EP0578966B1 - Procédé pour enrouler un fil par bobinage de précision étagé - Google Patents

Procédé pour enrouler un fil par bobinage de précision étagé Download PDF

Info

Publication number
EP0578966B1
EP0578966B1 EP93109171A EP93109171A EP0578966B1 EP 0578966 B1 EP0578966 B1 EP 0578966B1 EP 93109171 A EP93109171 A EP 93109171A EP 93109171 A EP93109171 A EP 93109171A EP 0578966 B1 EP0578966 B1 EP 0578966B1
Authority
EP
European Patent Office
Prior art keywords
frequency
mirror
winding
stage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93109171A
Other languages
German (de)
English (en)
Other versions
EP0578966A1 (fr
Inventor
Ekkehard Dr. Schlüter
Heiner Kudrus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEUMAG Neumuenstersche Maschinen und Anlagenbau GmbH
Original Assignee
NEUMAG Neumuenstersche Maschinen und Anlagenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEUMAG Neumuenstersche Maschinen und Anlagenbau GmbH filed Critical NEUMAG Neumuenstersche Maschinen und Anlagenbau GmbH
Publication of EP0578966A1 publication Critical patent/EP0578966A1/fr
Application granted granted Critical
Publication of EP0578966B1 publication Critical patent/EP0578966B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • B65H54/381Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft
    • B65H54/383Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft in a stepped precision winding apparatus, i.e. with a constant wind ratio in each step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method for winding a continuously fed thread according to the preamble of patent claim 1.
  • the traversing frequency is constant in the wild winding. This results in a constant thread laying angle.
  • the number of turns i ie the ratio of speed / traversing frequency, decreases continuously with increasing diameter. If the number of turns becomes an integer or assumes a value that differs from an integer by a simple fraction, such as 1 1/2 (2nd order), 2 2/3 (3rd order), 5 3/4 (4th . Order), so-called mirror windings arise.
  • the numbers in which mirror windings arise ie the whole and the mixed numbers, are referred to below as "mirror values”.
  • the characteristic feature of a mirror winding is that turns are placed exactly on turns previously laid.
  • the turns of successive layers lie on top of each other.
  • the M-order mirror value means that the turns of the (K + M) -th layer lie exactly on the turns of the K-th layer.
  • the "layer” is the piece of thread that is placed on the spool during a double stroke, i.e. while the traversing thread guide moves from one end of the bobbin to the other and back.
  • the "thread” is the piece of thread that is put on during one revolution.
  • the number of turns i is the number of turns per layer.
  • mirror windings can cause a number of disadvantages, in particular an unstable spool structure, difficulties in unwinding the affected spool and unevenness in a subsequent coloring.
  • the traversing frequency is in a fixed ratio to the speed of the coil; the number of turns therefore remains constant. According to the coil speed, the traversing frequency also becomes smaller and smaller as the coil diameter increases. The result is that the thread-laying angle also becomes smaller and smaller. It is essentially proportional to the traversing frequency. As the angle of deposit decreases, the coherence of the coil deteriorates. This method can therefore only be used to a limited extent. However, it has the advantage that one can avoid mirror formation by choosing the number of turns.
  • the winding is built up in several stages.
  • the traversing frequency f decreases proportionally with the coil speed n.
  • the number of turns i n / f therefore remains constant in each stage.
  • the maximum permissible traversing frequency ie the maximum permissible depositing angle, which is approximately proportional to the number of turns for a certain diameter, is used.
  • the transition to the next stage usually takes place when the placement angle has reached the smallest dimension that is still permissible.
  • the traversing frequency is increased suddenly, so that the maximum traversing frequency and the maximum placement angle are set again. Accordingly, the number of turns jumps to a new, smaller value. It can happen that the number of turns accidentally falls on a mirror value or in its critical proximity.
  • a computer determines the number of turns from stage to stage and compares them with the dangerous mirror values. If the calculated number of turns does not fall within the critical range of a mirror value, this number of turns is used. However, if it is in the critical range of a mirror value, a slightly increased number of turns is used. This lies at a precisely defined short distance from the dangerous mirror value, which depends in particular on the size and the atomic number of the mirror value.
  • the turns of the (K + M) -th layer are not placed exactly on the turns of the K-th layer, but at a predetermined constant laying distance a next to the turns of the K-th layer.
  • the laying distance a is measured from the middle of the thread to the middle of the thread and is therefore in any case greater than the width of an overlying thread. It is recommended to make it as small as possible, if possible not larger than twice the thread width.
  • the aim is to keep the number of corrective interventions as small as possible. Therefore, winding is only carried out with a corrected number of turns in those stages in which this is essential to avoid a mirror winding. In the other stages, the number of turns is obtained, which is obtained by choosing the maximum permissible traversing frequency as the starting frequency. With these numbers of turns, the distances between the turns of corresponding layers are random and therefore uneven.
  • the invention has for its object to improve the method according to the preamble of claim 1 so that the coil receives a uniformly high packing density with little edge increase.
  • a "number of turns close to the mirror" in the sense of the invention is by no means a mirror value and also not a number that comes anywhere near a mirror value, but rather a number of turns that differs from a mirror value i s by a defined difference.
  • Each mirror value corresponds to two numbers of turns close to the mirror, one of which is a little smaller, the other a little larger than the mirror value.
  • M s is the order of the mirror value i s .
  • x a 2H
  • H is the traverse stroke, i. H. the length of the winding.
  • a is the laying distance between the turns of the K th layer and the (K + M) th layer, measured from the middle of the thread to the middle of the thread; it is at least equal to the width and at most equal to 3 times the width of the thread lying thereon, preferably not greater than twice the width.
  • the size X is usually negligibly small compared to the atomic number M s , the two difference terms are almost identical. It is characteristic that they are proportional to the number of turns and essentially inversely proportional to the atomic number. So they vary in size from level to level.
  • the sizes marked with the index s differ individually for the individual levels.
  • the sizes a and H and thus the derived size x are the same size for all levels.
  • the characterizing part of claim 1 means that in each individual stage a number of turns is selected in which the turns of the (K + M) th position are deposited at a fixed distance a next to the turns of the K th position.
  • FIGS 1-6 illustrate various embodiments.
  • the selection of the number of turns close to the mirror for the individual stages is expediently carried out with the aid of an i-D diagram in which the hyperbolic limit curves for the minimum and the maximum depositing angle as well as the start and end diameter of the coil are entered.
  • the coil travel with a stepped precision winding is generally symbolized by a staircase curve that lies between the two limit curves. It is characteristic of the invention that all steps parallel to the abscissa correspond to the number of turns close to the mirror.
  • the number of turns close to the mirror has been selected such that they lie at defined positive distances from first order mirror values.
  • the mirror values are the whole numbers from 8 to 2 in continuous descending order.
  • the restriction to the number of turns near the mirror in the vicinity of integer mirror values has the advantage that collisions with mirror values of a higher order are easy to avoid.
  • the transition to the next stage - i.e. the sudden increase in the traversing frequency - always occurs exactly when the traversing frequency and thus also the lay-off angle has reached the lowest permissible value.
  • the upper corner points of the staircase curve are all on the hyperbola, which is assigned to the minimum laying angle.
  • the lower corner points lie in the space between this hyperbola and the hyperbola, which is assigned to the maximum placement angle.
  • the example shown in FIG. 2 initially differs from the example in FIG. 1 in that the maximum placement angle is only 8 °.
  • the maximum traversing frequency is therefore correspondingly lower than in the first example.
  • the stair curve, which symbolizes the coil travel must be accommodated in the space between the two hyperbolic limit curves, which is narrowed in comparison with FIG. 1. This is made possible by the fact that those turns numbers close to the mirror which are adjacent to the 2nd order mirror values, ie the half-numbered mirror values, are also used. These number of turns close to the mirror are briefly referred to below as "2nd order turn numbers close to the mirror".
  • the distances between the associated mirror values are all the same, namely 0.5.
  • the distances between the number of turns close to the mirror differ slightly, however, since the difference between the mirror value and the corresponding number of turns close to the mirror also depends on the ordinal number, which in this example alternately takes on the values 1 or 2.
  • the limitation to a reduced frequency range has the advantage that the frequency jumps occurring at the transitions between the individual stages are smaller. This improves the coil structure.
  • the critical angles are likewise 6 or 8 °.
  • the number of turns close to the mirror is used, which are adjacent to the integer mirror values 8, 7, 6, 5, 4, i.e. with 1st order turns numbers close to the mirror. If, however, analogous to FIG. 1, one jumps directly from the number of turns 4.04 close to the mirror to the next following number of turns of the 1st order, namely to 3.03 and 2.02, the initial depositing angles in the corresponding stages would exceed the predetermined maximum limit. Therefore, both the first-order number of turns close to the mirror and the second-order number of turns close to the mirror are used in the end section of the coil travel. In comparison to FIG. 2, the total number of switching operations required during the coil trip is reduced. The layers corresponding to the steps are correspondingly thicker in the area near the sleeve.
  • Figure 4 illustrates an embodiment in which the placement angle is limited to the extremely narrow range between 7 and 8 °. This severely limits the selection of the number of turns close to the mirror for the individual stages.
  • the first half of the coil trip we work with 1st and 2nd order number of turns close to the mirror.
  • the number of turns close to the mirror is used, which is smaller than the corresponding mirror values, namely at mirror values 7.5; 7; 5.5; 5; 4, 5 and 4. This makes it easier to fit the stair curve into the narrow space between the two limit curves.
  • the gradation is further refined by using 3rd order number of turns close to the mirror, the distances of the number of turns close to the mirror from the associated mirror values being irregular in part, partly positive, partly negative.
  • FIG. 5 largely corresponds to that of FIG. 2.
  • the difference is that the lower corner points of the stair curve lie on the hyperbola, which corresponds to the maximum placement angle. This means that after each stage, the frequency increase is carried out at the moment when the coil speed has dropped just enough that the maximum frequency results as the starting frequency for the following stage.
  • the example illustrated in FIG. 6 differs from all previous exemplary embodiments in particular in that the transition to the next stage takes place whenever the diameter has increased by a certain amount, which is the same for all stages.
  • the first and second order number of turns close to the mirror are used in full sequence, starting with 8.08 and ending with 2.513. It can be seen that in the beginning and end phase of the coil travel, the placement angles come close to the maximum placement angle. In the middle phase, the discard angle approaches the lower limit.
  • the uniform thickness of the layers wound in the individual stages ensures that the shoulders which appear on the end faces of the coils lie at uniform intervals. This can have advantages when the thread is pulled off during further processing. Even if there is a relatively large space between the minimum and maximum placement angles, a fine gradation is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Winding Filamentary Materials (AREA)
  • Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)
  • Coil Winding Methods And Apparatuses (AREA)
  • Winding Of Webs (AREA)
  • Windings For Motors And Generators (AREA)

Claims (9)

  1. Procédé d'enroulement d'un fil alimenté en continu sur une bobine tournant à une vitesse périphérique constante, suivant un bobinage de précision par étapes, ce procédé présentant les particularités suivantes :
    a) la fréquence de va-et-vient est, dans chaque étape, diminuée d'une fréquence de départ à une fréquence finale proportionnellement au nombre de tours de la bobine et est ensuite brusquement augmentée à la fréquence de départ de l'étape suivante,
    b) la fréquence de départ est, dans chaque étape, au maximum égale à une fréquence maximale fixe,
    c) la fréquence finale est, dans chaque étape, au moins égale à une fréquence minimale fixe,
    caractérisé en ce que
    dans chaque étape s, on travaille avec un nombre de spires qui se différencie d'une valeur de miroir is par une différence de Δi s = - i s · x M s + x oder Δi s = + i s · x M s - x
    Figure imgb0018
    où les symboles ont la signification suivante :
    Ms est le numéro d'ordre de la valeur miroir is ,
    x = a / 2H,
    H est la course de va-et-vient,
    a est la distance de pose entre les spires de la couche K et la couche (K+M), mesurée de milieu de fil à milieu de fil, a étant au moins égale à la largeur du fil appliqué et au maximum égale à trois fois sa largeur.
  2. Procédé suivant la revendication 1, caractérisé en ce que la distance de pose a est au maximum égale à deux fois la largeur du fil appliqué.
  3. Procédé suivant l'une des revendications 1 et 2, caractérisé en ce que l'augmentation brusque de fréquence après chaque étape a lieu au moment où la fréquence de va-et-vient a atteint la fréquence minimale.
  4. Procédé suivant l'une des revendications 1 et 2, caractérisé en ce que l'augmentation brusque de fréquence après chaque étape a lieu au moment où le nombre de tours de la bobine a décru suffisamment pour qu'il en résulte à l'étape suivante la fréquence de va-et-vient maximale comme fréquence de départ.
  5. Procédé suivant l'une des revendications 1 et 2, caractérisé en ce que l'augmentation brusque de fréquence après chaque étape a lieu au moment où le diamètre de bobine a atteint un accroissement prédéterminé.
  6. Procédé suivant l'une des revendications 1 à 5, caractérisé en ce que, dans toutes les étapes, on effectue un bobinage avec des nombres de spires proches du miroir qui sont attribués à des valeurs de miroir du premier ordre.
  7. Procédé suivant l'une des revendications 1 à 5, caractérisé en ce que, dans toutes les étapes, on effectue un enroulement avec des nombres de spires proches du miroir qui sont attribués à des valeurs de miroir du premier ou du deuxième ordre.
  8. Procédé suivant l'une des revendications 1 à 7, caractérisé par des distances également grandes entre les valeurs de miroir auxquelles les nombres de spires proches du miroir des différentes étapes sont attribués.
  9. Procédé suivant l'une des revendications 1 à 4 et 7, caractérisé en ce que, au cours de la progression du parcours de la bobine, on effectue un enroulement d'une manière croissante avec des nombres de spires proches du miroir qui sont attribués à des valeurs de miroir d'un ordre supérieur.
EP93109171A 1992-07-17 1993-06-08 Procédé pour enrouler un fil par bobinage de précision étagé Expired - Lifetime EP0578966B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4223271A DE4223271C1 (fr) 1992-07-17 1992-07-17
DE4223271 1992-07-17

Publications (2)

Publication Number Publication Date
EP0578966A1 EP0578966A1 (fr) 1994-01-19
EP0578966B1 true EP0578966B1 (fr) 1996-09-11

Family

ID=6463270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93109171A Expired - Lifetime EP0578966B1 (fr) 1992-07-17 1993-06-08 Procédé pour enrouler un fil par bobinage de précision étagé

Country Status (4)

Country Link
US (1) US5447277A (fr)
EP (1) EP0578966B1 (fr)
AT (1) ATE142597T1 (fr)
DE (2) DE4223271C1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033735A1 (fr) * 1997-02-05 1998-08-06 Plant Engineering Consultants, Inc. Procede et appareil de bobinage de precision
DE19817111A1 (de) * 1997-04-24 1998-11-05 Barmag Barmer Maschf Verfahren zum Aufwickeln eines Fadens zu einer zylindrischen Kreuzspule
US6568623B1 (en) 2000-03-21 2003-05-27 Owens-Corning Fiberglas Technology, Inc. Method for controlling wind angle and waywind during strand package buildup
DE10015933B4 (de) * 2000-03-30 2015-09-03 Saurer Germany Gmbh & Co. Kg Verfahren zum Herstellen einer Stufenpräzisionswicklung
DE10018808A1 (de) * 2000-04-15 2001-10-25 Schlafhorst & Co W Verfahren zum Herstellen von Kreuzspulen
ITMI20010682A1 (it) 2000-04-20 2002-09-30 Schlafhorst & Co W Procedimento per produrre una bobina incrociata e bobina incrociata ottenuta con esso
DE10033015B4 (de) * 2000-04-20 2011-01-13 Oerlikon Textile Gmbh & Co. Kg Verfahren zum Herstellen einer Kreuzspule und Kreuzspule
AT502782B1 (de) 2003-05-19 2008-07-15 Starlinger & Co Gmbh Bandaufwickelverfahren
SI22124A (sl) * 2006-12-07 2007-04-30 Danilo Jaksic Metoda precizijskega navijanja tekstilne preje na navitke z veckratnim spreminjanjem navijalnega razmerja znotraj enega ciklusa navijanja
US8590743B2 (en) 2007-05-10 2013-11-26 S.C. Johnson & Son, Inc. Actuator cap for a spray device
US8469244B2 (en) 2007-08-16 2013-06-25 S.C. Johnson & Son, Inc. Overcap and system for spraying a fluid
US8381951B2 (en) 2007-08-16 2013-02-26 S.C. Johnson & Son, Inc. Overcap for a spray device
US8556122B2 (en) 2007-08-16 2013-10-15 S.C. Johnson & Son, Inc. Apparatus for control of a volatile material dispenser
US8387827B2 (en) 2008-03-24 2013-03-05 S.C. Johnson & Son, Inc. Volatile material dispenser
DE102010055575A1 (de) * 2010-12-21 2012-06-21 Oerlikon Textile Gmbh & Co. Kg Verfahren zur Herstellung einer Färbespule
CZ306120B6 (cs) * 2015-05-06 2016-08-10 Technická univerzita v Liberci Způsob navíjení samonosné cívky a samonosná cívka s křížovým návinem spodní niti pro šicí stroje

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504021A (en) * 1982-03-20 1985-03-12 Barmag Barmer Maschinenfabrik Ag Ribbon free wound yarn package and method and apparatus for producing the same
EP0093258B1 (fr) * 1982-05-03 1986-12-10 b a r m a g Barmer Maschinenfabrik Aktiengesellschaft Procédé pour éviter des rubans d'ordre entier ou fractionnaire en bobinage croisé au hasard d'un fil
US4504024A (en) * 1982-05-11 1985-03-12 Barmag Barmer Maschinenfabrik Ag Method and apparatus for producing ribbon free wound yarn package
CN1005029B (zh) * 1985-03-05 1989-08-23 巴马格·巴默机器制造股份公司 卷绕方法
DE3660670D1 (en) * 1985-03-11 1988-10-13 Barmag Barmer Maschf Winding method
DE3521120A1 (de) * 1985-06-13 1987-01-02 Maag Fritjof Spulmaschine und verfahren zum vermeiden von spiegeln beim aufspulen
JPS62290682A (ja) * 1986-06-03 1987-12-17 Teijin Seiki Co Ltd トラバ−ス装置
DE3769053D1 (de) * 1986-09-18 1991-05-08 Teijin Seiki Co Ltd Verfahren zum aufwickeln von garn auf spulen mit zugehoeriger maschine.
IT1227912B (it) * 1988-12-23 1991-05-14 Savio Spa Procedimento ed apparecchio per pilotare la distribuzione del filo sull'impacco in formazione in un gruppo di raccolta per fili sintetici
DE3918846A1 (de) * 1989-06-09 1990-12-13 Maag Fritjof Praezisionskreuzspule, verfahren zu deren herstellung und spuleinrichtung dafuer
DE4037278A1 (de) * 1990-11-23 1992-05-27 Neumag Gmbh Verfahren zum aufspulen eines fadens in gestufter praezisionswicklung

Also Published As

Publication number Publication date
DE59303727D1 (de) 1996-10-17
DE4223271C1 (fr) 1993-06-24
US5447277A (en) 1995-09-05
ATE142597T1 (de) 1996-09-15
EP0578966A1 (fr) 1994-01-19

Similar Documents

Publication Publication Date Title
EP0578966B1 (fr) Procédé pour enrouler un fil par bobinage de précision étagé
DE2649780C3 (de) Wickelmaschine fUr Textilgarne
EP0334211B1 (fr) Procédé pour la fabrication d'un paquet de fil sans support
EP0256411B1 (fr) Méthode pour embobiner des fils
EP0195325B1 (fr) Procédé de bobinage
EP0237892B1 (fr) Procédé et dispositif pour rebobiner des fils
DE2937601A1 (de) Verfahren zum aufwickeln von faeden
DE2320690A1 (de) Verfahren und vorrichtung zur bewicklung von elektrospulen
EP0256383B1 (fr) Méthode pour embobiner des fils
DE8717974U1 (de) Drahtbewickelte Spule
EP0150771B1 (fr) Paquet de fil enroulé par bobinage de précision, procédé et dispositif pour sa réalisation
WO2004101415A1 (fr) Procede de bobinage de bande
DE19817111A1 (de) Verfahren zum Aufwickeln eines Fadens zu einer zylindrischen Kreuzspule
DE4037278C2 (fr)
EP0562296B1 (fr) Procédé pour le bobinage de matériau fileforme, alimenté en continu de préférence à vitesse constante, en enroulement de précision étagée et dispositif de bobinage pour la mise en oeuvre de ce procédé
DE4112768A1 (de) Verfahren zum wickeln von kreuzspulen
WO2002083538A1 (fr) Procede pour faire fonctionner une machine a enrouler des fils et dispositif d'enroulement associe
EP1514824B1 (fr) Bobine croiséé et procédé pour la fabrication d'une telle bobine
DE2540853A1 (de) Aufwickelvorrichtung zum automatischen wechseln von huelsen
DE3210244A1 (de) Verfahren zur spiegelstoerung beim aufwickeln eines fadens in wilder wicklung
CH687928A5 (de) Verfahren zum Umbaeumen von Faeden auf einen Kettbaum und zugehoerige Baeummaschine.
DD285518A7 (de) Verfahren zum aufbauen und abarbeiten eines aus teilverdralltem faden bestehenden wickels innerhalb einer zentrifugenspindel
EP0837023B1 (fr) Dispositif pour bobiner un fil en bobinage croisé au hasard sur une bobine
CH691474A5 (de) Verfahren und Vorrichtung zum Aufspulen eines Fadens.
DE3627081C2 (de) Verfahren zum Aufwickeln von Fäden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR GB IT LI NL

17P Request for examination filed

Effective date: 19940129

17Q First examination report despatched

Effective date: 19950330

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960911

Ref country code: GB

Effective date: 19960911

Ref country code: FR

Effective date: 19960911

Ref country code: DK

Effective date: 19960911

REF Corresponds to:

Ref document number: 142597

Country of ref document: AT

Date of ref document: 19960915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59303727

Country of ref document: DE

Date of ref document: 19961017

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KEMENY AG PATENTANWALTBUERO

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970505

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970604

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: NEUMUNSTERSCHE MASCHINEN- UND ANLAGENBAU G.M.B.H N

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050608