EP0578795B1 - Procede et dispositif pour verifier l'aptitude a fonctionner d'une installation de degazage de reservoir - Google Patents
Procede et dispositif pour verifier l'aptitude a fonctionner d'une installation de degazage de reservoir Download PDFInfo
- Publication number
- EP0578795B1 EP0578795B1 EP93901633A EP93901633A EP0578795B1 EP 0578795 B1 EP0578795 B1 EP 0578795B1 EP 93901633 A EP93901633 A EP 93901633A EP 93901633 A EP93901633 A EP 93901633A EP 0578795 B1 EP0578795 B1 EP 0578795B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tank
- valve
- gradient
- correction
- leanness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
- F02M25/0809—Judging failure of purge control system
Definitions
- the following relates to a method and a device for checking the functionality of a tank ventilation system on a vehicle with an internal combustion engine.
- the device according to the invention has a sequence control for actuating the shut-off valve and the tank ventilation valve; gradient determining means for determining the gradients just mentioned; a judgment quantity formation device for forming the quotient just mentioned and a comparison / judgment device for making the comparison just mentioned and the associated assessment.
- the method according to the invention provides assessment results which are hardly influenced by the fill level of the tank.
- both gradients are quite high, while when the tank is almost empty they are both quite low.
- the relative changes of both gradients as a function of the fill level of the tank depend essentially on the fill level, so that the effects exerted by the fill level on the gradients are essentially canceled out by the formation of the quotient.
- the quotient degradation gradient / buildup gradient is formed, and the system is judged to be inoperative if the quotient is greater than the stated threshold value. If there is a leak in the system, the degradation gradient becomes relatively large and the buildup gradient relatively small, as a result of which the quotient rises above the threshold value. If the system is blocked, the build-up gradient becomes very small, whereas there is no particular effect on the build-up gradient, so that the quotient also rises above the threshold value because of the small denominator.
- the procedure is most precise when it is carried out with the vehicle at a standstill and the fuel out of gas.
- Gassing the fuel be it through elevated temperature or through movements of the tank contents, influences the gradients in the same way as a leak and thus falsifies the measurement.
- a conventional lean correction test whether the fuel is gassing. It has been found that the gradient determination of gassing fuel even then is not significantly affected if the gassing can already be clearly determined with the lean correction test, e.g. B. by a correction in the range of 5 to 10%.
- the test method according to the invention is therefore preferably developed such that a lean correction test is carried out and the test method is terminated if lean correction is to be carried out which is stronger than a threshold lean correction.
- a lean correction check is not possible while the vacuum is being reduced because the tank ventilation valve is closed. However, if no lean correction was required during the vacuum build-up and the vehicle is stationary during dismantling, the fuel is unlikely to gas. Standstill of the vehicle is therefore measured directly by appropriate signals, e.g. B. speed or acceleration measurement, or it is indirectly concluded to drive, z. B. from load signals or clutch / gear position signals. However, immediately after the last measurement to determine the degradation gradient, the tank ventilation valve can be opened again and it can be examined whether a lean correction is necessary. If this is not the case, it is assumed that the degradation gradient was not influenced by gassing fuel. However, it cannot be ruled out that the tank pressure was influenced by volume increases and decreases due to sloshing fuel. Such fluctuations cancel each other out over time and can accordingly be taken into account by time averaging the pressure measured to determine the degradation gradient.
- the tank ventilation system shown has a tank 10 with a differential pressure meter 11, an adsorption filter 13 connected to the tank via a tank connection line 12, with a ventilation line 14 with an inserted shut-off valve AV, and a tank ventilation valve TEV, which is inserted into a valve line 15 which connects the adsorption filter 13 with the suction pipe 16 an internal combustion engine 17 connects.
- the tank ventilation valve TEV and the shut-off valve AV are controlled by signals as they are output by a sequence control block 19.
- the tank ventilation valve TEV is also activated depending on the operating state of the engine 17, but this is not illustrated in FIG. 1.
- a catalytic converter 20 with a lambda probe 21 located in front of it is arranged in the exhaust duct 30 of the engine 17.
- the latter sends its signal to a lambda control block 22, which determines an actuating signal for an injection device 23 in the intake manifold 16 and also outputs a lean correction signal MK.
- the functionality of the tank ventilation system is assessed with the aid of a gradient determination block 24, a quotient calculation block 25 and a comparison / assessment block 26.
- the sequence controller 19 starts a sequence for checking the functionality of the tank ventilation system as soon as an idling signal generator 27 cooperating with the throttle valve 28 of the engine indicates idling and an adaptation phase has ended.
- Adaptation phases for achieving learning processes in the lambda control block 22 alternate with tank ventilation phases; the former typically last 1.5 minutes, the latter 4 minutes.
- the sequence control then closes the shut-off valve AV and opens the tank ventilation valve TEV in such a way as is permitted in the context of a conventional tank ventilation; at the same time, it starts a process to be carried out by the gradient determination block 24 for determining the build-up of the negative pressure in the tank 10.
- the sequence controller 19 closes the tank ventilation valve TEV and now causes the gradient determination block 24 to determine the reduction gradient for the negative pressure in the tank.
- the quotient degradation gradient / buildup gradient is calculated in the quotient calculation block 25, and this quotient is compared in the comparison / assessment block 26 with a quotient threshold value Q_SW. If the quotient is above the threshold value, an evaluation signal BS is output, which indicates that the system is not functional. This signal can also be output if the determined lean correction is weaker than a threshold lean correction and the build-up gradient is smaller than a threshold value.
- FIG. 2A illustrates negative pressure change gradients as they are with a 2.5 l six-cylinder engine at idle with the tank vent valve (flow 0.6 m3 / h) were measured on a tank with 80 l capacity for different fill levels. Two pairs of measured values, each with short lines, are entered for each fill level.
- the solid lines relate to measurements for the pressure reduction gradient (top) and the pressure build-up gradient (bottom) for a functional tank ventilation system, while the dashed lines represent the corresponding values for a system with a leak of 2 mm in diameter.
- FIG. 2B shows the quotient degradation gradient / buildup gradient for each gradient pair from FIG. 2A. The following can be seen from the figures.
- a threshold value ⁇ + _SW can therefore be specified, below which it is clear that there is a leak of at least 2 mm in diameter. If the leak is smaller, the quotient shown in FIG. 2B helps further. As can be seen, this is hardly dependent on the fill level. The value that is achieved for a dense system is very different from that for the system with a leak of 2 mm in diameter.
- a threshold value Q_SW can therefore be specified for the quotient, which is as close as possible to the smallest quotient as it applies to the dense system and which accordingly makes it possible to distinguish between a dense system and one with a small leak.
- the method according to FIG. 3 uses signals from the differential pressure sensor 11. This can be done after opening the tank ventilation valve TEV only show significant changes in negative pressure if there is a high negative pressure in the intake manifold 16 and the tank ventilation valve can be opened relatively widely without influencing the fuel / air budget of the internal combustion engine 17 in a manner which is no longer quick and reliable by the lambda controller 22 could be corrected. These conditions are met with low gassing fuel, especially when idling. It should also be noted that the method described in the following provides particularly good results if the fuel in the tank gasses as little as possible during the measurement. This is especially the case when the fuel in the tank hardly moves. Such a movement is unlikely to occur when the engine is idling.
- the method of FIG. 3 is only started if idle operation has previously been determined.
- the vehicle may also be at a standstill.
- step s3.4 it is examined whether a lean correction above a lean correction threshold is required. If this is the case, a process is achieved from a mark E, which process is described in more detail below. Otherwise, the gas throughput is determined by the tank ventilation valve (step s3.5), and it is queried whether a predetermined time interval ⁇ t has elapsed since the tank ventilation valve opened (step s3.6).
- This pressure difference is standardized to a predetermined throughput by the tank ventilation valve (likewise step s3.8) in order to obtain a standardized pressure difference ⁇ p_NORM. If the gas throughput totaled when step s3.5 is repeated is less than the predetermined throughput, the measured pressure difference is increased accordingly, otherwise decreased accordingly, which is done in each case by multiplying the measured pressure difference by the quotient of the predetermined and totaled throughput.
- the gas throughput per unit of time is determined with the aid of the duty cycle for the tank ventilation valve, as specified by the sequence control 19, the negative pressure in the intake manifold 16 and a map which describes the relationship between negative pressure, duty cycle and gas throughput.
- vacuum in the intake manifold 16 is either measured by a corresponding sensor or determined from the speed of the engine 17 and the position of the throttle valve 28.
- the negative pressure build-up gradient is determined to be ⁇ p_NORM / ⁇ t (step s3.9), whereupon a comparison is made with a threshold value ⁇ + _SW (step s3.10). If the threshold value has not been reached, an error message is output in step s3.11, and an error lamp is illuminated. Then the E mark is reached again.
- step s3.12 If a decision about the functionality of the system is not yet possible with the built-up gradient comparison according to step s3.10, the tank ventilation valve is closed in step s3.12 and a new time measurement is started. As soon as a predetermined period of time ⁇ t has elapsed since the tank ventilation valve closed (step s3.13), the negative pressure pE in the tank is measured (step s3.14) and the tank ventilation valve is opened (step s3.15) in order to carry out a lean correction test can (step s3.16), which corresponds to that of step s3.4, in which case either the mark E is reached or the method is continued if the required correction is below the threshold.
- the reciprocal of this quotient can also be used, in which case the system is judged to be inoperative if the quotient is less than a threshold value.
- the amount of the difference between the (absolute) gradients can also be used, for example.
- FIGS. 4 to 6. 4 is to be carried out between marks A and B in the flow of FIG. 3 instead of the partial flow there. It is used to get by as short as possible instead of a predetermined period.
- a step s4.1 is used to examine whether a maximum time period has elapsed since the tank ventilation valve opened.
- step s4.2 takes place, which corresponds to step s3.11. Otherwise, step s4.3 follows, in which the gas throughput is determined in accordance with step s3.5.
- the current differential pressure p in the tank is then measured (step s4.4), and the measured value is compared with the threshold value p_SW mentioned (step s4.5). If this threshold value has not yet been reached, the sequence follows again from step s4.1, while otherwise, in a step s4.5, the time period ⁇ t since the beginning of the opening of the tank ventilation valve is recorded in step s3.3.
- the method according to FIG. 3 then follows from step s3.8.
- step s5.1 examines whether the load of the motor 17 is above a threshold. If this is the case, it is assumed that the vehicle is moving. From this it is concluded that the tank contents are moving and therefore gassing, which makes it seem advisable to abort the test procedure. Therefore the brand E is reached. Otherwise, steps s5.2 to s5.4 are followed by steps s3.13 to s3.15, which are then followed by step s3.17 due to the omission of step s3.16.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
Claims (8)
- Procédé pour vérifier l'aptitude à fonctionner d'une installation de dégazage de réservoir d'un véhicule équipé d'un moteur à combustion, cette installation de dégazage comprenant un réservoir équipé d'un capteur de pression de réservoir, d'un filtre d'adsorption relié au réservoir par une conduite de raccordement et une soupape de dégazage de réservoir reliée par une conduite de soupape au filtre d'adsorption, installation dans laquelle le filtre d'adsorption comprend une conduite de ventilation susceptible d'être fermée par un robinet d'arrêt, procédé comprenant les étapes suivantes :- fermeture du robinet d'arrêt,- ouverture de la soupape de dégazage du réservoir,- détermination du gradient d'établissement (ṗ+) de la dépression qui s'établit dans le réservoir,- fermeture de la soupape de dégazage du réservoir,- détermination des gradients de diminution (ṗ-) de la dépression qui diminue dans le réservoir,- combinaison mathématique du gradient d'établissement et du gradient de diminution de façon que l'influence du niveau de remplissage se répercute aussi faiblement que possible sur la grandeur de jugement (Q) formée par la combinaison,- comparaison de la valeur de la grandeur de jugement à une valeur de seuil (Q_SW) et évaluation de l'installation comme non apte à fonctionner si la valeur de la grandeur de jugement et le seuil satisfont une relation prédéterminée.
- Procédé selon la revendication 1, caractérisé en ce que la grandeur de jugement est formée par un quotient du gradient d'établissement et du gradient de diminution.
- Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on vérifie si un régulateur Lambda coopérant avec le moteur à combustion interne doit exécuter une correction de mélange maigre dans l'intervalle pendant lequel la soupape de dégazage de réservoir est ouverte, correction qui est plus forte qu'une correction de seuil maigre et on interrompt le procédé de vérification sans résultat si la correction de mélange maigre, constatée est plus forte que la correction de seuil maigre.
- Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on vérifie si un régulateur Lambda coopérant avec le moteur à combustion doit effectuer une correction de mélange maigre pendant l'intervalle de temps lorsque la soupape de ventilation du réservoir est ouverte, correction qui est plus forte qu'une correction de seuil maigre et en ce qu'on arrête le procédé de vérification avec pour résultat l'existence d'une installation non étanche si la correction maigre, constatée, est plus faible que la correction de seuil maigre et si le gradient d'établissement est inférieur à un seuil (ṗ+ < ṗ+_SW).
- Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'après la dernière mesure de pression nécessaire pour déterminer les gradients de diminution, on ouvre la soupape de dégazage du réservoir et on vérifie si un régulateur Lambda coopérant avec le moteur à combustion doit exécuter une correction de mélange maigre qui est plus forte qu'une correction de seuil maigre et on arrête le procédé de vérification sans résultat si la correction de mélange maigre, constatée est plus forte que la correction de seuil maigre.
- Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'à partir de l'instant de la fermeture de la soupape de dégazage du réservoir on vérifie au moins un paramètre de fonctionnement du véhicule dont les valeurs de mesure indiquent si le véhicule et ainsi le contenu du réservoir sont en mouvement et on arrête sans résultat le procédé de vérification si la valeur de mesure du paramètre de fonctionnement est supérieure à une valeur de seuil prédéterminée (étape s5.1).
- Procédé selon l'une des revendications 1 à 6, caractérisé en ce que dans la période pendant laquelle la soupape de dégazage de réservoir est ouverte, on détermine le débit de gaz à travers celle-ci et on normalise le gradient d'établissement sur un débit de gaz prédéterminé.
- Dispositif pour vérifier l'aptitude à fonctionner d'une installation de dégazage de réservoir d'un véhicule équipé d'un moteur à combustion (17), cette installation de dégazage comprenant un réservoir (10) avec un capteur de pression de réservoir (11), un filtre d'adsorption (13) relié par une conduite de raccordement au réservoir et une soupape de dégazage de réservoir (TEV) elle-même reliée au filtre d'adsorption par une conduite de soupape (15), installation dont le filtre d'adsorption comporte une conduite de ventilation qui se ferme par un robinet d'arrêt (AV), comprenant :- une commande de procédé (19) pour commander le robinet d'arrêt et la soupape de dégazage,caractérisé par,- une installation (24) pour déterminer le gradient d'établissement de la dépression dans le réservoir lorsque le robinet d'arrêt est fermé et lorsque la soupape de dégazage est ouverte ainsi que pour déterminer les gradients de diminution de la dépression qui diminue après la fermeture de la soupape de dégazage du réservoir,- une installation de calcul (25) d'une grandeur de jugement pour combiner mathématiquement les gradients d'établissement et de diminution de façon que l'influence du niveau de remplissage sur la grandeur de jugement (Q), formée par combinaison se répercute d'une manière aussi réduite que possible et,- une installation de comparaison/appréciation (26) pour comparer la valeur de la grandeur de jugement à un seuil et pour juger l'installation comme non apte à fonctionner si la valeur de la grandeur de jugement et le seuil satisfont une relation prédéterminée.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4203100A DE4203100A1 (de) | 1992-02-04 | 1992-02-04 | Verfahren und vorrichtung zum pruefen der funktionsfaehigkeit einer tankentlueftungsanlage |
DE4203100 | 1992-02-04 | ||
PCT/DE1993/000019 WO1993015313A1 (fr) | 1992-02-04 | 1993-01-14 | Procede et dispositif pour verifier l'aptitude a fonctionner d'une installation de degazage de reservoir |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0578795A1 EP0578795A1 (fr) | 1994-01-19 |
EP0578795B1 true EP0578795B1 (fr) | 1995-04-05 |
Family
ID=6450910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93901633A Expired - Lifetime EP0578795B1 (fr) | 1992-02-04 | 1993-01-14 | Procede et dispositif pour verifier l'aptitude a fonctionner d'une installation de degazage de reservoir |
Country Status (6)
Country | Link |
---|---|
US (1) | US5463998A (fr) |
EP (1) | EP0578795B1 (fr) |
JP (1) | JP3278155B2 (fr) |
KR (1) | KR100307107B1 (fr) |
DE (2) | DE4203100A1 (fr) |
WO (1) | WO1993015313A1 (fr) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4303997B4 (de) * | 1993-02-11 | 2006-04-20 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Tankentlüftungsdiagnose bei einem Kraftfahrzeug |
US5576619A (en) * | 1993-09-21 | 1996-11-19 | Sie Sensorik-Industrie-Elektronik Gmbh | Method and apparatus using an electrical sensor for monitoring a moving medium |
DE4342431A1 (de) * | 1993-12-11 | 1995-06-14 | Bosch Gmbh Robert | Verfahren zur Ermittlung von Aussagen über den Zustand einer Tankentlüftungsanlage |
DE4401085C1 (de) * | 1994-01-15 | 1995-04-27 | Daimler Benz Ag | Verfahren und Vorrichtung zur stationären Bestimmung von Undichtigkeiten in einer Tankentlüftungsanlage |
GB2286182A (en) * | 1994-01-27 | 1995-08-09 | Ford Motor Co | A fuel tank venting arrangement for a motor vehicle |
JPH0835452A (ja) * | 1994-07-26 | 1996-02-06 | Hitachi Ltd | エバポパージシステムの診断方法 |
DE4427688C2 (de) * | 1994-08-04 | 1998-07-23 | Siemens Ag | Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug |
JP3189143B2 (ja) * | 1994-09-19 | 2001-07-16 | 株式会社ユニシアジェックス | 内燃機関の燃料供給装置 |
DE4442544C1 (de) * | 1994-11-30 | 1996-04-04 | Daimler Benz Ag | Entlüftungsvorrichtung für Kraftstofftank, insbesondere in Kraftfahrzeugen |
JP3272183B2 (ja) * | 1995-03-03 | 2002-04-08 | 本田技研工業株式会社 | 内燃エンジンの蒸発燃料処理装置 |
JP3565611B2 (ja) * | 1995-03-29 | 2004-09-15 | トヨタ自動車株式会社 | エバポパージシステムの故障診断装置 |
DE19518292C2 (de) * | 1995-05-18 | 2003-07-17 | Bosch Gmbh Robert | Verfahren zur Diagnose eines Tankentlüftungssystems |
DE19538775A1 (de) * | 1995-10-18 | 1997-04-24 | Bosch Gmbh Robert | Verfahren zur pneumatischen Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage |
US5671718A (en) * | 1995-10-23 | 1997-09-30 | Ford Global Technologies, Inc. | Method and system for controlling a flow of vapor in an evaporative system |
JPH09158793A (ja) * | 1995-12-05 | 1997-06-17 | Denso Corp | 燃料蒸散防止機構用異常検出装置 |
JP3322119B2 (ja) * | 1996-03-04 | 2002-09-09 | 三菱電機株式会社 | 燃料蒸散防止装置の故障診断装置 |
JP3167924B2 (ja) * | 1996-04-26 | 2001-05-21 | 本田技研工業株式会社 | 蒸発燃料処理装置 |
JPH09329063A (ja) * | 1996-06-12 | 1997-12-22 | Hitachi Ltd | エバポシステムの診断方法 |
US5765121A (en) * | 1996-09-04 | 1998-06-09 | Ford Global Technologies, Inc. | Fuel sloshing detection |
SE509087C2 (sv) * | 1997-04-30 | 1998-12-07 | Volvo Ab | Förfarande och anordning för täthetsmätning i ett tanksystem |
DE19910486A1 (de) * | 1999-03-10 | 2000-09-14 | Bielomatik Leuze & Co | Einrichtung und Verfahren zur Durchflußprüfung eines Behälter-Anschlusses |
US6269803B1 (en) * | 2000-02-22 | 2001-08-07 | Jaguar Cars Limited | Onboard diagnostics for vehicle fuel system |
DE10251281B3 (de) * | 2002-11-04 | 2004-06-03 | Dräger Safety AG & Co. KGaA | Verfahren zur Bewegungserkennung eines Kraftfahrzeugs |
DE102005003924B4 (de) | 2005-01-27 | 2012-12-06 | Continental Automotive Gmbh | Verfahren zur Ansteuerung eines Tankentlüftungsventils eines Kraftfahrzeuges während einer Dichtigkeitsprüfung |
US7810475B2 (en) * | 2009-03-06 | 2010-10-12 | Ford Global Technologies, Llc | Fuel vapor purging diagnostics |
US9261054B2 (en) | 2012-03-23 | 2016-02-16 | Ford Global Technologies, Llc | Fuel system diagnostics |
US10006413B2 (en) * | 2015-07-09 | 2018-06-26 | Ford Global Technologies, Llc | Systems and methods for detection and mitigation of liquid fuel carryover in an evaporative emissions system |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4003751C2 (de) * | 1990-02-08 | 1999-12-02 | Bosch Gmbh Robert | Tankentlüftungsanlage für ein Kraftfahrzeug und Verfahren zum Überprüfen deren Funktionstüchtigkeit |
DE4030948C1 (en) * | 1990-09-29 | 1991-10-17 | Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De | Monitoring removal of petrol vapour from IC engine fuel tank - detecting change in fuel-air mixt. composition during selected working conditions |
JP2551222B2 (ja) * | 1990-10-15 | 1996-11-06 | トヨタ自動車株式会社 | エバポパージシステムの故障診断装置 |
GB2254318B (en) * | 1991-04-02 | 1995-08-09 | Nippon Denso Co | Abnormality detecting apparatus for use in fuel transpiration preventing system |
DE4111361A1 (de) * | 1991-04-09 | 1992-10-15 | Bosch Gmbh Robert | Tankentlueftungsanlage sowie verfahren und vorrichtung zu deren ueberpruefung |
US5275144A (en) * | 1991-08-12 | 1994-01-04 | General Motors Corporation | Evaporative emission system diagnostic |
US5299545A (en) * | 1991-09-13 | 1994-04-05 | Honda Giken Kogyo Kabushiki Kaisha | Evaporative fuel-processing system for internal combustion engines |
JP2580928B2 (ja) * | 1992-01-06 | 1997-02-12 | トヨタ自動車株式会社 | エバポパージシステムの故障診断装置 |
US5295472A (en) * | 1992-01-06 | 1994-03-22 | Toyota Jidosha Kabushiki Kaisha | Apparatus for detecting malfunction in evaporated fuel purge system used in internal combustion engine |
DE4216067C2 (de) * | 1992-05-15 | 2002-12-05 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Tankentlüftungs-Diagnose bei einem Kraftfahrzeug |
JP3286348B2 (ja) * | 1992-07-22 | 2002-05-27 | 愛三工業株式会社 | 内燃機関の蒸発ガス処理装置における異常検出装置 |
JP2635270B2 (ja) * | 1992-08-27 | 1997-07-30 | 三菱電機株式会社 | 蒸発燃料制御装置の故障検出装置 |
JP2921307B2 (ja) * | 1992-11-25 | 1999-07-19 | 日産自動車株式会社 | 内燃機関の蒸発燃料リーク診断装置 |
JP2741702B2 (ja) * | 1992-12-02 | 1998-04-22 | 本田技研工業株式会社 | 内燃エンジンの蒸発燃料処理装置 |
-
1992
- 1992-02-04 DE DE4203100A patent/DE4203100A1/de not_active Withdrawn
-
1993
- 1993-01-14 JP JP51284493A patent/JP3278155B2/ja not_active Expired - Lifetime
- 1993-01-14 KR KR1019930702965A patent/KR100307107B1/ko not_active IP Right Cessation
- 1993-01-14 WO PCT/DE1993/000019 patent/WO1993015313A1/fr active IP Right Grant
- 1993-01-14 US US08/129,039 patent/US5463998A/en not_active Expired - Fee Related
- 1993-01-14 EP EP93901633A patent/EP0578795B1/fr not_active Expired - Lifetime
- 1993-01-14 DE DE59300121T patent/DE59300121D1/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE4203100A1 (de) | 1993-08-05 |
WO1993015313A1 (fr) | 1993-08-05 |
KR100307107B1 (ko) | 2001-12-15 |
EP0578795A1 (fr) | 1994-01-19 |
US5463998A (en) | 1995-11-07 |
JPH06506751A (ja) | 1994-07-28 |
JP3278155B2 (ja) | 2002-04-30 |
DE59300121D1 (de) | 1995-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0578795B1 (fr) | Procede et dispositif pour verifier l'aptitude a fonctionner d'une installation de degazage de reservoir | |
EP0559854B1 (fr) | Procede et dispositif pour controler la capacite fonctionnelle d'un systeme de degazage du reservoir | |
DE19636431B4 (de) | Verfahren und Vorrichtung zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage | |
DE69411153T2 (de) | Integritätsbestätigung eines knistersystems mit positivem druck | |
DE4303997B4 (de) | Verfahren und Vorrichtung zur Tankentlüftungsdiagnose bei einem Kraftfahrzeug | |
DE69616269T2 (de) | Vorrichtung und verfahren zur detektion eines lecks in einem verdampfungsemissionssteuerungssystem | |
DE69409098T2 (de) | Integritätsbestätigung eines kanistersystems mit positivem druck | |
DE102004024628B4 (de) | Fehlerdiagnosevorrichtung für Kraftstoffdampf-Verarbeitungssystem | |
DE19713085C2 (de) | Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug | |
DE4108856C2 (de) | Tankentlüftungsanlage sowie Verfahren und Vorrichtung zum Überprüfen der Dichtheit derselben | |
DE10028157A1 (de) | Kraftstoffanlagen-Leckerkennung | |
WO1993015382A1 (fr) | Procede et dispositif pour la detection du niveau dans un reservoir | |
EP0535183B1 (fr) | Procede et dispositif pour surveiller le fonctionnement d'un systeme d'aeration de reservoir de carburant | |
DE19518292C2 (de) | Verfahren zur Diagnose eines Tankentlüftungssystems | |
EP0580603B1 (fr) | Procede et dispositif pour essayer un systeme d'aeration de reservoir de carburant | |
EP1760303B1 (fr) | Procédé pour vérifier l'étanchéité d'un système de purge d'un réservoir de carburant | |
DE10300592A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine | |
EP0503280B1 (fr) | Dispositif pour mesurer la teneur en carburant dans un réservoir | |
EP0952332B1 (fr) | Procédé pour détecter des fuites dans les systèmes d'admission de carburant pour un véhicule | |
EP0548300B1 (fr) | Systeme d'aeration du reservoir d'un vehicule a moteur, procede et dispositif de controle de son fonctionnement | |
DE112012005026T5 (de) | Verfahren zum Ermitteln einer Leckage in einem Dampfmanagementsystem eines Kraftstoffsystems eines Kraftfahrzeugs sowie Dampfmanagementsysteme für ein Kraftfahrzeug mit Mitteln zum Ermitteln von Leckagen | |
DE102005022121B3 (de) | Verfahren zur Ermittlung der Einspritzkorrektur während der Überprüfung der Dichtheit einer Tankentlüftungsanlage | |
WO1995016122A1 (fr) | Procede de determination d'indications sur l'etat d'un systeme d'evacuation des gaz d'un reservoir | |
DE10006186C1 (de) | Verfahren zur Dichtheitsprüfung eines Tanksystems eines Fahrzeugs | |
DE10217378B3 (de) | Verfahren zur Leckerkennung in einem Karftstoffbehälter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930904 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR |
|
17Q | First examination report despatched |
Effective date: 19940812 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59300121 Country of ref document: DE Date of ref document: 19950511 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020226 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030117 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |