EP0578795B1 - Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage - Google Patents

Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage Download PDF

Info

Publication number
EP0578795B1
EP0578795B1 EP93901633A EP93901633A EP0578795B1 EP 0578795 B1 EP0578795 B1 EP 0578795B1 EP 93901633 A EP93901633 A EP 93901633A EP 93901633 A EP93901633 A EP 93901633A EP 0578795 B1 EP0578795 B1 EP 0578795B1
Authority
EP
European Patent Office
Prior art keywords
tank
valve
gradient
correction
leanness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93901633A
Other languages
English (en)
French (fr)
Other versions
EP0578795A1 (de
Inventor
Helmut Denz
Andreas Blumenstock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0578795A1 publication Critical patent/EP0578795A1/de
Application granted granted Critical
Publication of EP0578795B1 publication Critical patent/EP0578795B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system

Definitions

  • the following relates to a method and a device for checking the functionality of a tank ventilation system on a vehicle with an internal combustion engine.
  • the device according to the invention has a sequence control for actuating the shut-off valve and the tank ventilation valve; gradient determining means for determining the gradients just mentioned; a judgment quantity formation device for forming the quotient just mentioned and a comparison / judgment device for making the comparison just mentioned and the associated assessment.
  • the method according to the invention provides assessment results which are hardly influenced by the fill level of the tank.
  • both gradients are quite high, while when the tank is almost empty they are both quite low.
  • the relative changes of both gradients as a function of the fill level of the tank depend essentially on the fill level, so that the effects exerted by the fill level on the gradients are essentially canceled out by the formation of the quotient.
  • the quotient degradation gradient / buildup gradient is formed, and the system is judged to be inoperative if the quotient is greater than the stated threshold value. If there is a leak in the system, the degradation gradient becomes relatively large and the buildup gradient relatively small, as a result of which the quotient rises above the threshold value. If the system is blocked, the build-up gradient becomes very small, whereas there is no particular effect on the build-up gradient, so that the quotient also rises above the threshold value because of the small denominator.
  • the procedure is most precise when it is carried out with the vehicle at a standstill and the fuel out of gas.
  • Gassing the fuel be it through elevated temperature or through movements of the tank contents, influences the gradients in the same way as a leak and thus falsifies the measurement.
  • a conventional lean correction test whether the fuel is gassing. It has been found that the gradient determination of gassing fuel even then is not significantly affected if the gassing can already be clearly determined with the lean correction test, e.g. B. by a correction in the range of 5 to 10%.
  • the test method according to the invention is therefore preferably developed such that a lean correction test is carried out and the test method is terminated if lean correction is to be carried out which is stronger than a threshold lean correction.
  • a lean correction check is not possible while the vacuum is being reduced because the tank ventilation valve is closed. However, if no lean correction was required during the vacuum build-up and the vehicle is stationary during dismantling, the fuel is unlikely to gas. Standstill of the vehicle is therefore measured directly by appropriate signals, e.g. B. speed or acceleration measurement, or it is indirectly concluded to drive, z. B. from load signals or clutch / gear position signals. However, immediately after the last measurement to determine the degradation gradient, the tank ventilation valve can be opened again and it can be examined whether a lean correction is necessary. If this is not the case, it is assumed that the degradation gradient was not influenced by gassing fuel. However, it cannot be ruled out that the tank pressure was influenced by volume increases and decreases due to sloshing fuel. Such fluctuations cancel each other out over time and can accordingly be taken into account by time averaging the pressure measured to determine the degradation gradient.
  • the tank ventilation system shown has a tank 10 with a differential pressure meter 11, an adsorption filter 13 connected to the tank via a tank connection line 12, with a ventilation line 14 with an inserted shut-off valve AV, and a tank ventilation valve TEV, which is inserted into a valve line 15 which connects the adsorption filter 13 with the suction pipe 16 an internal combustion engine 17 connects.
  • the tank ventilation valve TEV and the shut-off valve AV are controlled by signals as they are output by a sequence control block 19.
  • the tank ventilation valve TEV is also activated depending on the operating state of the engine 17, but this is not illustrated in FIG. 1.
  • a catalytic converter 20 with a lambda probe 21 located in front of it is arranged in the exhaust duct 30 of the engine 17.
  • the latter sends its signal to a lambda control block 22, which determines an actuating signal for an injection device 23 in the intake manifold 16 and also outputs a lean correction signal MK.
  • the functionality of the tank ventilation system is assessed with the aid of a gradient determination block 24, a quotient calculation block 25 and a comparison / assessment block 26.
  • the sequence controller 19 starts a sequence for checking the functionality of the tank ventilation system as soon as an idling signal generator 27 cooperating with the throttle valve 28 of the engine indicates idling and an adaptation phase has ended.
  • Adaptation phases for achieving learning processes in the lambda control block 22 alternate with tank ventilation phases; the former typically last 1.5 minutes, the latter 4 minutes.
  • the sequence control then closes the shut-off valve AV and opens the tank ventilation valve TEV in such a way as is permitted in the context of a conventional tank ventilation; at the same time, it starts a process to be carried out by the gradient determination block 24 for determining the build-up of the negative pressure in the tank 10.
  • the sequence controller 19 closes the tank ventilation valve TEV and now causes the gradient determination block 24 to determine the reduction gradient for the negative pressure in the tank.
  • the quotient degradation gradient / buildup gradient is calculated in the quotient calculation block 25, and this quotient is compared in the comparison / assessment block 26 with a quotient threshold value Q_SW. If the quotient is above the threshold value, an evaluation signal BS is output, which indicates that the system is not functional. This signal can also be output if the determined lean correction is weaker than a threshold lean correction and the build-up gradient is smaller than a threshold value.
  • FIG. 2A illustrates negative pressure change gradients as they are with a 2.5 l six-cylinder engine at idle with the tank vent valve (flow 0.6 m3 / h) were measured on a tank with 80 l capacity for different fill levels. Two pairs of measured values, each with short lines, are entered for each fill level.
  • the solid lines relate to measurements for the pressure reduction gradient (top) and the pressure build-up gradient (bottom) for a functional tank ventilation system, while the dashed lines represent the corresponding values for a system with a leak of 2 mm in diameter.
  • FIG. 2B shows the quotient degradation gradient / buildup gradient for each gradient pair from FIG. 2A. The following can be seen from the figures.
  • a threshold value ⁇ + _SW can therefore be specified, below which it is clear that there is a leak of at least 2 mm in diameter. If the leak is smaller, the quotient shown in FIG. 2B helps further. As can be seen, this is hardly dependent on the fill level. The value that is achieved for a dense system is very different from that for the system with a leak of 2 mm in diameter.
  • a threshold value Q_SW can therefore be specified for the quotient, which is as close as possible to the smallest quotient as it applies to the dense system and which accordingly makes it possible to distinguish between a dense system and one with a small leak.
  • the method according to FIG. 3 uses signals from the differential pressure sensor 11. This can be done after opening the tank ventilation valve TEV only show significant changes in negative pressure if there is a high negative pressure in the intake manifold 16 and the tank ventilation valve can be opened relatively widely without influencing the fuel / air budget of the internal combustion engine 17 in a manner which is no longer quick and reliable by the lambda controller 22 could be corrected. These conditions are met with low gassing fuel, especially when idling. It should also be noted that the method described in the following provides particularly good results if the fuel in the tank gasses as little as possible during the measurement. This is especially the case when the fuel in the tank hardly moves. Such a movement is unlikely to occur when the engine is idling.
  • the method of FIG. 3 is only started if idle operation has previously been determined.
  • the vehicle may also be at a standstill.
  • step s3.4 it is examined whether a lean correction above a lean correction threshold is required. If this is the case, a process is achieved from a mark E, which process is described in more detail below. Otherwise, the gas throughput is determined by the tank ventilation valve (step s3.5), and it is queried whether a predetermined time interval ⁇ t has elapsed since the tank ventilation valve opened (step s3.6).
  • This pressure difference is standardized to a predetermined throughput by the tank ventilation valve (likewise step s3.8) in order to obtain a standardized pressure difference ⁇ p_NORM. If the gas throughput totaled when step s3.5 is repeated is less than the predetermined throughput, the measured pressure difference is increased accordingly, otherwise decreased accordingly, which is done in each case by multiplying the measured pressure difference by the quotient of the predetermined and totaled throughput.
  • the gas throughput per unit of time is determined with the aid of the duty cycle for the tank ventilation valve, as specified by the sequence control 19, the negative pressure in the intake manifold 16 and a map which describes the relationship between negative pressure, duty cycle and gas throughput.
  • vacuum in the intake manifold 16 is either measured by a corresponding sensor or determined from the speed of the engine 17 and the position of the throttle valve 28.
  • the negative pressure build-up gradient is determined to be ⁇ p_NORM / ⁇ t (step s3.9), whereupon a comparison is made with a threshold value ⁇ + _SW (step s3.10). If the threshold value has not been reached, an error message is output in step s3.11, and an error lamp is illuminated. Then the E mark is reached again.
  • step s3.12 If a decision about the functionality of the system is not yet possible with the built-up gradient comparison according to step s3.10, the tank ventilation valve is closed in step s3.12 and a new time measurement is started. As soon as a predetermined period of time ⁇ t has elapsed since the tank ventilation valve closed (step s3.13), the negative pressure pE in the tank is measured (step s3.14) and the tank ventilation valve is opened (step s3.15) in order to carry out a lean correction test can (step s3.16), which corresponds to that of step s3.4, in which case either the mark E is reached or the method is continued if the required correction is below the threshold.
  • the reciprocal of this quotient can also be used, in which case the system is judged to be inoperative if the quotient is less than a threshold value.
  • the amount of the difference between the (absolute) gradients can also be used, for example.
  • FIGS. 4 to 6. 4 is to be carried out between marks A and B in the flow of FIG. 3 instead of the partial flow there. It is used to get by as short as possible instead of a predetermined period.
  • a step s4.1 is used to examine whether a maximum time period has elapsed since the tank ventilation valve opened.
  • step s4.2 takes place, which corresponds to step s3.11. Otherwise, step s4.3 follows, in which the gas throughput is determined in accordance with step s3.5.
  • the current differential pressure p in the tank is then measured (step s4.4), and the measured value is compared with the threshold value p_SW mentioned (step s4.5). If this threshold value has not yet been reached, the sequence follows again from step s4.1, while otherwise, in a step s4.5, the time period ⁇ t since the beginning of the opening of the tank ventilation valve is recorded in step s3.3.
  • the method according to FIG. 3 then follows from step s3.8.
  • step s5.1 examines whether the load of the motor 17 is above a threshold. If this is the case, it is assumed that the vehicle is moving. From this it is concluded that the tank contents are moving and therefore gassing, which makes it seem advisable to abort the test procedure. Therefore the brand E is reached. Otherwise, steps s5.2 to s5.4 are followed by steps s3.13 to s3.15, which are then followed by step s3.17 due to the omission of step s3.16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

Ein Verfahren zum Prüfen der Funktionsfähigkeit einer Tankentlüftungsanlage in einem Fahrzeug mit Verbrennungsmotor, welche Tankentlüftungsanlage über einen Tank mit Tankdrucksensor, ein mit dem Tank über eine Tankanschlußleitung verbundenes Adsorptionsfilter und ein Tankentlüftungsventil verfügt, das mit dem Adsorptionsfilter über eine Ventilleitung verbunden ist, bei welcher Anlage das Adsorptionsfilter eine durch ein Absperrventil verschließbare Belüftungsleitung aufweist. Das Verfahren nutzt die Erkenntnis, daß sowohl der Aufbau- wie auch der Abbaugradient für den Unterdruck im Tank in im wesentlichen gleicher Weise vom Tankfüllstand abhängen. Wird als Beurteilungsgröße z.B. der Quotient aus Aufbau- und Abbaugradient gebildet, ist dieser daher im wesentlichen unabhängig vom Füllstand, was einen sehr zuverlässigen Vergleich mit einem Schwellenwert zuläßt. Wird der Quotient Abbaugradient/Aufbaugradient gebildet, und ist dieser Quotient größer als der Schwellenwert, wird die Anlage als nicht funktionsfähig beurteilt. Diese Vorgehensweise erlaubt das Feststellen von Lecks in der Größenordnung von 2 mm Durchmesser.

Description

  • Das Folgende betrifft ein Verfahren und eine Vorrichtung zum Prüfen der Funktionsfähigkeit einer Tankentlüftungsanlage an einem Fahrzeug mit Verbrennungsmotor.
  • Stand der Technik
  • Aus DE-A-40 03 751 oder aus der DE-A-4030948 ist eine Tankentlüftungsanlage bekannt, die über einen Tank mit Tankdrucksensor, ein mit dem Tank über eine Tankanschlußleitung verbundenes Adsorptionsfilter und ein Tankentlüftungsventil verfügt, das mit dem Adsorptionsfilter über eine Ventilleitung verbunden ist, bei welcher Anlage das Adsorptionsfilter eine durch ein Absperrventil verschließbare Belüftungsleitung aufweist. Die so aufgebaute Tankentlüftungsanlage wird nach folgendem Verfahren auf Funktionsfähigkeit überprüft:
    • es wird untersucht, ob ein Betriebszustand vorliegt, z. B. Vollast, bei dem im Tank nach Schließen des Absperrventils und öffnen des Tankentlüftungsventils kein wesentlicher Unterdruck aufgebaut werden kann;
    • liegt ein derartiger Zustand vor, wird das Verfahren abgebrochen, andernfalls schließen sich die folgenden Schritte an:
    • Schließen des Absperrventils;
    • öffnen des Tankentlüftungsventils;
    • Messen des sich im Tank aufbauenden Unterdrucks; und
    • Beurteilen der Tankentlüftungsanlage als nicht funktionsfähig, wenn ein vorgegebener Unterdruck nicht erreicht wird.
  • In der zu einer Anmeldung mit älterem Zeitrang gehörigen, nicht vorveröffentlichten Schrift DE-A-41 11 361 ist ein Verfahren beschrieben, das an einer Tankentlüftungsanlage ohne Absperrventil arbeitet und folgende Verfahrensschritte aufweist:
    • öffnen des Tankentlüftungsventils;
    • Bestimmen des Aufbaugradienten des sich im Tank aufbauenden Unterdrucks; und
    • Vergleichen des Aufbaugradienten und/oder des Abbaugradienten mit einem jeweils zugehörigen Schwellenwert und Beurteilen der Anlage als funktionsfähig, wenn der mindestens eine Gradient und der zugehörige Schwellenwert eine vorgegebene Beziehung erfüllt.
  • In der zu einer anderen Anmeldung mit älterem Zeitrang gehörigen, ebenfalls nicht vorveröffentlichten Schrift DE-A-41 32 055 ist ein ähnliches Verfahren beschrieben, das allerdings an einer Tankentlüftungsanlage mit Absperrventil ausgeführt wird. Messungen zum Bestimmen des Aufbau- und des Abbaugradienten werden nur berücksichtigt, wenn sichergestellt ist, daß die Messungen nicht durch gasenden Kraftstoff beeinflußt werden. Hierzu dient eine Magerkorrekturprüfung mit Hilfe eines Lambdareglers und/oder eine Prüfung dahingehend, ob sich das Fahrzeug, und damit auch der Tankinhalt, vermutlich bewegt.
  • Es hat sich gezeigt, daß die bisher bekannten und vorgeschlagenen Verfahren weiter verfeinert werden müssen, um sehr kleine Lecks in der Größenordnung von 2 mm erkennen zu können.
  • Darstellung der Erfindung
  • Das erfindungsgemäße Verfahren zum Prüfen der Funktionsfähigkeit einer Tankentlüftungsanlage der eingangs genannten Art weist folgende Schritte auf:
    • Schließen des Absperrventils;
    • öffnen des Tankentlüftungsventils;
    • Bestimmen des Aufbaugradienten des sich im Tank aufbauenden Unterdrucks;
    • Schließen des Tankentlüftungsventils;
    • Bestimmen des Abbaugradienten des sich im Tank abbauenden Unterdrucks;
    • mathematisches Verknüpfen des Aufbau- und des Abbaugradienten in solcher Weise, daß sich der Einfluß des Füllstandes auf die durch die Verknüpfung gebildete Beurteilungsgröße möglichst wenig auswirkt; und
    • Vergleichen des Werts der Beurteilungsgröße mit einem Schwellenwert und Beurteilen der Anlage als nicht funktionsfähig, wenn der Wert der Beurteilungsgröße und der Schwellenwert eine vorgegebene Beziehung erfüllen.
  • Die erfindungsgemäße Vorrichtung weist eine Ablaufsteuerung zum Ansteuern des Absperrventils und des Tankentlüftungsventils; eine Gradientenbestimmungseinrichtung zum Bestimmen der eben genannten Gradienten; eine Beurteilungsgrößen-Bildungseinrichtung zum Bilden des eben genannten Quotienten und eine Vergleichs/Beurteilungs-Einrichtung zum Vornehmen des eben genannten Vergleichs und der zugehörigen Beurteilung auf.
  • Es wird darauf hingewiesen, daß dann, wenn im folgenden von Gradienten des Unterdruckaufbaus oder -abbaus die Rede ist, fast immer positive (betragsmäßige) Werte gemeint sind. Lediglich die Fig. 2a und 2b betreffen diese Gradienten unter Berücksichtigung des Vorzeichens.
  • Es hat sich gezeigt, daß das erfindungsgemäße Verfahren Beurteilungsergebnisse liefert, die kaum vom Füllstand des Tanks beeinflußt werden. Ist der Tank fast voll, sind beide Gradienten ziemlich hoch, während sie bei fast leerem Tank beide ziemlich niedrig sind. Die relativen Änderungen beider Gradienten in Abhängigkeit vom Füllstand des Tanks hängen im wesentlichen in gleicher Weise vom Füllstand ab, so daß sich durch die Quotientenbildung die durch den Füllstand auf die Gradienten ausgeübten Effekte im wesentlichen aufheben.
  • Bei einem bevorzugten Ausführungsbeispiel wird der Quotient Abbaugradient/Aufbaugradient gebildet, und die Anlage wird als nicht funktionsfähig beurteilt, wenn der Quotient größer ist als der genannte Schwellenwert. Ist in der Anlage ein Leck vorhanden, wird der Abbaugradient relativ groß und der Aufbaugradient relativ klein, wodurch der Quotient über den Schwellenwert steigt. Ist die Anlage verstopft, wird der Aufbaugradient sehr klein, wohingegen sich keine besondere Auswirkung auf den Abbaugradienten ergibt, so daß der Quotient wegen des kleinen Nenners ebenfalls über den Schwellenwert steigt.
  • Theoretisch am genauesten ist das Verfahren, wenn es bei stillstehendem Fahrzeug und ausgegastem Kraftstoff ausgeführt wird. Ein Gasen des Kraftstoffs, sei es durch erhöhte Temperatur oder durch Bewegungen des Tankinhalts, beeinflußt die Gradienten in derselben Weise wie ein Leck und verfälscht damit die Messung. Während des Aufbaus des Unterdrucks kann dann, wenn das Verfahren an einem Verbrennungsmotor mit Lambdaregler ausgeführt wird, leicht mit Hilfe einer üblichen Magerkorrekturprüfung festgestellt werden, ob der Kraftstoff gast. Es hat sich herausgestellt, daß die Gradientenbestimmung selbst dann von gasendem Kraftstoff nicht wesentlich beeinflußt wird, wenn das Gasen mit der Magerkorrekturprüfung bereits deutlich festgestellt werden kann, z. B. durch eine Korrektur im Bereich von 5 bis 10 %. Das erfindungsgemäße Prüfverfahren wird daher vorzugsweise so weitergebildet, daß eine Magerkorrekturprüfung ausgeführt wird und das Prüfverfahren abgebrochen wird, wenn eine Magerkorrektur auszuführen ist, die stärker ist als eine Schwellenmagerkorrektur.
  • Während des Abbaus des Unterdrucks ist eine Magerkorrekturprüfung nicht möglich, da das Tankentlüftungsventil geschlossen ist. Wenn jedoch während des Unterdruckaufbaus keine Magerkorrektur erforderlich war und während des Abbaus das Fahrzeug stillsteht, ist es unwahrscheinlich, daß der Kraftstoff gast. Stillstand des Fahrzeugs wird daher durch entsprechende Signale direkt gemessen, z. B. Geschwindigkeits- oder Beschleunigungsmessung, oder es wird indirekt auf Fahrt geschlossen, z. B. aus Lastsignalen oder Kupplungs/Getriebestellungs-Signalen. Es kann jedoch auch unmittelbar auf die letzte Messung zur Bestimmung des Abbaugradienten folgend das Tankentlüftungsventil wieder geöffnet werden und untersucht werden, ob eine Magerkorrektur erforderlich ist. Ist dies nicht der Fall, wird davon ausgegangen, daß der Abbaugradient nicht durch gasenden Kraftstoff beeinflußt wurde. Allerdings ist nicht auszuschließen, daß der Tankdruck durch Volumenvergrößerungen und -verkleinerungen durch schwappenden Kraftstoff beeinflußt wurde. Derartige Schwankungen heben sich jedoch im zeitlichen Mittel auf und können demgemäß durch eine zeitliche Mittelung des zum Bestimmen des Abbaugradienten gemessenen Drucks berücksichtigt werden.
  • Zeichnung
    • Fig. 1: Blockdiagramm einer Tankentlüftungsanlage mit Vorrichtung zum Prüfen der Funktionsfähigkeit derselben durch Auswerten eines Quotienten Abbaugradient/Aufbaugradient betreffend den Unterdruck im Tank;
    • Fig. 2A und 2B: Diagramme betreffend Unterdruck-Änderungsgradienten bzw. Quotienten aus Änderungsgradienten abhängig von unterschiedlichen Tankfüllständen;
    • Fig. 3a, 3b: Flußdiagramm zum Erläutern eines Verfahrens zum Prüfen der der Funktionsfähigkeit einer Tankentlüftungsanlage;
    • Fig. 4 und 5: Teil-Flußdiagramme betreffend Variationen im Ablauf gemäß Fig. 3.
    Beschreibung von Ausführungsbeispielen
  • Die in Fig. 1 u. a. dargestellte Tankentlüftungsanlage weist einen Tank 10 mit Differenzdruckmesser 11, ein mit dem Tank über eine Tankanschlußleitung 12 verbundenes Adsorptionsfilter 13 mit Belüftungsleitung 14 mit eingefügtem Absperrventil AV und ein Tankentlüftungsventil TEV auf, das in eine Ventilleitung 15 eingesetzt ist, die das Adsorptionsfilter 13 mit dem Saugrohr 16 eines Verbrennungsmotors 17 verbindet. Das Tankentlüftungsventil TEV und das Absperrventil AV werden von Signalen angesteuert, wie sie von einem Ablaufsteuerblock 19 ausgegeben werden. Das Tankentlüftungsventil TEV wird auch abhängig vom Betriebszustand des Motors 17 angesteuert, was jedoch in Fig. 1 nicht veranschaulicht ist.
  • Im Abgaskanal 30 des Motors 17 ist ein Katalysator 20 mit davor befindlicher Lambdasonde 21 angeordnet. Diese gibt ihr Signal an einen Lambdaregelungsblock 22, der daraus ein Stellsignal für eine Einspritzeinrichtung 23 im Saugrohr 16 bestimmt und außerdem ein Magerkorrektursignal MK ausgibt.
  • Eine Beurteilung der Funktionsfähigkeit der Tankentlüftungsanlage erfolgt mit Hilfe eines Gradientenbestimmungsblocks 24, eines Quotientenberechnungsblocks 25 und eines Vergleichs/Beurteilungsblocks 26.
  • Die Ablaufsteuerung 19 startet einen Ablauf zum Prüfen der Funktionsfähigkeit der Tankentlüftungsanlage, sobald ein mit der Drosselklappe 28 des Motors zusammenwirkender Leerlaufsignalgeber 27 Leerlauf anzeigt und eine Adaptionsphase beendet ist. Adaptionsphasen zum Erzielen von Lernvorgängen im Lambdaregelungsblock 22 wechseln sich mit Tankentlüftungsphasen ab; erstere dauern typischerweise 1,5 min, letztere 4 min. Die Ablaufsteuerung schließt dann das Absperrventil AV und öffnet das Tankentlüftungsventil TEV in solcher Weise, wie es im Rahmen einer üblichen Tankentlüftung zulässig ist; gleichzeitig startet sie einen vom Gradientenbestimmungsblock 24 auszuführenden Ablauf zum Bestimmen des Aufbaus des Unterdrucks im Tank 10. Sobald dieser Gradient bestimmt ist, schließt die Ablaufsteuerung 19 das Tankentlüftungsventil TEV und veranlaßt nun den Gradientenbestimmungsblock 24, den Abbaugradienten für den Unterdruck im Tank zu bestimmen. Sobald beide Gradienten bestimmt sind, wird im Quotientenberechnungsblock 25 der Quotient Abbaugradient/Aufbaugradient berechnet, und dieser Quotient wird im Vergleichs/Beurteilungs-Block 26 mit einem Quotientenschwellenwert Q_SW verglichen. Liegt der Quotient über dem Schwellenwert, wird ein Beurteilungssignal BS ausgegeben, das anzeigt, daß die Anlage nicht funktionsfähig ist. Dieses Signal kann auch ausgegeben werden, wenn die festgestellte Magerkorrektur schwächer ist als eine Schwellenmagerkorrektur und der Aufbaugradient kleiner ist als ein Schwellenwert.
  • Das Diagramm von Fig. 2A veranschaulicht Unterdruck-Änderungsgradienten, wie sie mit einem 2,5 l-Sechszylinder-Motor im Leerlauf bei 50% geöffnetem Tankentlüftungsventil (Durchfluß ca. 0,6 m³/h) an einem Tank mit 80 l Fassungsvermögen für unterschiedliche Füllstände gemessen wurden. Für jeden Füllstand sind zwei Paare von Meßwerten mit jeweils kurzen Strichen eingetragen. Die durchgezogenen Striche betreffen dabei Messungen für den Druckabbaugradienten (oben) und den Druckaufbaugradienten (unten) für eine funktionsfähige Tankentlüftungsanlage, während die gestrichelten Striche die entsprechenden Werte für eine Anlage mit einem Leck von 2 mm Durchmesser darstellen. Fig. 2B zeigt für jedes Gradientenpaar aus Fig. 2A den Quotient Abbaugradient/Aufbaugradient. Aus den Figuren ist u. a. folgendes erkennbar. Selbst bei leerem Tank ist der Aufbaugradient bei dichter Anlage noch deutlich größer als der Aufbaugradient bei voller Anlage, aber einem Leck von 2 mm Durchmesser. Es kann daher ein Schwellenwert ṗ+_SW vorgegeben werden, bei dessen Unterschreiten klar ist, daß ein Leck von mindestens 2 mm Durchmesser vorliegt. Ist das Leck kleiner, hilft der in Fig. 2B dargestellte Quotient weiter. Dieser ist, wie erkennbar, kaum vom Füllstand abhängig. Der Wert, der für eine dichte Anlage erzielt wird, unterscheidet sich sehr stark von demjenigen für die Anlage mit dem Leck von 2 mm Durchmesser. Es kann daher ein Schwellenwert Q_SW für den Quotienten vorgegeben werden, der möglichst dicht unter dem kleinsten Quotienten liegt, wie er für die dichte Anlage gilt, und der es demgemäß erlaubt, zwischen einer dichten Anlage und einer solchen mit einem kleinen Leck zu unterscheiden.
  • Während vorstehend anhand des Blockdiagramms von Fig. 1 und des Diagramms von Fig. 2 ein Verfahren zum Prüfen der Funktionsfähigkeit der Tankentlüftungsanlage grob besprochen wurde, wird nun anhand des Flußdiagramms von Fig. 3 ein Ablauf detaillierter erläutert.
  • Das Verfahren gemäß Fig. 3 nutzt Signale vom Differenzdrucksensor 11. Dieser kann nach dem öffnen des Tankentlüftungsventils TEV nur dann wesentliche Unterdruckänderungen anzeigen, wenn im Saugrohr 16 betragsmäßig hoher Unterdruck herrscht und das Tankentlüftungsventil relativ weit geöffnet werden kann, ohne den Kraftstoff/Luft-Haushalt des Verbrennungsmotors 17 in einer Weise zu beeinflussen, die durch den Lambdaregler 22 nicht mehr schnell und zuverlässig ausgeregelt werden könnte. Diese Bedingungen sind bei wenig gasendem Kraftstoff insbesondere im Leerlauf erfüllt. Weiterhin ist zu beachten, daß das im folgenden beschriebene Verfahren dann besonders gute Ergebnisse liefert, wenn der Kraftstoff im Tank während der Messung möglichst wenig gast. Dies ist insbesondere dann der Fall, wenn sich der Kraftstoff im Tank kaum bewegt. Die Wahrscheinlichkeit, daß es an solcher Bewegung fehlt, ist hoch, wenn der Verbrennungsmotor im Leerlauf betrieben wird. Es wird daher für das Folgende angenommen, daß das Verfahren von Fig. 3 nur gestartet wird, wenn zuvor Leerlaufbetrieb festgestellt wurde. Zusätzlich kann Stillstand des Fahrzeugs gefordert sein. Es ist jedoch auch möglich, einen Betrieb des Motors bei mittlerer Last zuzulassen, wo ebenfalls gute Pumpwirkung durch das Tankentlüftungsventil TEV vorliegt, und das Erfülltsein der Bedingung des wenig bewegten Tankinhalts dadurch zu überprüfen, daß die Signale von Beschleunigungssensoren ausgewertet werden, wie sie z. B. bei Fahrzeugen mit Fahrwerksregelung vorhanden sind.
  • Zu Beginn des Verfahrens von Fig. 3 wird das Absperrventil AV geschlossen (Schritt s3.1), und der Differenzdruck pA zwischen dem Druck im Tank und dem Umgebungsdruck wird gemessen (Schritt s3.2). Anschließend wird das Tankentlüftungsventil TEV geöffnet (Schritt s3.3), woraufhin sich eine Zeitmeßschleife mit Schritten s3.4 bis s3.6 anschließt. In Schritt s3.4 wird untersucht, ob eine Magerkorrektur über einer Magerkorrekturschwelle erforderlich ist. Ist dies der Fall, wird ein Ablauf ab einer Marke E erreicht, welcher Ablauf weiter unten näher beschrieben wird. Andernfalls wird der Gasdurchsatz durch das Tankentlüftungsventil bestimmt (Schritt s3.5), und es wird abgefragt, ob seit dem öffnen des Tankentlüftungsventils eine vorgegebene Zeitspanne Δt verstrichen ist (Schritt s3.6). Ist die Zeitspanne noch nicht abgelaufen, werden die Schritte s3.4 bis s3.6 erneut durchlaufen. Andernfalls wird der Druck p im Tank gemessen (Schritt s3.7), und es wird die Differenz Δp = pA - p zwischen den Differenzdrücken pA und p zu Beginn und Ende der Zeitspanne Δt berechnet (Schritt s3.8). Diese Druckdifferenz wird auf einen vorgegebenen Durchsatz durch das Tankentlüftungsventil normiert (ebenfalls Schritt s3.8), um eine normierte Druckdifferenz Δp_NORM zu erhalten. Ist der bei wiederholtem Durchlaufen von Schritt s3.5 aufsummierte Gasdurchsatz kleiner als der vorgegebene Durchsatz, wird die gemessene Druckdifferenz entsprechend erhöht, andernfalls entsprechend erniedrigt, was jeweils durch Multiplizieren der gemessenen Druckdifferenz mit dem Quotienten aus vorgegebenem und aufsummiertem Durchsatz erfolgt. Es sei darauf hingewiesen, daß der Gasdurchsatz pro Zeiteinheit mit Hilfe des Tastverhältnisses für das Tankentlüftungsventil, wie es von der Ablaufsteuerung 19 vorgegeben wird, des Unterdrucks im Saugrohr 16 und einem Kennfeld bestimmt wird, das den Zusammenhang zwischen Unterdruck, Tastverhältnis und Gasdurchsatz beschreibt. Dabei wird Unterdruck im Saugrohr 16 entweder durch einen entsprechenden Sensor gemessen oder aus der Drehzahl des Motors 17 und der Stellung der Drosselklappe 28 bestimmt.
  • Mit Hilfe der normierten Druckdifferenz Δp_NORM wird der Unterdruck-Aufbaugradient zu Δp_NORM/Δt bestimmt (Schritt s3.9), woraufhin ein Vergleich mit einem Schwellenwert ṗ+_SW erfolgt (Schritt s3.10). Ist der Schwellenwert nicht erreicht, wird in einem Schritt s3.11 eine Fehlermeldung ausgegeben, und eine Fehlerleuchte wird zum Aufleuchten gebracht. Danach wird wieder die Marke E erreicht.
  • Ist mit dem Aufbaugradientenvergleich gemäß Schritt s3.10 noch keine Entscheidung über die Funktionsfähigkeit der Anlage möglich, wird in einem Schritt s3.12 das Tankentlüftungsventil geschlossen, und es wird eine neue Zeitmessung gestartet. Sobald eine vorgegebene Zeitspanne Δt seit dem Schließen des Tankentlüftungsventils abgelaufen ist (Schritt s3.13), wird der Unterdruck pE im Tank gemessen (Schritt s3.14), und das Tankentlüftungsventil wird geöffnet (Schritt s3.15), um eine Magerkorrekturprüfung vornehmen zu können (Schritt s3.16), die derjenigen von Schritt s3.4 entspricht, bei der also entweder die Marke E erreicht wird oder das Verfahren fortgesetzt wird, wenn die erforderliche Korrektur unter der Schwelle liegt. Wird das Verfahren fortgesetzt, wird der Abbaugradient ṗ- = ( p- pE)/Δt bestimmt (Schritt s3.17), und es wird der Quotient Abbaugradient/Aufbaugradient berechnet (Schritt s3.18). Ergibt der Vergleich dieses Quotienten mit einem Quotientenschwellenwert (Schritt s3.19), daß dieser Schwellenwert überschritten wurde, folgt ein Schritt s3.20, der dem Fehlermeldungsschritt s3.14 entspricht. Andernfalls wird über die bereits mehrfach erwähnte Marke E ein Schritt s3.21 erreicht, in dem das Absperrventil geöffnet wird, woraufhin das Ende des Verfahrens erreicht wird.
  • Statt des wie vorstehend gebildeten Quotienten kann auch der Kehrwert dieses Quotienten verwendet werden, wobei in diesem Fall die Anlage dann als nicht funktionsfähig beurteilt wird, wenn der Quotient kleiner ist als ein Schwellenwert. Statt eines Quotienten ist auch z.B. der Betrag der Differenz der (betragsmäßigen) Gradienten verwendbar. Andere Änderungen werden anhand der Fig. 4 bis 6 erläutert. Der Ablauf gemäß Fig. 4 ist zwischen den Marken A und B im Ablauf von Fig. 3 statt des dortigen Teilablaufs auszuführen. Er dient dazu, mit einer möglichst kurzen statt einer vorgegebenen Zeitspanne auszukommen. Hierzu wird in einem Schritt s4.1 untersucht, ob eine Maximalzeitspanne seit öffnen des Tankentlüftungsventils abgelaufen ist. Diese wird so gewählt, daß selbst bei leerem Tank, aber dichter Anlage, ein Schwellendruck p_SW von z.B. -15 hPa innerhalb ihrer erreicht werden kann. Wird festgestellt, daß die Spanne abgelaufen ist, erfolgt ein Fehlermeldungsschritt s4.2, der Schritt s3.11 entspricht. Andernfalls folgt ein Schritt s4.3, in dem der Gasdurchsatz entsprechend wie in Schritt s3.5 bestimmt wird. Anschließend wird der aktuelle Differenzdruck p im Tank gemessen (Schritt s4.4), und der gemessene Wert wird mit dem genannten Schwellenwert p_SW verglichen (Schritt s4.5). Ist dieser Schwellenwert noch nicht erreicht, folgt der Ablauf ab Schritt s4.1 erneut, während andernfalls in einer Schritt s4.5 die Zeitspanne Δt seit dem Beginn des öffnens des Tankentlüftungsventils in Schritt s3.3 erfaßt wird. Dann folgt das Verfahren gemäß Fig. 3 ab Schritt s3.8.
  • Die Variante gemäß Fig. 5 ersetzt sozusagen mit einem Schritt s5.1 die Prüfung von Schritt s3.16, die dazu dient, festzustellen, ob die Messungen zum Bestimmen des Abbaugradienten verwertbar sind. Hierzu wird im genannten Schritt s5.1 untersucht, ob die Last des Motors 17 über einer Schwelle liegt. Ist dies der Fall, wird angenommen, daß sich das Fahrzeug bewegt. Daraus wird auf sich bewegenden und damit gasenden Tankinhalt geschlossen, was es empfehlenswert erscheinen läßt, den Prüfablauf abzubrechen. Daher wird die Marke E erreicht. Andernfalls schließen sich als Schritte s5.2 bis s5.4 solche gemäß den Schritten s3.13 bis s3.15 an, auf die dann wegen des Wegfalls von Schritt s3.16 der Schritt s3.17 folgt.
  • Bei der Beschreibung des Fehlermeldeschritts s3.11 wurde angegeben, daß die Fehlermeldung beim ersten Feststellen eines Fehlers erfolgt. Bei der Fehlerbearbeitung in Systemen der Motorelektronik wird allerdings in der Regel so vorgegangen, daß ein Fehler erst ausgegeben wird, wenn er mehrfach innerhalb einer vorgebebenen Anzahl von Prüfabläufen auftrat. Auf derartige Details kommt es jedoch hier nicht an.

Claims (8)

  1. Verfahren zum Prüfen der Funktionsfähigkeit einer Tankentlüftungsanlage in einem Fahrzeug mit Verbrennungsmotor, welche Tankentlüftungsanlage über einen Tank mit Tankdrucksensor, ein mit dem Tank über eine Tankanschlußleitung verbundenes Adsorptionsfilter und ein Tankentlüftungsventil verfügt, das mit dem Adsorptionsfilter über eine Ventilleitung verbunden ist, bei welcher Anlage das Adsorptionsfilter eine durch ein Absperrventil verschließbare Belüftungsleitung aufweist, mit folgenden Schritten:
    - Schließen des Absperrventils;
    - öffnen des Tankentlüftungsventils;
    - Bestimmen des Aufbaugradienten (ṗ+) des sich im Tank aufbauenden Unterdrucks;
    - Schließen des Tankentlüftungsventils;
    - Bestimmen des Abbaugradienten (ṗ-) des sich im Tank abbauenden Unterdrucks;
    - mathematisches Verknüpfen des Aufbau- und des Abbaugradienten in solcher Weise, daß sich der Einfluß des Füllstandes auf die durch die Verknüpfung gebildete Beurteilungsgröße (Q) möglichst wenig auswirkt;
    - Vergleichen des Werts der Beurteilungsgröße mit einem Schwellenwert (Q_SW) und Beurteilen der Anlage als nicht funktionsfähig, wenn der Wert der Beurteilungsgröße und der Schwellenwert eine vorgegebene Beziehung erfüllen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Beurteilungsgröße durch einen Quotienten gebildet wird, der den Aufbau- und den Abbaugradienten enthält.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß überprüft wird, ob ein mit dem Verbrennungsmotor zusammenwirkender Lambdaregler im Zeitraum mit geöffnetem Tankentlüftungsventil eine Magerkorrektur ausführen muß, die stärker als eine Schwellenmagerkorrektur ist, und das Prüfverfahren ohne Ergebnis abgebrochen wird, wenn die festgestellte Magerkorrektur stärker ist als die Schwellenmagerkorrektur.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß überprüft wird, ob ein mit dem Verbrennungsmotor zusammenwirkender Lambdaregler im Zeitraum mit geöffnetem Tankentlüftungsventil eine Magerkorrektur ausführen muß, die stärker als eine Schwellenmagerkorrektur ist, und das Prüfverfahren mit dem Ergebnis des Vorliegens einer undichten Anlage abgeschlossen wird, wenn die festgestellte Magerkorrektur schwächer ist als die Schwellenmagerkorrektur und der Aufbaugradient kleiner ist als ein Schwellenwert (ṗ+ < ṗ+_SW).
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß nach der letzten Druckmessung, die zum Bestimmen des Abbaugradienten erforderlich ist, das Tankentlüftungsventil geöffnet wird und untersucht wird, ob ein mit dem Verbrennungsmotor zusammenwirkender Lambdaregler eine Magerkorrektur ausführen muß, die stärker als eine Schwellenmagerkorrektur ist, und das Prüfverfahren ohne Ergebnis abgebrochen wird, wenn die festgestellte Magerkorrektur stärker ist als die Schwellenmagerkorrektur.
  6. Verfahren nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß ab dem Schließzeitpunkt des Tankentlüftungsventils mindestens eine Betriebsgröße des Fahrzeugs überprüft wird, deren Meßwerte anzeigen, ob sich das Fahrzeug und damit der Inhalt des Tanks bewegt, und das Prüfverfahren ohne Ergebnis abgebrochen wird, wenn der Meßwert der Betriebsgröße größer ist als ein vorgegebener Schwellenwert (Schritt s5.1).
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß im Zeitraum mit geöffnetem Tankentlüftungsventil der Gasdurchsatz durch dieses bestimmt wird und der Aufbaugradient auf einen vorgegebenen Gasdurchsatz normiert wird. Anlage.
  8. Vorrichtung zum Prüfen der Funktionsfähigkeit einer Tankentlüftungsanlage in einem Fahrzeug mit Verbrennungsmotor (17), welche Tankentlüftungsanlage über einen Tank (10) mit Tankdrucksensor (11), ein mit dem Tank über eine Tankanschlußleitung verbundenes Adsorptionsfilter (13) und ein Tankentlüftungsventil (TEV) verfügt, das mit dem Adsorptionsfilter über eine Ventilleitung (15) verbunden ist, bei welcher Anlage das Adsorptionsfilter eine durch ein Absperrventil (AV) verschließbare Belüftungsleitung aufweist, mit:
    - einer Ablaufsteuerung (19) zum Ansteuern des Absperrventils und des Tankentlüftungsventils;
    gekennzeichnet durch
    - eine Gradienten-Bestimmungseinrichtung (24) zum Bestimmen des Aufbaugradienten des sich im Tank bei geschlossenem Absperrventil und geöffnetem Tankentlüftungsventil aufbauenden Unterdrucks, und zum Bestimmen des Abbaugradienten des sich nach einem Schließen des Tankentlüftungsventils im Tank abbauenden Unterdrucks;
    - eine Beurteilungsgrößen-Berechnungseinrichtung (25) zum mathematischen Verknüpfen des Aufbau- und des Abbaugradienten in solcher Weise, daß sich der Einfluß des Füllstandes auf die durch die Verknüpfung gebildete Beurteilungsgröße (Q) möglichst wenig auswirkt; und
    - eine Vergleichs/Beurteilungs-Einrichtung (26) zum Vergleichen des Wertes der Beurteilungsgröße mit einem Schwellenwert und zum Beurteilen der Anlage als nicht funktionsfähig, wenn der Wert der Beurteilungsgröße und der Schwellenwert eine vorgegebene Beziehung erfüllen.
EP93901633A 1992-02-04 1993-01-14 Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage Expired - Lifetime EP0578795B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4203100A DE4203100A1 (de) 1992-02-04 1992-02-04 Verfahren und vorrichtung zum pruefen der funktionsfaehigkeit einer tankentlueftungsanlage
DE4203100 1992-02-04
PCT/DE1993/000019 WO1993015313A1 (de) 1992-02-04 1993-01-14 Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage

Publications (2)

Publication Number Publication Date
EP0578795A1 EP0578795A1 (de) 1994-01-19
EP0578795B1 true EP0578795B1 (de) 1995-04-05

Family

ID=6450910

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93901633A Expired - Lifetime EP0578795B1 (de) 1992-02-04 1993-01-14 Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage

Country Status (6)

Country Link
US (1) US5463998A (de)
EP (1) EP0578795B1 (de)
JP (1) JP3278155B2 (de)
KR (1) KR100307107B1 (de)
DE (2) DE4203100A1 (de)
WO (1) WO1993015313A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303997B4 (de) * 1993-02-11 2006-04-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Tankentlüftungsdiagnose bei einem Kraftfahrzeug
US5576619A (en) * 1993-09-21 1996-11-19 Sie Sensorik-Industrie-Elektronik Gmbh Method and apparatus using an electrical sensor for monitoring a moving medium
DE4342431A1 (de) * 1993-12-11 1995-06-14 Bosch Gmbh Robert Verfahren zur Ermittlung von Aussagen über den Zustand einer Tankentlüftungsanlage
DE4401085C1 (de) * 1994-01-15 1995-04-27 Daimler Benz Ag Verfahren und Vorrichtung zur stationären Bestimmung von Undichtigkeiten in einer Tankentlüftungsanlage
GB2286182A (en) * 1994-01-27 1995-08-09 Ford Motor Co A fuel tank venting arrangement for a motor vehicle
JPH0835452A (ja) * 1994-07-26 1996-02-06 Hitachi Ltd エバポパージシステムの診断方法
DE4427688C2 (de) * 1994-08-04 1998-07-23 Siemens Ag Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
JP3189143B2 (ja) * 1994-09-19 2001-07-16 株式会社ユニシアジェックス 内燃機関の燃料供給装置
DE4442544C1 (de) * 1994-11-30 1996-04-04 Daimler Benz Ag Entlüftungsvorrichtung für Kraftstofftank, insbesondere in Kraftfahrzeugen
JP3272183B2 (ja) * 1995-03-03 2002-04-08 本田技研工業株式会社 内燃エンジンの蒸発燃料処理装置
JP3565611B2 (ja) * 1995-03-29 2004-09-15 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
DE19518292C2 (de) * 1995-05-18 2003-07-17 Bosch Gmbh Robert Verfahren zur Diagnose eines Tankentlüftungssystems
DE19538775A1 (de) * 1995-10-18 1997-04-24 Bosch Gmbh Robert Verfahren zur pneumatischen Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage
US5671718A (en) * 1995-10-23 1997-09-30 Ford Global Technologies, Inc. Method and system for controlling a flow of vapor in an evaporative system
JPH09158793A (ja) * 1995-12-05 1997-06-17 Denso Corp 燃料蒸散防止機構用異常検出装置
JP3322119B2 (ja) * 1996-03-04 2002-09-09 三菱電機株式会社 燃料蒸散防止装置の故障診断装置
JP3167924B2 (ja) * 1996-04-26 2001-05-21 本田技研工業株式会社 蒸発燃料処理装置
JPH09329063A (ja) * 1996-06-12 1997-12-22 Hitachi Ltd エバポシステムの診断方法
US5765121A (en) * 1996-09-04 1998-06-09 Ford Global Technologies, Inc. Fuel sloshing detection
SE509087C2 (sv) * 1997-04-30 1998-12-07 Volvo Ab Förfarande och anordning för täthetsmätning i ett tanksystem
DE19910486A1 (de) * 1999-03-10 2000-09-14 Bielomatik Leuze & Co Einrichtung und Verfahren zur Durchflußprüfung eines Behälter-Anschlusses
US6269803B1 (en) * 2000-02-22 2001-08-07 Jaguar Cars Limited Onboard diagnostics for vehicle fuel system
DE10251281B3 (de) * 2002-11-04 2004-06-03 Dräger Safety AG & Co. KGaA Verfahren zur Bewegungserkennung eines Kraftfahrzeugs
DE102005003924B4 (de) 2005-01-27 2012-12-06 Continental Automotive Gmbh Verfahren zur Ansteuerung eines Tankentlüftungsventils eines Kraftfahrzeuges während einer Dichtigkeitsprüfung
US7810475B2 (en) * 2009-03-06 2010-10-12 Ford Global Technologies, Llc Fuel vapor purging diagnostics
US9261054B2 (en) 2012-03-23 2016-02-16 Ford Global Technologies, Llc Fuel system diagnostics
US10006413B2 (en) * 2015-07-09 2018-06-26 Ford Global Technologies, Llc Systems and methods for detection and mitigation of liquid fuel carryover in an evaporative emissions system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4003751C2 (de) * 1990-02-08 1999-12-02 Bosch Gmbh Robert Tankentlüftungsanlage für ein Kraftfahrzeug und Verfahren zum Überprüfen deren Funktionstüchtigkeit
DE4030948C1 (en) * 1990-09-29 1991-10-17 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Monitoring removal of petrol vapour from IC engine fuel tank - detecting change in fuel-air mixt. composition during selected working conditions
JP2551222B2 (ja) * 1990-10-15 1996-11-06 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
GB2254318B (en) * 1991-04-02 1995-08-09 Nippon Denso Co Abnormality detecting apparatus for use in fuel transpiration preventing system
DE4111361A1 (de) * 1991-04-09 1992-10-15 Bosch Gmbh Robert Tankentlueftungsanlage sowie verfahren und vorrichtung zu deren ueberpruefung
US5275144A (en) * 1991-08-12 1994-01-04 General Motors Corporation Evaporative emission system diagnostic
US5299545A (en) * 1991-09-13 1994-04-05 Honda Giken Kogyo Kabushiki Kaisha Evaporative fuel-processing system for internal combustion engines
JP2580928B2 (ja) * 1992-01-06 1997-02-12 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
US5295472A (en) * 1992-01-06 1994-03-22 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting malfunction in evaporated fuel purge system used in internal combustion engine
DE4216067C2 (de) * 1992-05-15 2002-12-05 Bosch Gmbh Robert Verfahren und Vorrichtung zur Tankentlüftungs-Diagnose bei einem Kraftfahrzeug
JP3286348B2 (ja) * 1992-07-22 2002-05-27 愛三工業株式会社 内燃機関の蒸発ガス処理装置における異常検出装置
JP2635270B2 (ja) * 1992-08-27 1997-07-30 三菱電機株式会社 蒸発燃料制御装置の故障検出装置
JP2921307B2 (ja) * 1992-11-25 1999-07-19 日産自動車株式会社 内燃機関の蒸発燃料リーク診断装置
JP2741702B2 (ja) * 1992-12-02 1998-04-22 本田技研工業株式会社 内燃エンジンの蒸発燃料処理装置

Also Published As

Publication number Publication date
DE4203100A1 (de) 1993-08-05
WO1993015313A1 (de) 1993-08-05
KR100307107B1 (ko) 2001-12-15
EP0578795A1 (de) 1994-01-19
US5463998A (en) 1995-11-07
JPH06506751A (ja) 1994-07-28
JP3278155B2 (ja) 2002-04-30
DE59300121D1 (de) 1995-05-11

Similar Documents

Publication Publication Date Title
EP0578795B1 (de) Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage
EP0559854B1 (de) Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage
DE19636431B4 (de) Verfahren und Vorrichtung zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage
DE69411153T2 (de) Integritätsbestätigung eines knistersystems mit positivem druck
DE4303997B4 (de) Verfahren und Vorrichtung zur Tankentlüftungsdiagnose bei einem Kraftfahrzeug
DE69616269T2 (de) Vorrichtung und verfahren zur detektion eines lecks in einem verdampfungsemissionssteuerungssystem
DE69409098T2 (de) Integritätsbestätigung eines kanistersystems mit positivem druck
DE102004024628B4 (de) Fehlerdiagnosevorrichtung für Kraftstoffdampf-Verarbeitungssystem
DE19713085C2 (de) Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
DE4108856C2 (de) Tankentlüftungsanlage sowie Verfahren und Vorrichtung zum Überprüfen der Dichtheit derselben
DE10028157A1 (de) Kraftstoffanlagen-Leckerkennung
WO1993015382A1 (de) Verfahren und vorrichtung zur tankfüllstandserkennung
EP0535183B1 (de) Verfahren und vorrichtung zum überprüfen der funktionsfähigkeit einer tankentlüftungsanlage
DE19518292C2 (de) Verfahren zur Diagnose eines Tankentlüftungssystems
EP0580603B1 (de) Verfahren und vorrichtung zum prüfen einer tankentlüftungsanlage
EP1760303B1 (de) Verfahren zur Überprüfung der Gasdichtheit einer Kraftfahrzeug- Tankentlüftungsanlage
DE10300592A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP0503280B1 (de) Vorrichtung zum Messen des Anteils flüssigen Brennstoffs in einem Tank
EP0952332B1 (de) Verfahren zur Bestimmung von Leckagen im Kraftstoffversorgungssystem eines Kraftfahrzeuges
EP0548300B1 (de) Tankenlüftungsanlage für ein kraftfahrzeug sowie verfahren und vorrichtung zum überprüfen von deren funktionsfähigkeit
DE112012005026T5 (de) Verfahren zum Ermitteln einer Leckage in einem Dampfmanagementsystem eines Kraftstoffsystems eines Kraftfahrzeugs sowie Dampfmanagementsysteme für ein Kraftfahrzeug mit Mitteln zum Ermitteln von Leckagen
DE102005022121B3 (de) Verfahren zur Ermittlung der Einspritzkorrektur während der Überprüfung der Dichtheit einer Tankentlüftungsanlage
WO1995016122A1 (de) Verfahren zur ermittlung von aussagen über den zustand einer tankentlüftungsanlage
DE10006186C1 (de) Verfahren zur Dichtheitsprüfung eines Tanksystems eines Fahrzeugs
DE10217378B3 (de) Verfahren zur Leckerkennung in einem Karftstoffbehälter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 19940812

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59300121

Country of ref document: DE

Date of ref document: 19950511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020226

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030117

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST