethylene diamine
  • TAHD tetraacetyl hexylene diamine
  • the solid peroxybleach precursors may be protected via an acid coating to minimise fabric colour damage.
  • Anti-redeposition and soil-suspension agents suitable herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethycellulose, and homo-or co-polymeric polycarboxylic acids or their salts.
  • Polymers of this type include copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably from 0.75 % to 8%, most preferably from 1 % to 6% by weight of the composition.
  • polyethylene glycols particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. These are used at levels of from about 0.20% to 5 % more preferably from about 0.25 % to 2.5 % by weight.
  • These polymers and the previously mentioned homo- or co-polymeric polycarboxylate salts are valuable for improving whiteness maintenance, fabric ash deposition, and cleaning performance on clay, proteinaceous and oxidizable soils in the presence of transition metal impurities.
  • Preferred optical brighteners are anionic in character, examples of which are disodium 4,4 1 -bis-(2-diethanolamino-4-anilino -s- triazin-6-ylamino)stilbene-2:2 1 disulphonate, disodium 4,4 1 -bis-(2-morpholino-4-anilino-2-triazin-6-ylaminostilbene-2 :2 1 -disulphonate,disodium 4, 4 1 -bis-(2,4-dianilino-s-triazin-6-ylamino)stilbene-2:2 1 - disulphonate, monosodium 4 1 ,4 11 -bis-(2,4-dianilino-s-triazin-6-ylamino)stilbene-2-sulphonate, disodium 4,4 1 -bis-(2-anilino-4-(N-methyl-N-2-hydroxyethylamino)-2-triazin-6-ylamino)stilbene-2,2 1
  • Soil-release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements.
  • a particular preferred polymer in accordance with EP-A-0272033 has the formula (CH 3 (PEG) 43 ) 0.75 (POH) 0.25 [T-PO) 2.8 (T-PEG) 0.4 ]T(PO-H) 0.25 ((PEG) 43 CH 3 ) 0.75 where PEG is -(OC 2 H 4 )O-,PO is (OC 3 H 6 O) and T is (pC OC 6 H 4 CO).
  • Certain polymeric materials such as polyvinyl pyrrolidones, typically of MWt 5000-20000, preferably 10000-15000, also form useful agents in preventing the transfer of labile dyestuffs between fabrics during the washing process.
  • Another optional detergent composition ingredient is a suds suppressor, exemplified by silicones, and silica-silicone mixtures.
  • Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms, exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds suppressor is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent-impermeable carrier.
  • the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
  • useful silicone suds controlling agents can comprise a mixture of an alkylated siloxane, of the type referred to hereinbefore, and solid silica. Such mixtures are prepared by affixing the silicone to the surface of the solid silica.
  • a preferred silicone suds controlling agent is represented by a hydrophobic silanated (most preferably trimethyl-silanated) silica having a particle size in the range from 10 nanometers to 20 nanometers and a specific surface area above 50 m 2 /g, intimately admixed with dimethyl silicone fluid having a molecular weight in the range from about 500 to about 200,000 at a weight ratio of silicone to silanated silica of from about 1:1 to about 1:2.
  • a preferred silicone suds controlling agent is disclosed in Bartollota et al. US Patent 3,933,672.
  • Other particularly useful suds suppressors are the self-emulsifying silicone suds suppressors, described in German Patent Application DTOS 2,646,126 published April 28, 1977.
  • An example of such a compound is DC0544, commercially available from Dow Corning, which is a siloxane/glycol copolymer.
  • the suds suppressors described above are normally employed at levels of from 0.001 % to 0.5 % by weight of the composition, preferably from 0.01 % to 0.1 % by weight.
  • the preferred methods of incorporation comprise either application of the suds suppressors in liquid form by spray-on to one or more of the major components of the composition or alternatively the formation of the suds suppressors into separate particulates that can then be mixed with the other solid components of the composition.
  • the incorporation of the suds modifiers as separate particulates also permits the inclusion therein of other suds controlling materials such as C 20 -C 24 fatty acids, microcrystalline waxes and high MWt copolymers of ethylene oxide and propylene oxide which would otherwise adversely affect the dispersibility of the matrix. Techniques for forming such suds modifying particulates are disclosed in the previously mentioned Bartolotta et al US Patent No. 3,933,672.
  • Another optional ingredient useful in the present invention is one or more enzymes.
  • Preferred enzymatic materials include the commercially available amylases, neutral and alkaline proteases, lipases, esterases and cellulases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
  • Fabric softening agents can also be incorporated into detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are examplified by the smectite clays disclosed in GB-A-1,400,898. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A-1514276 and EP-B-0011340.
  • Levels of smectite clay are normally in the range from about 5 % to about 15%, more preferably from 8% to 12% by weight, with the material being added as a dry mixed component to the remainder of the formulation.
  • Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5 % to 5 % by weight, normally from 1 % to 3 % by weight, whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1 % to 2 %, normally from 0.15% to 1.5% by weight.
  • these materials can be added to the aqueous slurry fed to the spray drying tower, although in some instances it may be more convenient to add them as a dry mixed particulate, or spray them as a molten liquid on to other solid components of the composition.
  • detergent compositions in accordance with the present invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation and preferred methods involve combinations of these techniques.
  • a preferred method of making the compositions involves a combination of spray drying, agglomeration in a high speed mixer and dry mixing.
  • the crystalline layered silicate particulate compositions of the present invention are particularly useful in concentrated granular detergent compositions that are characterised by a relatively high density in comparison with conventional laundry detergent compositions.
  • Such high density compositions have a bulk density of at least 650 g/litre, more usually at least 700 g/litre and more preferably in excess of 800 g/litre.
  • Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindricl cup disposed below the funnel.
  • the funnel is 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base.
  • the cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
  • the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
  • the filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement e.g. a knife, across its upper edge.
  • the filled cup is then weighed and the value obtained for the weight of powder doubled to provide the bulk density in g/litre. Replicate measurements are made as required.
  • Concentrated detergent compositions also normally incorporate at least one multi-ingredient component i.e. they do not comprise compositions formed merely by dry-mixing individual ingredients. Compositions in which each individual ingredient is dry-mixed are generally dusty, slow to dissolve and also tend to cake and develop poor particle flow characteristics in storage.
  • Preferred detergent compositions in accordance with the invention comprise at lease two particulate multi-ingredient components.
  • the first component comprises at least about 15%, conventionally from about 25% to about 50%, but more preferably no more than about 35 % by weight of the composition and the second component from about 1 % to about 50%, more preferably about 10% to about 40 % by weight of the composition.
  • the first component comprises a particulate incorporating an anionic surfactant in an amount of from 0.75 % to 40% by weight of the powder and one or more inorganic and/or organic salts in an amount of from 99.25 % to 60 % by weight of the powder.
  • the particulate can have any suitable form such as granules, flakes, prills, marumes or noodles but is preferably granular.
  • the granules themselves may be agglomerates formed by pan or drum agglomeration or by in-line mixers but are customarily spray dried particles produced by atomising an aqueous slurry of the ingredients in a hot air stream which removes most of the water.
  • the spray dried granules are then subjected to densification steps, e.g. by high speed cutter mixers and/or compacting mills, to increase density before being reagglomerated.
  • densification steps e.g. by high speed cutter mixers and/or compacting mills
  • the first component is described hereinafter as a spray dried powder.
  • Suitable anionic surfactants for the purposes of the first component have been found to be slowly dissolving linear alkyl sulfate salts in which the alkyl group has an average of from 16 to 22 carbon atoms, and linear alkyl carboxylate salts in which the alkyl group has an average of from 16 to 24 carbon atoms.
  • the alkyl groups for both types of surfactant are preferably derived from natural sources such as tallow fat and marine oils.
  • the level of anionic surfactant in the spray dried powder forming the first component is from 0.75% to 40% by weight, more usually 2.5 % to 25% preferably from 3% to 20% and most preferably from 5% to 15 % by weight.
  • Water-soluble surfactants such as linear alkyl benzene sulphonates or C 14 -C 15 alkyl sulphates can be included or alternatively may be applied subsequently to the spray dried powder by spray on.
  • the other major ingredient of the spray dried powder is one or more inorganic or organic salts that provide the crystalline structure for the granules.
  • the inorganic and/or organic salts may be water-soluble or water-insoluble, the latter type being comprised by the, or the major part of the, water-insoluble builders where these form part of the builder ingredient.
  • Suitable water soluble inorganic salts include the alkali metal carbonates and bicarbonates.
  • Amorphous alkali metal silicates may also be used to provide structure to the spray dried granule provided that aluminosilicate does not form part of the spray dried component.
  • an aluminosilicate zeolite forms the, or part of the, builder ingredient, it is preferred that it is not added directly by dry-mixing to the other components, but is incorporated into the multi-ingredient component(s).
  • the first component can also include up to 15% by weight of miscellaneous ingredients such as brighteners, anti-redeposition agents, photoactivated bleaches (such as tetrasulfonated zinc phthalocyanine) and heavy metal sequestering agents.
  • miscellaneous ingredients such as brighteners, anti-redeposition agents, photoactivated bleaches (such as tetrasulfonated zinc phthalocyanine) and heavy metal sequestering agents.
  • miscellaneous ingredients such as brighteners, anti-redeposition agents, photoactivated bleaches (such as tetrasulfonated zinc phthalocyanine) and heavy metal sequestering agents.
  • miscellaneous ingredients such as brighteners, anti-redeposition agents, photoactivated bleaches (such as tetrasulfonated zinc phthalocyanine) and heavy metal sequestering agents.
  • the first component is a spray dried powder it will normally be dried to a moisture content of from 7% to 11%
  • the particle size of the first component is conventional and preferably not more than 5 % by weight should be above 1.4mm, while not more than 10% by weight should be less than 0.15 mm in maximum dimension. Preferably at least 60%, and most preferably at least 80%, by weight of the powder lies between 0.7 mm and 0.25 mm in size.
  • the bulk density of the particles from the spray drying tower is conventionally in the range from 540 to 600 g/litre and this is then enhanced by further processing steps such as size reduction in a high speed cutter/mixer followed by compaction. Alternatively, processes other than spray drying may be used to form a high density particulate directly.
  • a second component of a preferred composition in accordance with the invention is another multi-ingredient particulate containing a water soluble surfactant.
  • surfactants are listed hereinbefore but preferred surfactants are C 14 -C 15 alkyl sulphates, linear C 11 - C 15 alkyl benzene sulphonates and fatty C 14 -C 18 methyl ester sulphonates.
  • the second component may have any suitable physical form, i.e. it may take the form of flakes, prills, marumes, noodles, ribbons, or granules which may be spray-dried or non spray-dried agglomerates.
  • the second component could in theory comprise the water soluble surfactant on its own, in practice at least one organic or inorganic salt is included to facilitate processing. This provides a degree of crystallinity, and hence acceptable flow characteristics, to the particulate and may be any one or more of the organic or inorganic salts present in the first component.
  • the particle size range of the second component should be such as to obviate segregation from the particles of the first component when blended therewith.
  • not more than 5 % by weight should be above 1.4 mm while not more than 10% should be less than 0.15 mm in maximum dimension.
  • the bulk density of the second component will be a function of its mode of preparation.
  • the preferred form of the second component is a mechanically mixed agglomerate which may be made by adding the ingredients dry or with an agglomerating agent to a pan agglomerator, Z blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands and Gebruder Lodige MaschinenbanGmbH, D-4790 Paderborn 1, Elsenerstrasse 7-9, Postfach 2050 F.R.G.
  • the second component can be given a bulk density in the range from 650 g/litre to 1190 g/litre more preferably from 750 g/litre to 850 g/litre.
  • compositions include a level of alkali metal carbonate in the second component corresponding to an amount of from about 3 % to about 15% by weight of the composition, more preferably from about 5 % to about 12% by weight. This will provide a level of carbonate in the second component of from about 20% to about 40 % by weight.
  • a highly preferred ingredient of the second component is also a hydrated water insoluble aluminosilicate ion exchange material of the synthetic zeolite type, described hereinbefore. present at from about 10% to about 35% by weight of the second component.
  • the amount of water insoluble aluminosilicate material incorporated in this way is from 1 % to 10% by weight of the composition, more preferably from 2% to 8 % by weight.
  • the surfactant salt is formed in situ in an inline mixer.
  • the liquid acid form of the surfactant is added to a mixture of particulate anhydrous sodium carbonate and hydrated sodium aluminosilicate in a continuous high speed blender, such as a Lodige KM mixer (Trade Name), and neutralised to form the surfactant salt whilst maintaining the particulate nature of the mixture.
  • the resultant agglomerated mixture forms the second component which is then added to other components of the product.
  • the surfactant salt is pre-neutralised and added as a viscous paste to the mixture of the other ingredients.
  • the mixer serves merely to agglomerate the ingredients to form the second component.
  • part of the spray dried product comprising the first granular component is diverted and subjected to a low level of nonionic surfactant spray on before being reblended with the remainder.
  • the second granular component is made using the preferred process described above.
  • the first and second components together with the crystalline layered silicate particulate compositions, the perhydrate bleach and any peroxy acid bleach precursor particles, other dry mix ingredients such as any carboxylate chelating agent, soil-release polymer and enzyme are then fed to a conveyor belt, from which they are transferred to a horizontally rotating drum in which perfume and silicone suds suppressor are sprayed on to the product.
  • a further drum mixing step is employed in which a low (approx. 2 % by weight) level of finely divided crystalline material is introduced to increase density and improve granular flow characteristics.
  • compositions in accordance with the invention can also benefit from delivery systems that provide transient localised high concentrations of product in the drum of an automatic washing machine at the start of the wash cycle, thereby also avoiding problems associated with loss of product in the pipework or sump of the machine.
  • Delivery to the drum can most easily be achieved by incorporation of the composition in a bag or container from which it is rapidly releasable at the start of the wash cycle in response to agitation, a rise in temperature or immersion in the wash water in the drum.
  • the washing machine itself may be adapted to permit direct addition of the composition to the drum e.g. by a dispensing arrangement in the access door.
  • Products comprising a detergent composition enclosed in a bag or container are usually designed in such a way that container integrity is maintained in the dry state to prevent egress of the contents when dry, but are adapted for release of the container contents on exposure to a washing environment, normally on immersion in an aqueous solution.
  • the container will be flexible, such as a bag or pouch.
  • the bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
  • it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968.
  • a convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
  • laminated sheet products can be employed in which a central flexible layer is impregnated and/or coated with a composition and then one or more outer layers are applied to produce a fabric-like aesthetic effect.
  • the layers may be sealed together so as to remain attached during use, or may separate on contact with water to facilitate the release of the coated or impregnated material.
  • An alternative laminate form comprises one layer embossed or deformed to provide a series of pouch-like containers into each of which the detergent components are deposited in measured amounts, with a second layer overlying the first layer and sealed thereto in those areas between the pouch-like containers where the two layers are in contact.
  • the components may be deposited in particulate, paste or molten form and the laminate layers should prevent egress of the contents of the pouch-like containers prior to their addition to water.
  • the layers may separate or may remain attached together on contact with water, the only requirement being that the structure should permit rapid release of the contents of the pouch-like containers into solution.
  • the number of pouch-like containers per unit area of substrate is a matter of choice but will normally vary between 500 and 25,000 per square metre.
  • Suitable materials which can be used for the flexible laminate layers in this aspect of the invention include, among others, sponges, paper and woven and non-woven fabrics.
  • the preferred means of carrying out the process of the invention is to introduce the composition into the liquid surrounding the fabrics that are in the drum via a reusable dispensing device having walls that are permeable to liquid but impermeable to the solid composition.
  • the latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficent product for one washing cycle. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium.
  • the support ring is provided with a masking arrangement to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
  • the abbreviated component identifications have the following meanings: C 12 LAS Sodium linear C 12 alkyl benzene sulphonate TAS Sodium tallow alkyl sulphate C 14 / 15 AS Sodium C 14 -C 15 alkyl sulphate TAE n Tallow alcohol ethoxylated with n moles of ethylene oxide per mole of alcohol 45EY A C 14-15 predominantly linear primary alcohol condensed with an average of Y moles of ethylene oxide CnAE E6.5 A C 12 -C 13 primary alcohol condensed with 6.5 moles of ethylene oxide.
  • PEG Polyethylene glycol (MWt normally follows) TAED Tetraacetyl ethylene diamine Silicate Amorphous Sodium Silicate (SiO 2 :Na 2 O ratio normally follows) NaSKS-6 Crystalline layered silicate of formula ⁇ -Na 2 Si 2 O 5 Carbonate Anhydrous sodium carbonate Bicarbonate Anhydrous sodium hydrogen carbonate CMC Sodium carboxymethyl cellulose Zeolite A Hydrated Sodium Aluminosilicate of formula NA 12 (AlO 2 SiO 2 ) 12 .
  • 27H 2 O having a primary particle size in the range from 1 to 10 micrometers
  • MVEMA Maleic anhydride/vinyl methyl ether copolymer, believed to have an average molecular weight of 240,000. This material was prehydrolysed with NaOH before addition.
  • DETPMP Diethylene triamine penta (methylene phosphonic acid), marketed by Monsanto under the Trade name Dequest 2060 Mixed Suds Suppressor 25 % paraffin wax Mpt 50°C, 17% hydrophobic silica, 58% paraffin oil.
  • the formulations were subjected to a full scale washing machine test using Hotpoint (Trade Name) automatic washing machines (Model 9534/9530)- setting Cycle 5 (non fast colours) at 40°C.
  • Hotpoint Trade Name
  • Each machine was loaded with four cotton bedsheets (3.3Kg) and 100g of a particular formulation was added to the fabrics in the machine drum via a Flexi Granulette (Trade Name) dispensing device.
  • Each fabric load also included a bleach-sensitive coloured fabric swatch of 43cm x 43cm size made of 100% lambswool woven fabric with purple dye (Design No. W3970) supplied by Borval Fabrics, Albert Street, Huddersfield, West Yorkshire, England. 12 litres of water of 150 ppm hardness (expressed as CaCO 3 ) with a Ca:Mg ratio of 3:1 was fed to each machine.
  • the fabric swatch was placed over the granulette and then twisted around its base to maintain the fabric in position around the granulette prior to the machine being started. 24 replicates of each treatment were performed and the swatches were then graded visually for fabric colour damage by an expert panel using the following grading system.
  • Formulation B differs from A in the inclusion of crystalline layered silicate, the elimination of amorphous silicate and a reduction in the levels of citrate and carbonate builder in order to maintain parity of alkalinity.
  • Formulation B demonstrates the fabric colour damage that is caused by the incorporation of crystalline layered silicate in an unprotected form.
  • Formulations C&D in accordance with the invention produce appreciably less fabric colour damage than Formulation B and approach Formulation A in their fabric colour damage impact.
  • Granular laundry detergent products of formulation generally similar to composition C of Example 2 were prepared and evaluated for fabric colour damage using the washing machine test technique set out in Example 2.
  • composition C differed from composition C only in the amounts and methods of incorporation of citric acid and in the presence in some compositions of TAE50 or 45E8 nonionic as a binding or coating agent.
  • compositions of the layered silicate particulates, their solution pH and the overall grades of colour damage provided by detergent compositions containing the particulates are shown below Product No. Particulate composition (ingredient ratios) Colour Damage Overall Grade Particulate Composition pH (1 %) 1 Reference (No.
  • NaSKS-6) 1.2 NA 2 NaSKS-6+ citric dry mixed 78/22 1.9 11.5 3 NaSKS-6+citric acid 78/22 1.1 11.8 4 NaSKS-6, citric acid, TAE50(76/21/3) 1.3 12.1 (Part neutralised) 5 NaSKS-6, citric acid, TAE50(76/21/3) 1.1 11.8 6 NaSKS-6, citric acid, 45E8(76/21/3) 1.1 11.8 7 NaSKS-6, coated (10% citric + 4% TAE50) 2.0 -
  • Comparison of Product 2 with the reference Product 1 shows the increase in colour damage resulting from the incorporation of 11 % NaSKS-6 as the silicate species without any attempt to provide an intimate mixture of the layered crystalline silicate with the citric acid.
  • the reduction in colour damage provided by an intimate mixture of the layered crystalline silicate and the citric acid is shown by the Product 3 - Product 2 comparison.
  • Partial neutralisation of the citric acid under these conditions produces only a slight worsening of the colour damage relative to Product 3.
  • Products 5 & 6 show that the presence of agglomeration aids does not affect the benefit provided by the intimate mixture of citric acid and crystalline layered silicate.
  • Product 7 demonstrates the inability of citric acid coating of NaSKS-6 by itself to reduce fabric colour damage under the conditions of the test.

Claims (22)

  1. Teilchenförmige Zusammensetzung mit einem pH, als 1% -ige Lösung in destilliertem Wasser von 20°C, von mindestens 10, zur Verwendung als oder als eine Komponente einer festen Wäschewaschmittelzusammensetzung, wobei die teilchenförmige Zusammensetzung eine innige Mischung aus
    a) 10 bis 95 Gew.-% eines kristallinen Schichtsilicatmaterials der Formel NaMSixO2x+1·yH2O, worin M Natrium oder Wasserstoff ist, x eine Zahl von 1,9 bis 4 ist, und y eine Zahl von 0 bis 20 ist;
    b) 5 bis 90 Gew.-% eines festen, wasserlöslichen, ionisierbaren Materials, gewählt aus organischen Säuren, organischen und anorganischen Säuresalzen und Mischungen hiervon, wobei das feste, wasserlösliche, ionisierbare Material eine mittlere Teilchengröße von nicht mehr als 300 µm aufweist;
    c) 0 bis 20 Gew.-% eines oder mehrerer Bindemittel;
    d) 0 bis 50 Gew.-% eines anionischen, nichtionischen, ampholytischen oder zwitterionischen Tensids; und
    e) 0 bis 50 Gew.-% Waschmittelbestandteile, welche von den obigen a) bis d) verschieden sind,
    umfaßt.
  2. Teilchenförmige Zusammensetzung nach Anspruch 1, wobei das kristalline Schichtsilicatmaterial δ-Na2Si2O5 (NaSKS-6) ist.
  3. Teilchenförmige Zusammensetzung nach Anspruch 1 und/oder 2, umfassend 50 bis 90% kristallines Schichtsilicatmaterial und 10 bis 50% festes, wasserlösliches, ionisierbares Material.
  4. Teilchenförmige Zusammensetzung nach mindestens einem der Ansprüche 1-3, wobei das ionisierbare Material eine organische Säure umfaßt, gewählt aus Ascorbin-, Citronen-, Glutar-, Bernstein-, Malein-, Apfel-, Malon-, Oxal-, Bernstein-, Glykol- und Glukonsäure und Mischungen aus beliebigen hiervon.
  5. Teilchenförmige Zusammensetzung nach mindestens einem der Ansprüche 1-3, wobei das ionisierbare Material Natriumbicarbonat, Natrium-säurepyrophosphat, Natrium-säureorthophosphat, Natriumhydrogensulfat oder Mischungen aus beliebigen hiervon umfaßt.
  6. Teilchenförmige Zusammensetzung nach mindestens einem der Ansprüche 1-5, wobei das Gewichtsverhältnis von kristallinem Silicatmaterial zu wasserlöslichem, ionisierbarem Material 5:1 bis 2:3 beträgt.
  7. Teilchenförmige Zusammensetzung nach mindestens einem der Ansprüche 1-6, wobei das Bindemittel ein C10-C20-Alkoholethoxylat ist, enthaltend 5-100 Mole Ethylenoxid pro Mol Alkohol.
  8. Teilchenförmige Zusammensetzung nach mindestens einem der Ansprüche 1-6, wobei das Bindemittel ein primäres C15-C20-Alkoholethoxylat ist, enthaltend 20-100 Mole Ethylenoxid pro Mol Alkohol.
  9. Teilchenförmige Zusammensetzung nach mindestens einem der Ansprüche 1-8, umfassend 75 bis 80 Gew.-% Na2Si2O5 einer mittleren Teilchengröße von nicht mehr als 300 µm und 20 bis 25 Gew.-% Natriumbicarbonat oder Citronensäure einer mittleren Teilchengröße von nicht mehr als 300 µm.
  10. Teilchenförmige Zusammensetzung nach mindestens einem der Ansprüche 1-9 in Form von Extrudaten, Marumes, Agglomeraten, Flocken oder verdichteten Granulaten.
  11. Teilchenförmige Zusammensetzung nach Anspruch 10, in welche 0,5 bis 10 Gew.-% der Zusammensetzung einer organischen Hilfskomponente eingebracht sind.
  12. Teilchenförmige Zusammensetzung nach Anspruch 11, wobei die organische Hilfskomponente ein ethoxyliertes nichtionisches Tensid, ein Polyethylenglykol oder ein polymerer Builder oder eine Mischung aus beliebigen hiervon ist.
  13. Teilchenförmige Zusammensetzung nach Anspruch 11 und/oder 12, umfassend 1 bis 5 Gew.-% eines festen C12-C18-Alkoholethoxylats.
  14. Verfahren zur Herstellung einer teilchenförmigen Zusammensetzung, umfassend eine Mischung aus
    a) 10 bis 95 Gew.-% eines kristallinen Schichtsilicatmaterials der Formel NaMSixO2x+1·yH2O, worin M Natrium oder Wasserstoff ist, x eine Zahl von 1,9 bis 4 ist, und y eine Zahl von 0 bis 20 ist;
    b) 5 bis 90 Gew. -% eines festen, wasserlöslichen, ionisierbaren Materials, gewählt aus organischen Säuren, organischen und anorganischen Säuresalzen und Mischungen hiervon, wobei das feste, wasserlösliche, ionisierbare Material eine mittlere Teilchengröße von nicht mehr als 300 µm aufweist;
    c) 0 bis 20 Gew.-% eines oder mehrerer Bindemittel;
    umfassend die Schritte
    (i) Miteinandervermischen der Komponenten a), b) und c), um eine innige, im wesentlichen gleichmäßige Mischung zu bilden;
    (ii) Verdichten der Mischung in einem Walzenkompaktor unter einem Druck von 10 bis 50 kN pro cm der Walzenbreite zur Bildung eines geflockten Materials; und
    (iii) Zerkleinern des geflockten Materials, um Teilchen mit einer maximalen Abmessung von nicht mehr als 1200 µm vorzusehen.
  15. Verfahren nach Anspruch 14, wobei der Verdichtungsdruck ungefähr 25 kN/cm Walzenbreite beträgt.
  16. Verfahren nach Anspruch 14 und/oder 15, wobei die mittlere maximale Dimension der Teilchen ungefähr 600 µm beträgt.
  17. Verfahren nach mindestens einem der Ansprüche 14-16, wobei in Schritt (i) ein oder mehrere Waschmittelbestandteile zu Komponenten a), b) und, falls vorhanden, c) in einer Gesamtmenge von bis zu 50 Gew.-% einer teilchenförmigen Zusammensetzung zugesetzt werden.
  18. Verfahren nach Anspruch 17, wobei 0,5 bis 10 Gew. -% eines normalerweise festen, organischen Materials zugegeben werden, nachdem Komponenten a), b) und, wenn vorhanden, c) in Schritt (i) miteinander vermischt worden sind.
  19. Verfahren nach Anspruch 18, wobei das normalerweise feste, organische Material in Form einer Schmelze auf die Mischung aus Komponenten a), b) und, falls vorhanden, c) gesprüht wird.
  20. Feste Waschmittelzusammensetzung, umfassend 5 bis 30 Gew.-% organisches Tensid, 25 bis 60 Gew.-% Waschmittelbuilder und 10 bis 45 Gew.-% einer teilchenförmigen Zusammensetzung nach mindestens einem der Ansprüche 1-13.
  21. Granuläre Waschmittelzusammensetzung nach Anspruch 20, wobei der Waschmittelbuilder aus kristallinen und amorphen Natriumaluminosilicat-Zeolithen, Natriumcitrat, Natriumcarbonat und Mischungen aus beliebigen hiervon gewählt ist.
  22. Konzentrierte, granuläre Waschmittelzusammensetzung nach Anspruch 20 und/oder 21 mit einer Dichte von mindestens 650 g/Liter.
EP92913595A 1991-04-23 1992-04-21 Zusammensetzung teilchenförmiger waschmittel Expired - Lifetime EP0581895B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB919108639A GB9108639D0 (en) 1991-04-23 1991-04-23 Particulate detergent compositions
GB9108639 1991-04-23
PCT/US1992/003286 WO1992018594A1 (en) 1991-04-23 1992-04-21 Particulate detergent compositions

Publications (3)

Publication Number Publication Date
EP0581895A1 EP0581895A1 (de) 1994-02-09
EP0581895A4 EP0581895A4 (de) 1995-04-26
EP0581895B1 true EP0581895B1 (de) 2000-01-05

Family

ID=10693748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92913595A Expired - Lifetime EP0581895B1 (de) 1991-04-23 1992-04-21 Zusammensetzung teilchenförmiger waschmittel

Country Status (22)

Country Link
EP (1) EP0581895B1 (de)
JP (1) JP2999263B2 (de)
CN (1) CN1037453C (de)
AR (1) AR245212A1 (de)
AT (1) ATE188504T1 (de)
AU (1) AU666316B2 (de)
BR (1) BR9205925A (de)
CA (1) CA2108906C (de)
DE (1) DE69230531D1 (de)
FI (1) FI934677A (de)
GB (1) GB9108639D0 (de)
HU (1) HU9303013D0 (de)
IE (1) IE921286A1 (de)
IN (1) IN185539B (de)
MA (1) MA22511A1 (de)
MX (1) MX9201885A (de)
MY (1) MY109666A (de)
NO (1) NO933800L (de)
NZ (1) NZ242425A (de)
PT (1) PT100420B (de)
SK (1) SK114193A3 (de)
WO (1) WO1992018594A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747177C1 (ru) * 2020-07-30 2021-04-28 Общество с ограниченной ответственностью "Синергетик" Способ получения концентрированного средства для стирки и его упаковка

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW240243B (de) * 1992-03-12 1995-02-11 Kao Corp
GB9300311D0 (en) 1993-01-08 1993-03-03 Unilever Plc Detergent powders and process for preparing them
US5378388A (en) * 1993-06-25 1995-01-03 The Procter & Gamble Company Granular detergent compositions containing selected builders in optimum ratios
JPH0753992A (ja) * 1993-07-12 1995-02-28 Procter & Gamble Co:The 低投与量洗剤組成物
DE4324807A1 (de) * 1993-07-23 1995-01-26 Henkel Kgaa Pulverförmige oder granulare Waschmittel mit verbessertem Sekundärwaschvermögen
DE4325787A1 (de) * 1993-07-31 1995-02-02 Henkel Kgaa Waschmittel mit saurer Komponente
EP0639637A1 (de) * 1993-08-17 1995-02-22 The Procter & Gamble Company Percarbonat-Bleichmittel enthaltende Waschmittelzusammensetzungen
EP0639639B2 (de) * 1993-08-17 2010-07-28 The Procter & Gamble Company Percarbonat-Bleichmittel enthaltende Waschmittelzusammensetzungen
DE4329394B4 (de) * 1993-09-01 2006-11-02 Henkel Kgaa Gerüststoffkomponente für Wasch- oder Reinigungsmittel
DE4329392A1 (de) * 1993-09-01 1995-03-02 Henkel Kgaa Gerüststoffkomponente für Wasch- oder Reinigungsmittel
ES2141138T3 (es) * 1993-11-11 2000-03-16 Procter & Gamble Suavizado a traves de composiciones de lavado.
DE4404333A1 (de) 1994-02-11 1995-08-17 Benckiser Knapsack Ladenburg Waschmittel
TW326472B (en) * 1994-08-12 1998-02-11 Kao Corp Method for producing nonionic detergent granules
GB2294704A (en) * 1994-11-05 1996-05-08 Procter & Gamble Bleaching composition
DE19525197A1 (de) * 1995-07-11 1997-01-16 Hoechst Ag Granularer Waschmittelbuilder
AUPN538295A0 (en) * 1995-09-13 1995-10-05 Australian National University, The Magnesiosilicate cation exchange compounds
ID16215A (id) * 1996-03-11 1997-09-11 Kao Corp Komposisi deterjen untuk mencuci pakaian
TW370561B (en) 1996-03-15 1999-09-21 Kao Corp High-density granular detergent composition for clothes washing
US5955412A (en) * 1996-11-22 1999-09-21 Post; Sarah E. Powdered coil cleaner
DE19751398A1 (de) * 1997-11-20 1999-05-27 Henkel Kgaa Verfahren zur Herstellung eines Cobuilder-haltigen Additivs
GB2339203A (en) * 1998-07-08 2000-01-19 Procter & Gamble A method of dipensing
GB2339194A (en) * 1998-07-08 2000-01-19 Procter & Gamble Layered crystalline silicate as detergent builder component
US6387869B2 (en) 1998-07-08 2002-05-14 Clariant Gmbh Granular surfactant composition of improved flowability compromising sodium silicate and linear alkylbenzenesulfonates
ES2283088T3 (es) * 1998-07-08 2007-10-16 Clariant Produkte (Deutschland) Gmbh Composicion tensoactiva granular.
US6723693B1 (en) 1999-07-08 2004-04-20 The Procter & Gamble Company Method for dispensing a detergent comprising an amionic/silicate agglomerate
GB0030669D0 (en) 2000-12-15 2001-01-31 Unilever Plc Detergent compositions
GB0030671D0 (en) 2000-12-15 2001-01-31 Unilever Plc Detergent compositions
CN101675154B (zh) * 2007-05-03 2013-03-13 荷兰联合利华有限公司 用于洗涤剂组合物的助洗剂系统
CN106350294A (zh) * 2016-08-24 2017-01-25 石海光 一种不伤手衣领净
EP3409754A1 (de) 2017-05-31 2018-12-05 Dalli-Werke GmbH & Co. KG Beschichtete zitronensäureteilchen in reinigungsmitteln
MX2020004944A (es) * 2017-11-17 2020-08-27 Incoa Partners Llc Metodos para preparar composiciones que incluyen carbonatos de metales alcalinoterreos, sin tratar y tratados en superficie.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0253323A2 (de) * 1986-07-18 1988-01-20 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3413571A1 (de) * 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
DE3627773A1 (de) * 1986-08-16 1988-02-18 Hoechst Ag Phosphatfreies geschirrspuelmittel
DE3641314A1 (de) * 1986-12-03 1988-06-09 Henkel Kgaa Waeschenachbehandlungsmittel auf der basis von schichtsilikat
US4820349A (en) * 1987-08-21 1989-04-11 C. R. Bard, Inc. Dilatation catheter with collapsible outer diameter
DE3812555A1 (de) * 1988-04-15 1989-10-26 Hoechst Ag Lagerstabilisiertes waschmittel mit verstaerkter bleichwirkung
DE3929896A1 (de) * 1989-09-08 1991-03-14 Hoechst Ag Geschirrspuelmittel
GB9018157D0 (en) * 1990-08-17 1990-10-03 Procter & Gamble Detergent compositions
RU2088645C1 (ru) * 1990-09-28 1997-08-27 Дзе Проктер Энд Гэмбл Компани Моющая композиция и способ улучшения очищающего действия по отношению к тканям моющей композиции
US5108646A (en) * 1990-10-26 1992-04-28 The Procter & Gamble Company Process for agglomerating aluminosilicate or layered silicate detergent builders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0253323A2 (de) * 1986-07-18 1988-01-20 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747177C1 (ru) * 2020-07-30 2021-04-28 Общество с ограниченной ответственностью "Синергетик" Способ получения концентрированного средства для стирки и его упаковка

Also Published As

Publication number Publication date
EP0581895A4 (de) 1995-04-26
CA2108906C (en) 1998-06-23
FI934677A0 (fi) 1993-10-22
IE921286A1 (en) 1992-11-04
GB9108639D0 (en) 1991-06-12
AU2183992A (en) 1992-11-17
NZ242425A (en) 1995-07-26
WO1992018594A1 (en) 1992-10-29
AU666316B2 (en) 1996-02-08
NO933800D0 (no) 1993-10-22
AR245212A1 (es) 1993-12-30
ATE188504T1 (de) 2000-01-15
MY109666A (en) 1997-03-31
MX9201885A (es) 1993-01-01
PT100420A (pt) 1993-08-31
CN1037453C (zh) 1998-02-18
IN185539B (de) 2001-02-24
BR9205925A (pt) 1994-07-05
CN1067069A (zh) 1992-12-16
DE69230531D1 (de) 2000-02-10
MA22511A1 (fr) 1992-12-31
FI934677A (fi) 1993-10-22
HU9303013D0 (en) 1994-03-28
EP0581895A1 (de) 1994-02-09
NO933800L (no) 1993-12-21
SK114193A3 (en) 1994-04-06
CA2108906A1 (en) 1992-10-24
JPH06507197A (ja) 1994-08-11
PT100420B (pt) 1999-06-30
JP2999263B2 (ja) 2000-01-17

Similar Documents

Publication Publication Date Title
EP0581895B1 (de) Zusammensetzung teilchenförmiger waschmittel
US5540855A (en) Particulate detergent compositions
EP0591203B1 (de) Reinigungsmittelzusammensetzungen
US5411673A (en) Peroxyacid bleach precursor compositions
EP0652933B1 (de) Waschmittelzusammensetzungen
WO1992013798A1 (en) Peroxyacid bleach precursor compositions
EP0634481B1 (de) Reinigungsmittelzusammensetzungen
WO1994003395A1 (en) Peroxyacid bleach precursor compositions
EP0650518B1 (de) Verfahren zum einspülen eines percarbonathaltigen textilwaschmittels mit hoher schüttdichte
US5891837A (en) Stabilized bleaching compositions
EP0652925B1 (de) Detergens-bleichmittelzusammensetzungen enthaltend ein schichtsilikat und perkarbonat stabilisiert durch äthylendiamin-n,n1-di-bernsteinsäure
EP0634482B1 (de) Stabilisierte Reinigungsmittelzusammensetzungen
EP0675978A1 (de) Beschichtete peroxysäurevorstufe enthaltende bleichmittel
US6391839B1 (en) Detergent bleach compositions containing layered silicate builder and percarbonate stabilized by EDDS
EP0634483B1 (de) Stabilisierte Bleichmittelzusammensetzungen
EP0634480B1 (de) Reinigungsmittelzusammensetzungen
CA2167160C (en) Stabilised bleaching compositions
EP0652848A1 (de) Vorläufer für peroxysäure-bleichmittelzusammensetzungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19950308

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19980112

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000105

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000105

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000105

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20000105

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000105

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000105

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000105

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000105

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000105

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000105

REF Corresponds to:

Ref document number: 188504

Country of ref document: AT

Date of ref document: 20000115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69230531

Country of ref document: DE

Date of ref document: 20000210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000421

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1013102

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110328

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120420