EP0545230B2 - Process for preparing modified oxide ceramic coatings on barrier-layer metals. - Google Patents

Process for preparing modified oxide ceramic coatings on barrier-layer metals. Download PDF

Info

Publication number
EP0545230B2
EP0545230B2 EP92120006A EP92120006A EP0545230B2 EP 0545230 B2 EP0545230 B2 EP 0545230B2 EP 92120006 A EP92120006 A EP 92120006A EP 92120006 A EP92120006 A EP 92120006A EP 0545230 B2 EP0545230 B2 EP 0545230B2
Authority
EP
European Patent Office
Prior art keywords
bath
electrolyte
moles
accordance
oxide ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92120006A
Other languages
German (de)
French (fr)
Other versions
EP0545230B1 (en
EP0545230A1 (en
Inventor
Peter Prof. Dr. Kurze
Hans-Jürgen Kletke
Dora Banerjee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Chemical Engineering GmbH
Original Assignee
Electro Chemical Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6445704&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0545230(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Electro Chemical Engineering GmbH filed Critical Electro Chemical Engineering GmbH
Publication of EP0545230A1 publication Critical patent/EP0545230A1/en
Publication of EP0545230B1 publication Critical patent/EP0545230B1/en
Application granted granted Critical
Publication of EP0545230B2 publication Critical patent/EP0545230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Definitions

  • the invention relates to a method for producing oxide ceramic layers on barrier layer-forming Metals or their alloys by plasma chemical anodic oxidation in aqueous organic Electrolytes, whereby the oxide ceramic layer can also be modified for special applications.
  • This anodic oxidation in aqueous electrolytes is a gas-solid reaction under plasma conditions, where the high energy input at the base of the discharge column is liquid on the anode Metal that creates a briefly melted oxide with the activated oxygen.
  • the stratification takes place via partial anodes.
  • the spark discharge is preceded by a formation area (P. Kurz; Dechema-Monographien Volume 121 - VCH Verlagsgesellschaft 1990, page 167-180 with further references).
  • the electrolytes were combined so that their positive properties are combined and high-quality anodically produced oxide ceramic layers on aluminum.
  • Different salts can have higher salt concentrations in the electrolyte bath and thus higher viscosities can be achieved.
  • Such highly viscous electrolytes have a high heat capacity, stabilize the trained oxygen film on the anode and thus guarantee a uniform oxide layer formation (DD-WP 142 360).
  • the barrier layer grows as the voltage of the anodically polarized metal increases. Then arises at the Phase boundary metal / gas / electrolyte partially an oxygen plasma, through which the oxide ceramic layer forms.
  • the metal ion in the oxide ceramic layer comes from the metal, the oxygen from the anodic Reaction in the aqueous electrolyte used.
  • the oxide ceramic is at the determined plasma temperatures of around 7,000 Kelvin liquid. To the side of the metal there is enough time for the The oxide ceramic melt can contract well and thus a sintered, low-pore oxide ceramic layer forms.
  • the melt of the oxide ceramic is quickly removed by the Electrolytes cooled down and the still migrating gases, especially oxygen and water vapor leave an oxide ceramic layer with a wide-meshed capillary system. From scanning electron microscopic Pore diameters from 0.1 ⁇ m to 30 ⁇ m were determined (CERA-MIC COATINGS BY ANODIC SPARK DEPOSITION G.P. Wirtz et al, MATERIALS & MANUFACTURING PROCESSES 6 (1), 87-115 (1991), especially Figure 12).
  • DE-A-2 203 445 describes a method in which by using spark discharges During the anodization porous layers are made on aluminum, which are suitable for use in the Chromatography are determined.
  • EP-A-280 886 describes the use of anodic oxidation under spark discharges on Al, Ti, Ta, Nb, Zr and their alloys for the production of decorative layers on these metals.
  • aluminum and its alloys are pure aluminum and others the alloys AlMn; AlMnCu; AlMgl; AlMgl, 5; E-AlMgSi; AlMgSi0,5; AlZnMgCu0.5; AlZnMgCu1,5; G-AlSi-12; G-AlSi5Mg; G-AlSi8Cu3; G-AlCu4Ti; G-AlCu4TiMg understood.
  • magnesium cast alloys are also particularly suitable for the purposes of the invention the ASTM designations AS41, AM60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, EZ33, HZ32 and wrought alloys AZ31, AZ61, AZ 80, M1, ZK60, ZK40.
  • TiAl6V4 Pure titanium or titanium alloys such as TiAl6V4; TiAl5Fe2.5 and others deploy.
  • the chloride-free electrolytic bath can be used in processes for plasma chemical anodization usual inorganic anions, namely phosphate, borate, silicate, aluminate, fluoride or anions of inorganic Contain acids such as citrate, oxalate and acetate.
  • inorganic anions namely phosphate, borate, silicate, aluminate, fluoride or anions of inorganic Contain acids such as citrate, oxalate and acetate.
  • the electrolyte bath preferably contains phosphate, borate and fluoride ions in combination and in one Amount of at least 0.1 mol / l of each of these anions up to a total of 2 mol / l.
  • the cations of the electrolyte bath are chosen so that they are as good as possible with the respective anions Form soluble salts to enable high salt concentrations and viscosities. It is usually the case with alkali, ammonium, alkaline earth and aluminum ions up to 1 mol / l.
  • the electrolyte bath contains urea, hexamethylenediamine, hexamethylenetetramine, glycol or glycerin in an amount up to a total of 1.5 mol / l as a stabilizer.
  • very dilute electrolyte baths can also be used use in which the concentration of the anions is only 0.01 to 0.1 mol / l.
  • the pH value is between 10 and 12, preferably 11. Due to the low conductivity of this electrolyte bath, the final voltage value can reach up to 2,000 V. The energy input caused by the plasma chemical reaction is accordingly very high.
  • the oxide ceramic layer that forms on the aluminum materials consists of corundum, as X-ray diffraction studies show. The oxide ceramic layer can be hardened up to 2,000 HV. These oxide ceramic layers can be used in particular where extremely high abrasive wear protection is required.
  • the power supply for plasma chemical anodizing to form the ceramic layer takes place in such a way that the required current density of at least 1.A / dm 2 is kept constant and that the voltage is brought to a final value which is set.
  • the final voltage value is between 50 and 400 volts and is determined by the metal used or by its alloy components, by the composition of the electrolyte bath and by its bath management.
  • a sample plate made of AlMgSi1 with a surface area of 2 dm 2 is degreased and then rinsed with distilled water.
  • the sample thus treated is in an aqueous / organic chloride-free electrolyte bath of the composition a) cations 0.13 mol / l sodium ions 0.28 mol / l ammonium ions b) anions 0.214 mol / l phosphate 0.238 mol / l borate 0.314 mol / l fluoride c) stabilizer and complexing agent 0.6 mol / l hexamethylenetetramine at a current density of 4 A / dm 2 and an electrolyte temperature of 12 ° C ⁇ 2 ° C plasma-anodized. After a coating time of 60 minutes, the final voltage value of 250 V is reached.
  • the ceramicized sample plate is rinsed and dried.
  • the layer thickness of the ceramic layer is 100 ⁇ m.
  • the hardness of the ceramic layer was determined to be 750 (HV 0.015).
  • a die-cast housing made of GD-AlSi12 with a surface area of 1 dm 2 is treated in a stain, which consists half of 40% HF and 65% HNO 3 , for 1 minute at room temperature and then rinsed with distilled water.
  • the die-cast housing thus pickled is oxidized plasma-chemically-anodically in the aqueous / organic chloride-free electrolyte bath from Example 1 at a current density of 8 A / dm 2 and an electrolyte temperature of 10 ° C ⁇ 2 ° C. After a coating time of 30 minutes, a final voltage value of 216 volts is registered.
  • the ceramic die-cast housing is rinsed and dried.
  • the layer thickness of the ceramic layer is 40 ⁇ m.
  • a sample plate made of an AZ 91 magnesium alloy with a surface area of 1 dm 2 is pickled in 40% hydrofluoric acid at room temperature for 1 minute.
  • the sample treated in this way is oxidically plasma-anodically oxidized in an aqueous / organic chloride-free electrolyte bath according to Example 1 at a current density of 4 A / dm 2 and an electrolyte temperature of 12 ° C. ⁇ 2 ° C.
  • the ceramic layer has a layer thickness of 50 ⁇ m.
  • a rod made of pure titanium (length: 30 mm, diameter: 5 mm) is stained as in Example 2 pickled and then rinsed with distilled water.
  • the sample treated in this way is placed in an aqueous, chloride-free electrolyte bath of the composition: a) cations 0.2 mol / l calcium ions b) anions 0.4 mol / l phosphate at a current density of 18 A / dm 2 and an electrolyte temperature of 10 ° C ⁇ 2 ° C oxidized by chemical anodizing.
  • the ceramized rod is rinsed with distilled water and dried.
  • the layer thickness is 40 ⁇ m.
  • a gear wheel made of AlMgSi1 with a surface area of 6 dm 2 is degreased and rinsed with distilled water.
  • An aqueous / organic chloride-free electrolyte bath is an electrolyte bath from Example 1 diluted 100 times with water, which additionally contains 0.1 mol / l sodium aluminate and sodium silicate.
  • the gearwheel is oxidized at a current density of 10 A / dm 2 by plasma chemical anodizing. After a coating time of 120 minutes, a final voltage value of 800 volts is reached.
  • the ceramized gear is rinsed and dried.
  • the layer thickness of the oxide ceramic layer is 130 ⁇ m.
  • the hardness of the ceramic layer was determined to be 1900 HV (0.1).
  • the service life of the gear coated in this way increases fourfold compared to the conventional anodized gear of the same size.
  • An ultrasonic sonotrode made of AlZnMgCu1.5 with a surface area of 6.4 dm 2 is degreased and then rinsed with distilled water.
  • the ultrasound sonotrode treated in this way is oxidized in an aqueous-organic, chloride-free electrolyte bath, as described in Example 1, at a current density of 3.5 A / dm 2 and an electrolyte temperature of 15 ° C. in a plasma-chemical-anodic manner. After a coating time of 25 minutes, the voltage value of 250 V is reached.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Laminated Bodies (AREA)

Abstract

In order to enhance the thickness and wear resistance of oxide-ceramic coatings on barrier-layer metals, a plasmachemical anodic oxidation in a chloride-free electrolyte bath is carried out at a pH from 2 to 8 and constant bath temperature, using a constant current density of at least 1 A/dm<2>, until the voltage settles at a final value. Thus it is possible to generate, on objects made of aluminium or aluminium alloys, an oxide-ceramic coating which consists of corundum, and even on magnesium or titanium, coating thicknesses of up to 150 mu m are achieved.

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von Oxidkeramikschichten auf sperrschichtbildenden Metallen oder deren Legierungen durch plasmachemische anodische Oxidation in wäßrig organischen Elektrolyten, wobei die Oxidkeramikschicht für spezielle Anwendungen auch noch modifiziert werden kann.The invention relates to a method for producing oxide ceramic layers on barrier layer-forming Metals or their alloys by plasma chemical anodic oxidation in aqueous organic Electrolytes, whereby the oxide ceramic layer can also be modified for special applications.

Diese anodische Oxidation ist in wäßrigen Elektrolyten eine Gas-Festkörper-Reaktion unter Plasmabedingungen, bei der der hohe Energieeintrag am Fußpunkt der Entladungssäule auf der Anode flüssiges Metall erzeugt, das mit dem aktivierten Sauerstoff ein kurzzeiterschmolzenes Oxid bildet. Die Schichtbildung erfolgt über Partialanoden. Der Funkenentladung ist ein Formierbereich vorgelagert (P. Kurze; Dechema-Monographien Band 121 - VCH Verlagsgesellschaft 1990, Seite 167-180 mit weiteren Literaturhinweisen). Die Elektrolyte wurden so kombiniert, daß ihre positiven Eigenschaften vereint werden und qualitativ hochwertige anodisch erzeugte Oxidkeramikschichten auf Aluminium entstehen. Durch. Kombination verschiedener Salze können höhere Salzkonzentrationen im Elektrolytbad und damit höhere Viskositäten erreicht werden. Solche hochviskosen Elektrolyte haben eine hohe Wärmekapazität, stabilisieren den ausgebildeten Sauerstoffilm auf der Anode und garantieren damit eine gleichmäßige Oxidschichtausbildung (DD-WP 142 360).This anodic oxidation in aqueous electrolytes is a gas-solid reaction under plasma conditions, where the high energy input at the base of the discharge column is liquid on the anode Metal that creates a briefly melted oxide with the activated oxygen. The stratification takes place via partial anodes. The spark discharge is preceded by a formation area (P. Kurz; Dechema-Monographien Volume 121 - VCH Verlagsgesellschaft 1990, page 167-180 with further references). The electrolytes were combined so that their positive properties are combined and high-quality anodically produced oxide ceramic layers on aluminum. By. combination Different salts can have higher salt concentrations in the electrolyte bath and thus higher viscosities can be achieved. Such highly viscous electrolytes have a high heat capacity, stabilize the trained oxygen film on the anode and thus guarantee a uniform oxide layer formation (DD-WP 142 360).

Aufgrund des Verlaufs der Stromdichte-Potential-Kurven (SPK) für die anodische Funkenentladung lassen sich drei markante Bereiche unterscheiden, der Faraday-, Funkenentladungs-, und Bogenentladungsbereich (s.P. Kurze loc.cit).Due to the course of the current density-potential curves (SPK) for the anodic spark discharge three distinctive areas can be distinguished, the Faraday, spark discharge and arc discharge area (see brief short loc.cit).

Auf dem Metall oder der Metallegierung befindet sich natürlicherweise eine Sperrschicht. Durch Erhöhung der Spannung des anodisch gepolten Metalls wächst die Sperrschicht. Dann entsteht an der Phasengrenze Metall/Gas/Elektrolyt partiell ein Sauerstoffplasma, durch das sich die Oxidkeramikschicht bildet. Das Metallion in der Oxidkeramikschicht stammt aus dem Metall, der Sauerstoff aus der anodischen Reaktion in dem verwendeten wäßrigen Elektrolyten. Die Oxidkeramik ist bei den ermittelten Plasmatemperaturen von etwa 7.000 Kelvin flüssig. Zur Seite des Metalls hin ist die Zeit ausreichend, damit sich die Schmelze der Oxidkeramik gut zusammenziehen kann und so eine aufgesinterte porenarme Oxidkeramikschicht bildet. Zur Seite des Elektrolyten hin wird die Schmelze der Oxidkeramik schnell durch den Elektrolyten abgekühlt und die noch abwandernden Gase, insbesondere Sauerstoff und Wasserdampf hinterlassen eine Oxidkeramikschicht mit einem weitmaschig verknüpften Kapillarsystem. Aus rasterelektronenmikroskopischen Untersuchungen wurden Porendurchmesser von 0,1 µm bis 30 µm bestimmt (CERA-MIC COATINGS BY ANODIC SPARK DEPOSITION G.P. Wirtz et al, MATERIALS & MANUFACTURING PROCESSES 6 (1), 87-115 (1991), insbesondere Figur 12).There is naturally a barrier layer on the metal or metal alloy. By The barrier layer grows as the voltage of the anodically polarized metal increases. Then arises at the Phase boundary metal / gas / electrolyte partially an oxygen plasma, through which the oxide ceramic layer forms. The metal ion in the oxide ceramic layer comes from the metal, the oxygen from the anodic Reaction in the aqueous electrolyte used. The oxide ceramic is at the determined plasma temperatures of around 7,000 Kelvin liquid. To the side of the metal there is enough time for the The oxide ceramic melt can contract well and thus a sintered, low-pore oxide ceramic layer forms. To the side of the electrolyte, the melt of the oxide ceramic is quickly removed by the Electrolytes cooled down and the still migrating gases, especially oxygen and water vapor leave an oxide ceramic layer with a wide-meshed capillary system. From scanning electron microscopic Pore diameters from 0.1 µm to 30 µm were determined (CERA-MIC COATINGS BY ANODIC SPARK DEPOSITION G.P. Wirtz et al, MATERIALS & MANUFACTURING PROCESSES 6 (1), 87-115 (1991), especially Figure 12).

In der DE-A-2 203 445 wird ein Verfahren beschrieben, in dem durch Nutzung von Funkenentladungen während der Anodisation poröse Schichten auf Aluminium hergestellt werden, die für den Einsatz in der Chromatographie bestimmt sind.DE-A-2 203 445 describes a method in which by using spark discharges During the anodization porous layers are made on aluminum, which are suitable for use in the Chromatography are determined.

Die EP-A-280 886 beschreibt die Nutzung der anodischen Oxidation unter Funkenentladungen auf Al, Ti, Ta, Nb, Zr und deren Legierungen zur Herstellung dekorativer Schichten auf diesen Metallen.EP-A-280 886 describes the use of anodic oxidation under spark discharges on Al, Ti, Ta, Nb, Zr and their alloys for the production of decorative layers on these metals.

Mit den vorbekannten Verfahren lassen sich nur Keramikschichten mit verhältnismäßig geringen Stärken bis maximal 30 µm herstellen, die für den Einsatz als Verschleiß- und Korrosionsschutzschichten unzureichend sind.With the previously known methods, only ceramic layers with a relatively small amount can be produced Manufacture thicknesses up to a maximum of 30 µm for use as wear and corrosion protection layers are inadequate.

Es ist deshalb Aufgabe der Erfindung, auf den zuvor genannten Metallen Oxidkeramikschichten zu erzeugen, die eine wesentlich höhere Schichtdicke bis zu 150 µm haben, abriebfest und korrosionsbeständig sind und eine hohe Biegewechselfestigkeit aufweisen.It is therefore an object of the invention to apply oxide ceramic layers to the aforementioned metals produce that have a much higher layer thickness up to 150 microns, abrasion-resistant and corrosion-resistant are and have high flexural fatigue strength.

Erfindungsgemäß werden Oxidkeramikschichten auf Aluminium, Magnesium, Titan, Tantal, Zirkon, Niob, Hafnium, Antimon, Wolfram, Molybdän, Vanadium, Wismut oder deren Legierungen durch plasmachemische anodische Oxidation bei Einhaltung der folgenden Parameter erzeugt:

  • 1. Das Elektrolytbad soll chloridfrei sein, was bedeutet, daß es weniger als 5 x 10-3 mol/l Chloridionen enthält.
  • 2. Das Elektrolytbad wird auf einen pH-Wert von 2 bis 8 eingestellt.
  • 3. Die Badtemperatur liegt im Bereich von -30 bis + 15°C und vorzugsweise zwischen -10 und + 15°C.
  • 4. Die Badtemperatur wird in den Grenzen von ± 2° C konstant gehalten.
  • 5. Die Stromdichte von mindestens 1 A/dm2 wird konstant gehalten bis sich die Spannung auf einen Endwert einstellt.
  • According to the invention, oxide ceramic layers on aluminum, magnesium, titanium, tantalum, zircon, niobium, hafnium, antimony, tungsten, molybdenum, vanadium, bismuth or their alloys are produced by plasma-chemical anodic oxidation while observing the following parameters:
  • 1. The electrolyte bath should be chloride-free, which means that it contains less than 5 x 10 -3 mol / l chloride ions.
  • 2. The electrolyte bath is adjusted to a pH of 2 to 8.
  • 3. The bath temperature is in the range of -30 to + 15 ° C and preferably between -10 and + 15 ° C.
  • 4. The bath temperature is kept constant within the limits of ± 2 ° C.
  • 5. The current density of at least 1 A / dm 2 is kept constant until the voltage reaches an end value.
  • Unter Aluminium und dessen Legierungen werden im Rahmen der vorliegenden Erfindung Reinstaluminium und u.a. die Legierungen AlMn; AlMnCu; AlMgl; AlMgl,5; E-AlMgSi; AlMgSi0,5; AlZnMgCu0,5; AlZnMgCu1,5; G-AlSi-12; G-AlSi5Mg; G-AlSi8Cu3; G-AlCu4Ti; G-AlCu4TiMg verstanden.Within the scope of the present invention, aluminum and its alloys are pure aluminum and others the alloys AlMn; AlMnCu; AlMgl; AlMgl, 5; E-AlMgSi; AlMgSi0,5; AlZnMgCu0.5; AlZnMgCu1,5; G-AlSi-12; G-AlSi5Mg; G-AlSi8Cu3; G-AlCu4Ti; G-AlCu4TiMg understood.

    Für die Zwecke der Erfindung eignen sich ferner außer Reinmagnesium insbesondere die Magnesiumgußlegierungen der ASTM-Bezeichnungen AS41, AM60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, EZ33, HZ32 sowie die Knetlegierungen AZ31, AZ61, AZ 80, M1, ZK60, ZK40.In addition to pure magnesium, magnesium cast alloys are also particularly suitable for the purposes of the invention the ASTM designations AS41, AM60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, EZ33, HZ32 and wrought alloys AZ31, AZ61, AZ 80, M1, ZK60, ZK40.

    Des weiteren lassen sich Reintitan oder auch Titanlegierungen wie TiAl6V4; TiAl5Fe2,5 u.a. einsetzen.Pure titanium or titanium alloys such as TiAl6V4; TiAl5Fe2.5 and others deploy.

    Das chloridfreie Elektrolytbad kann die in Verfahren für die plasmachemische anodische Oxidation üblichen anorganischen Anionen, nämlich Phosphat, Borat, Silicat, Aluminat, Fluorid oder Anionen anorganischer Säuren wie Citrat, Oxalat und Acetat enthalten.The chloride-free electrolytic bath can be used in processes for plasma chemical anodization usual inorganic anions, namely phosphate, borate, silicate, aluminate, fluoride or anions of inorganic Contain acids such as citrate, oxalate and acetate.

    Vorzugsweise enthält das Elektrolytbad Phosphat-, Borat- und Fluoridionen in Kombination und in einer Menge von wenigstens 0,1 mol/l von jedem einzelnen dieser Anionen bis insgesamt 2 mol/l.The electrolyte bath preferably contains phosphate, borate and fluoride ions in combination and in one Amount of at least 0.1 mol / l of each of these anions up to a total of 2 mol / l.

    Die Kationen des Elektrolytbads werden so gewählt, daß sie mit den jeweiligen Anionen möglichst gut lösliche Salze bilden, um hohe Salzkonzentrationen und Viskositäten zu ermöglichen. Das ist in der Regel bei Alkali-, Ammonium-, Erdalkali und Aluminiumionen bis 1 mol/l der Fall.The cations of the electrolyte bath are chosen so that they are as good as possible with the respective anions Form soluble salts to enable high salt concentrations and viscosities. It is usually the case with alkali, ammonium, alkaline earth and aluminum ions up to 1 mol / l.

    Darüber hinaus enthält das Elektrolytbad Harnstoff, Hexamethylendiamin, Hexamethylentetramin, Glykol oder Glycerin in einer Menge bis insgesamt 1,5 mol/l als Stabilisator.In addition, the electrolyte bath contains urea, hexamethylenediamine, hexamethylenetetramine, glycol or glycerin in an amount up to a total of 1.5 mol / l as a stabilizer.

    Zur Erzeugung von besonders verschleißfesten Oxidkeramikschichten auf Aluminium oder deren Legierungen durch plasmachemische anodische Oxidation bei einer Stromdichte von mindestens 5 A/dm2, die konstant gehalten wird, bis sich die Spannung auf einen Endwert einstellt, lassen sich auch sehr stark verdünnte Elektrolytbäder gemäß Anspruch 7 einsetzen, in denen die Konzentration der Anionen nur 0,01 bis 0,1 mol/l beträgt. In diesen stark verdünnten Bädern liegt der PH-Wert zwischen 10 und 12, vorzugsweise bei 11. Aufgrund der geringen Leitfähigkeit dieses Elektrolytbades kann sich der Spannungsendwert bis auf 2.000 V einstellen. Der durch die plasmachemische Reaktion verursachte Energieeintrag ist dementsprechend sehr hoch. Die sich bildende Oxidkeramikschicht auf den Aluminiumwerkstoffen besteht aus Korund, wie Röntgenbeugungsuntersuchungen zeigen. Es werden Härten der Oxidkeramikschicht bis 2.000 HV erreicht. Diese Oxidkeramikschichten sind insbesondere dort einsetzbar, wo ein extrem hoher abrasiver Verschleißschutz gefordert ist.In order to produce particularly wear-resistant oxide ceramic layers on aluminum or their alloys by plasma-chemical anodic oxidation at a current density of at least 5 A / dm 2 , which is kept constant until the voltage reaches an end value, very dilute electrolyte baths can also be used use in which the concentration of the anions is only 0.01 to 0.1 mol / l. In these highly diluted baths, the pH value is between 10 and 12, preferably 11. Due to the low conductivity of this electrolyte bath, the final voltage value can reach up to 2,000 V. The energy input caused by the plasma chemical reaction is accordingly very high. The oxide ceramic layer that forms on the aluminum materials consists of corundum, as X-ray diffraction studies show. The oxide ceramic layer can be hardened up to 2,000 HV. These oxide ceramic layers can be used in particular where extremely high abrasive wear protection is required.

    Die Wahl der Spannungs- und Stromform, wie Gleich-, Wechsel-, Dreh-, Impuls- und/oder mehrphasig verketteter Wechselstrom in den Frequenzen bis 500 Hz hat überraschenderweise auf den Schichtbildungsprozeß zur Erzeugung der Keramikschicht auf den Metallen keinen Einfluß.The choice of voltage and current form, such as single, alternating, rotating, pulse and / or multi-phase chained alternating current in the frequencies up to 500 Hz surprisingly affects the layer formation process no influence on the production of the ceramic layer on the metals.

    Die Stromversorgung zum plasmachemischen Anodisieren zur Bildung der Keramikschicht erfolgt in der Weise, daß die erforderliche Stromdichte von mindestens 1.A/dm2 konstant gehalten und daß die Spannung auf einen sich einstellenden Endwert gefahren wird. Der Spannungsendwert liegt zwischen 50 und 400 Volt und wird durch das verwendete Metall, bzw. durch dessen Legierungsbestandteile, durch die Zusammensetzung des Elektrolytbades und durch seine Badführung bestimmt.The power supply for plasma chemical anodizing to form the ceramic layer takes place in such a way that the required current density of at least 1.A / dm 2 is kept constant and that the voltage is brought to a final value which is set. The final voltage value is between 50 and 400 volts and is determined by the metal used or by its alloy components, by the composition of the electrolyte bath and by its bath management.

    Die folgenden Beispiele erläutern die Erfindung, ohne sie zu beschränken.The following examples illustrate the invention without restricting it.

    Beispiel 1example 1

    Eine Probeplatte aus AlMgSi1 mit einer Oberfläche von 2 dm2 wird entfettet und anschließend mit destilliertem Wasser gespült.A sample plate made of AlMgSi1 with a surface area of 2 dm 2 is degreased and then rinsed with distilled water.

    Die so behandelte Probe wird in einem wäßrig/organischen chloridfreien Elektrolytbad der Zusammensetzung a) Kationen 0,13 mol/l Natriumionen 0,28 mol/l Ammoniumionen b) Anionen 0,214 mol/l Phosphat 0,238 mol/l Borat 0,314 mol/l Fluorid c) Stabilisator und Komplexbildner 0,6 mol/l Hexamethylentetramin bei einer Stromdichte von 4 A/dm2 und einer Elektrolyttemperatur von 12°C ± 2°C plasmachemisch anodisch oxidiert. Nach einer Beschichtungszeit von 60 Minuten wird der Spannungsendwert von 250 V erreicht.The sample thus treated is in an aqueous / organic chloride-free electrolyte bath of the composition a) cations 0.13 mol / l sodium ions 0.28 mol / l ammonium ions b) anions 0.214 mol / l phosphate 0.238 mol / l borate 0.314 mol / l fluoride c) stabilizer and complexing agent 0.6 mol / l hexamethylenetetramine at a current density of 4 A / dm 2 and an electrolyte temperature of 12 ° C ± 2 ° C plasma-anodized. After a coating time of 60 minutes, the final voltage value of 250 V is reached.

    Die keramisierte Probeplatte wird gespült und getrocknet. Die Schichtdicke der Keramikschicht beträgt 100 µm. Die Härte der Keramikschicht wurde mit 750 (HV 0.015) bestimmt. The ceramicized sample plate is rinsed and dried. The layer thickness of the ceramic layer is 100 µm. The hardness of the ceramic layer was determined to be 750 (HV 0.015).

    Beispiel 2Example 2

    Ein Druckgußgehäuse aus GD-AlSi12 mit einer Oberfläche von 1 dm2 wird in einer Beize, die jeweils zur Hälfte aus 40%iger HF und 65%iger HNO3 besteht, 1 Minute bei Raumtemperatur behandelt und anschließend mit destilliertem Wasser gespült.A die-cast housing made of GD-AlSi12 with a surface area of 1 dm 2 is treated in a stain, which consists half of 40% HF and 65% HNO 3 , for 1 minute at room temperature and then rinsed with distilled water.

    Das so gebeizte Druckgußgehäuse wird in dem wäßrig/organischen chloridfreien Elektrolytbad aus Beispiel 1 bei einer Stromdichte von 8 A/dm2 und einer Elektrolyttemperatur von 10°C ± 2°C plasmachemisch-anodisch oxidiert. Nach einer Beschichtungszeit von 30 Minuten wird ein Spannungsendwert von 216 Volt registriert.The die-cast housing thus pickled is oxidized plasma-chemically-anodically in the aqueous / organic chloride-free electrolyte bath from Example 1 at a current density of 8 A / dm 2 and an electrolyte temperature of 10 ° C ± 2 ° C. After a coating time of 30 minutes, a final voltage value of 216 volts is registered.

    Das keramisierte Druckgußgehäuse wird gespült und getrocknet.The ceramic die-cast housing is rinsed and dried.

    Die Schichtdicke der Keramikschicht beträgt 40 µm.The layer thickness of the ceramic layer is 40 µm.

    Beispiel 3Example 3

    Eine Probeplatte aus einer Magnesiumlegierung des Typs AZ 91 mit einer Oberfläche von 1 dm2 wird 1 Minute in einer 40%igen Flußsäure bei Raumtemperatur gebeizt.A sample plate made of an AZ 91 magnesium alloy with a surface area of 1 dm 2 is pickled in 40% hydrofluoric acid at room temperature for 1 minute.

    Die so behandelte Probe wird in einem wäßrig/organischen chloridfreien Elektrolytbad nach Beispiel 1 bei einer Stromdichte von 4 A/dm2 und einer Elektrolyttemperatur von 12°C ± 2°C plasmachemisch-anodisch oxidiert.The sample treated in this way is oxidically plasma-anodically oxidized in an aqueous / organic chloride-free electrolyte bath according to Example 1 at a current density of 4 A / dm 2 and an electrolyte temperature of 12 ° C. ± 2 ° C.

    Nach 17 Minuten wird der Spannungswert von 252 Volt erreicht.After 17 minutes the voltage value of 252 volts is reached.

    Die Keramikschicht hat eine Schichtdicke von 50 µm.The ceramic layer has a layer thickness of 50 µm.

    Beispiel 4Example 4

    Ein Stab aus Reintitan (Länge: 30 mm, Durchmesser: 5 mm) wird in einer Beize wie in Beispiel 2 gebeizt und anschließend mit destilliertem Wasser gespült.A rod made of pure titanium (length: 30 mm, diameter: 5 mm) is stained as in Example 2 pickled and then rinsed with distilled water.

    Die so behandelte Probe wird in einem wäßrigen chloridfreien Elektrolytbad der Zusammensetzung: a) Kationen 0,2 mol/l Calciumionen b) Anionen 0,4 mol/l Phosphat bei einer Stromdichte von 18 A/dm2 und einer Elektrolyttemperatur von 10°C ± 2°C plasmachemisch-anodisch oxidiert.The sample treated in this way is placed in an aqueous, chloride-free electrolyte bath of the composition: a) cations 0.2 mol / l calcium ions b) anions 0.4 mol / l phosphate at a current density of 18 A / dm 2 and an electrolyte temperature of 10 ° C ± 2 ° C oxidized by chemical anodizing.

    Nach einer Beschichtungszeit von 10 Minuten wird der Spannungsendwert von 210 Volt erreicht. Der keramisierte Stab wird mit destilliertem Wasser gespült und getrocknet. Die Schichtdicke beträgt 40 µm.After a coating time of 10 minutes, the final voltage value of 210 volts is reached. The ceramized rod is rinsed with distilled water and dried. The layer thickness is 40 µm.

    Beispiel 5Example 5

    Ein Zahnrad aus AlMgSi1 mit einer Oberfläche von 6 dm2 wird entfettet und mit destilliertem Wasser gespült. Als wäßrig/organisches chloridfreies Elektrolytbad wird ein in 100-facher mit Wasser verdünntes Elektrolytbad aus Beispiel 1 eingesetzt, daß zusätzlich je 0,1 mol/l Natriumaluminat und Natriumsilikat enthält.
    Das Zahnrad wird bei einer Stromdichte von 10 A/dm2 plasmachemisch-anodisch oxidiert. Nach einer Beschichtungszeit von 120 Minuten wird ein Spannungsendwert von 800 Volt erreicht.
    Das keramisierte Zahnrad wird gespült und getrocknet. Die Schichtdicke der Oxidkeramikschicht beträgt 130 um. Die Härte der Keramikschicht wurde mit 1900 HV (0,1) bestimmt. Die Standzeit des so beschichteten Zahnrades erhöht sich auf das Vierfache im Vergleich mit dem konventionell eloxierten Zahnrad gleicher Abmessung.
    A gear wheel made of AlMgSi1 with a surface area of 6 dm 2 is degreased and rinsed with distilled water. An aqueous / organic chloride-free electrolyte bath is an electrolyte bath from Example 1 diluted 100 times with water, which additionally contains 0.1 mol / l sodium aluminate and sodium silicate.
    The gearwheel is oxidized at a current density of 10 A / dm 2 by plasma chemical anodizing. After a coating time of 120 minutes, a final voltage value of 800 volts is reached.
    The ceramized gear is rinsed and dried. The layer thickness of the oxide ceramic layer is 130 μm. The hardness of the ceramic layer was determined to be 1900 HV (0.1). The service life of the gear coated in this way increases fourfold compared to the conventional anodized gear of the same size.

    Beispiel 6Example 6

    Eine Ultraschallsonotrode aus AlZnMgCu1,5 mit einer Oberfläche von 6,4 dm2 wird entfettet und anschließend mit destilliertem Wasser gespült.An ultrasonic sonotrode made of AlZnMgCu1.5 with a surface area of 6.4 dm 2 is degreased and then rinsed with distilled water.

    Die so behandelte Ultraschallsonotrode wird in einem wäßriglorganischen chloridfreien Elektrolytbad, wie im Beispiel 1 beschrieben, bei einer Stromdichte von 3,5 A/dm2 und einer Elektrolyttemperatur von 15°C plasmachemisch-anodisch oxidiert. Nach einer Beschichtungszeit von 25 Minuten wird der Spannungs wert von 250 V erreicht.The ultrasound sonotrode treated in this way is oxidized in an aqueous-organic, chloride-free electrolyte bath, as described in Example 1, at a current density of 3.5 A / dm 2 and an electrolyte temperature of 15 ° C. in a plasma-chemical-anodic manner. After a coating time of 25 minutes, the voltage value of 250 V is reached.

    Claims (9)

    1. Process for producing oxide ceramic layers on Al, Mg, Ti, Ta, Zr, Hf, Sb, W, Mo, V, Bi or other alloys by plasmachemical anodic oxidation, characterized in that a current density of at least 1 A/dm2 is kept constant, at a constant bath temperature of from -30 to +15 °C, in a chloride-free electrolyte-bath having a pH-value of 2 to 8, until a voltage has been set to a final value.
    2. Process in accordance with claim 1, characterized in that said bath-temperature is from -10 to +15 °C.
    3. Process in accordance with claim 1 or 2, characterized in that said bath-temperature is kept constant within limits of± 2 °C.
    4. Process in accordance with any one of claims 1 to 3, characterized in that said electrolyte-bath contains less than 5 x 10-3 moles/l chloride ions.
    5. Process in accordance with any one of claims 1 to 4, characterized in that said electrolyte-bath contains phosphate, borate and fluoride ions up to a total concentration of 2 moles/l.
    6. Process in accordance with any one of claims 1 to 5, characterized in that said electrolyte-bath contains a stabilizer selected from the group consisting of urea, hexamethylene-diamine and hexamethylene-tetramine, glycol and glycerin at a concentration of up to 1.5 moles/l.
    7. Process for producing particularly wear-resistant oxide-ceramic layers on aluminum or its alloys by plasmachemical anodic oxidation at a current density of at least 5 A/dm2, which is kept constant until a voltage has been set to a final value, with the use of an electrolyte-bath containing less than 5 x 10-3 moles/l of chloride ions and phosphate, borate and fluoride ions up to a total concentration of 2 moles/l after thinning said electrolyte-bath to a concentration of 0.01 to 0.1 moles/l and raising the pH-value to 10 to 12, preferably 11.
    8. Process in accordance with any one of claims 1 to 7, characterized in that said voltage has frequencies of up to 500 Hz.
    9. Process in accordance with claim 7, characterized in that said electrolyte-bath contains a stabilizer selected from the group consisting of urea, hexamethylene-diamine and hexamethylene-tetramine, glycol and glycerin at a concentration of up to 1.5 moles/l.
    EP92120006A 1991-11-27 1992-11-25 Process for preparing modified oxide ceramic coatings on barrier-layer metals. Expired - Lifetime EP0545230B2 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4139006A DE4139006C3 (en) 1991-11-27 1991-11-27 Process for producing oxide ceramic layers on barrier layer-forming metals and objects produced in this way from aluminum, magnesium, titanium or their alloys with an oxide ceramic layer
    DE4139006 1991-11-27

    Publications (3)

    Publication Number Publication Date
    EP0545230A1 EP0545230A1 (en) 1993-06-09
    EP0545230B1 EP0545230B1 (en) 1995-06-28
    EP0545230B2 true EP0545230B2 (en) 2003-03-12

    Family

    ID=6445704

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP92120006A Expired - Lifetime EP0545230B2 (en) 1991-11-27 1992-11-25 Process for preparing modified oxide ceramic coatings on barrier-layer metals.

    Country Status (5)

    Country Link
    US (2) US5385662A (en)
    EP (1) EP0545230B2 (en)
    JP (1) JP2912101B2 (en)
    AT (1) ATE124472T1 (en)
    DE (2) DE4139006C3 (en)

    Families Citing this family (88)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4139006C3 (en) * 1991-11-27 2003-07-10 Electro Chem Eng Gmbh Process for producing oxide ceramic layers on barrier layer-forming metals and objects produced in this way from aluminum, magnesium, titanium or their alloys with an oxide ceramic layer
    DE19506656B4 (en) * 1995-02-25 2007-04-19 Audi Ag Process for the ceramization of light metal surfaces
    DE19507472C2 (en) * 1995-03-03 1999-09-02 Electro Chem Eng Gmbh Gas or current nozzle of an inert gas welding system
    DE19507532C2 (en) 1995-03-03 2000-01-05 Henkel Ecolab Gmbh & Co Ohg Pasty detergent
    US5792335A (en) * 1995-03-13 1998-08-11 Magnesium Technology Limited Anodization of magnesium and magnesium based alloys
    DE19516815A1 (en) * 1995-05-08 1996-11-14 Electro Chem Eng Gmbh Ceramicized light alloy pistons for internal combustion engines
    US5720866A (en) * 1996-06-14 1998-02-24 Ara Coating, Inc. Method for forming coatings by electrolyte discharge and coatings formed thereby
    JP3557868B2 (en) * 1997-01-14 2004-08-25 セイコーエプソン株式会社 Surface treatment method for decorative articles, decorative articles and electronic equipment
    US6800326B1 (en) 1997-01-14 2004-10-05 Seiko Epson Corporation Method of treating a surface of a surface of a substrate containing titanium for an ornament
    SK121099A3 (en) * 1997-03-11 2000-06-12 Almag Al Process and apparatus for coating metals
    DE69702238T2 (en) * 1997-03-11 2001-01-25 Almag Al Givat Shaul Process and object for coating metals
    US5837121A (en) * 1997-10-10 1998-11-17 Kemet Electronics Corporation Method for anodizing valve metals
    US6335099B1 (en) * 1998-02-23 2002-01-01 Mitsui Mining And Smelting Co., Ltd. Corrosion resistant, magnesium-based product exhibiting luster of base metal and method for producing the same
    US6149793A (en) * 1998-06-04 2000-11-21 Kemet Electronics Corporation Method and electrolyte for anodizing valve metals
    JP2002523636A (en) * 1998-08-28 2002-07-30 ケメット・エレクトロニクス・コーポレーション Phosphate anodized electrolyte and its use for producing capacitor valved metal anode bodies made from ultrafine metal powder
    US6183618B1 (en) 1999-02-02 2001-02-06 Kemet Electronics Corporation Process for treating impregnated electrolytic capacitor anodes
    US6245436B1 (en) * 1999-02-08 2001-06-12 David Boyle Surfacing of aluminum bodies by anodic spark deposition
    US6235181B1 (en) 1999-03-10 2001-05-22 Kemet Electronics Corporation Method of operating process for anodizing valve metals
    US6197178B1 (en) 1999-04-02 2001-03-06 Microplasmic Corporation Method for forming ceramic coatings by micro-arc oxidation of reactive metals
    US6290834B1 (en) 2000-04-12 2001-09-18 Ceramic Coatings Technologies, Inc. Ceramic coated liquid transfer rolls and methods of making them
    DE10022074A1 (en) * 2000-05-06 2001-11-08 Henkel Kgaa Protective or priming layer for sheet metal, comprises inorganic compound of different metal with low phosphate ion content, electrodeposited from solution
    US6436268B1 (en) 2000-08-02 2002-08-20 Kemet Electronics Corporation Non-aqueous electrolytes for anodizing
    DK1335764T3 (en) * 2000-09-08 2007-10-01 Insulet Corp Patient infusion apparatus and system
    AU2001219047A1 (en) * 2000-09-18 2002-03-26 Nikolai Alexandrovich Belov Construction material based on aluminium and method for producing parts from said material
    US6267861B1 (en) 2000-10-02 2001-07-31 Kemet Electronics Corporation Method of anodizing valve metals
    WO2002031230A1 (en) * 2000-10-11 2002-04-18 Industrial Research Limited Method for anodising magnesium and magnesium alloy components or elements
    JP4430266B2 (en) * 2001-05-25 2010-03-10 東京エレクトロン株式会社 Plasma processing vessel inner member and plasma processing apparatus
    JP4417106B2 (en) * 2001-08-14 2010-02-17 ケロナイト・インターナショナル・リミテッド Magnesium anodizing system and method
    US7820300B2 (en) * 2001-10-02 2010-10-26 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating
    US7569132B2 (en) * 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
    US7578921B2 (en) * 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
    US7452454B2 (en) * 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
    US6916414B2 (en) 2001-10-02 2005-07-12 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
    US6495267B1 (en) 2001-10-04 2002-12-17 Briggs & Stratton Corporation Anodized magnesium or magnesium alloy piston and method for manufacturing the same
    DE10163864A1 (en) 2001-12-22 2003-07-10 Leybold Vakuum Gmbh Coating of objects
    AU2002329410A1 (en) * 2002-03-27 2003-10-13 Isle Coat Limited Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
    US20050238507A1 (en) * 2002-04-23 2005-10-27 Insulet Corporation Fluid delivery device
    ITMI20021377A1 (en) * 2002-06-21 2003-12-22 Milano Politecnico OSTOINTEGRATIVE INTERFACE FOR IMPLANTABLE PROSTHESES AND METHOD FOR THE TREATMENT OF THAT OSTOINTEGRATIVE INTERFACE
    US7740481B2 (en) * 2002-06-21 2010-06-22 Politecnico Di Milano Osteointegrative interface for implantable prostheses and a method for the treatment of the osteointegrative interface
    US7018360B2 (en) * 2002-07-16 2006-03-28 Insulet Corporation Flow restriction system and method for patient infusion device
    US6919012B1 (en) 2003-03-25 2005-07-19 Olimex Group, Inc. Method of making a composite article comprising a ceramic coating
    WO2004092436A2 (en) * 2003-04-16 2004-10-28 Ahc Oberflächentechnik Gmbh & Co. Ohg Object
    US20050182366A1 (en) * 2003-04-18 2005-08-18 Insulet Corporation Method For Visual Output Verification
    WO2005011345A1 (en) * 2003-07-17 2005-02-03 Ksg Leiterplatten Gmbh Layer assembly for a supporting part, which can be fitted with electronic components, and method for the production thereof
    DE202004010821U1 (en) * 2003-07-23 2004-12-23 The Boc Group Plc, Windlesham vacuum component
    US7780838B2 (en) 2004-02-18 2010-08-24 Chemetall Gmbh Method of anodizing metallic surfaces
    JP4753112B2 (en) * 2004-03-22 2011-08-24 電化皮膜工業株式会社 Magnesium metal material having antibacterial active surface and method for producing the same
    US7338529B1 (en) 2004-03-30 2008-03-04 Biomet Manufacturing Corp. Methods and apparatuses for enhancing prosthetic implant durability
    US20060016690A1 (en) 2004-07-23 2006-01-26 Ilya Ostrovsky Method for producing a hard coating with high corrosion resistance on articles made anodizable metals or alloys
    FR2877018B1 (en) * 2004-10-25 2007-09-21 Snecma Moteurs Sa MICRO ARC OXIDATION PROCESS FOR MAKING A COATING ON A METALLIC SUBSTRATE, AND USE THEREOF
    DE102004057403B4 (en) * 2004-11-26 2007-09-06 Frank Fischer Crimping die, crimping apparatus and a method of making the same
    US20060178633A1 (en) * 2005-02-03 2006-08-10 Insulet Corporation Chassis for fluid delivery device
    US20060207884A1 (en) * 2005-03-17 2006-09-21 Volodymyr Shpakovsky Method of producing corundum layer on metal parts
    US7229523B2 (en) * 2005-03-31 2007-06-12 Xerox Corporation Treatment for ultrasonic welding
    CN100465355C (en) * 2005-05-20 2009-03-04 中国科学院物理研究所 Pipe surface ceramizing treatment process
    US7552240B2 (en) * 2005-05-23 2009-06-23 International Business Machines Corporation Method for user space operations for direct I/O between an application instance and an I/O adapter
    JP4697629B2 (en) * 2005-06-30 2011-06-08 国立大学法人北海道大学 Valve spring for internal combustion engine, method for producing the same, and method for producing anodized film-formed titanium member
    DE102005040648A1 (en) * 2005-08-27 2007-03-01 Leybold Vacuum Gmbh Process for coating valve metal or alloy for e.g. aluminum or alloy rotor for turbomolecular pump involves vapor coating with optionally halogenated xylylene dimer and polymerization in capillary system of surface film of oxide ceramic
    US7910221B2 (en) * 2006-02-08 2011-03-22 La Jolla Bioengineering Institute Biocompatible titanium alloys
    US20080014421A1 (en) * 2006-07-13 2008-01-17 Aharon Inspektor Coated cutting tool with anodized top layer and method of making the same
    DE102006039679B4 (en) * 2006-08-24 2011-02-10 Audi Ag Method for machining cylinder running surfaces of a cylinder crankcase or cylinder liners
    DE102006051709A1 (en) * 2006-10-30 2008-05-08 AHC-Oberflächentechnik GmbH Production of wear-resistant coatings on materials made of barrier-layer-forming metals or their alloys by means of laser treatment
    ES2435433T3 (en) 2006-12-21 2013-12-19 Thommen Medical Ag Bioactive Implant Coating
    DE102007046775A1 (en) * 2007-09-27 2009-04-02 Friedrich-Schiller-Universität Jena Generating nanocrystalline metallic oxide and metal mixed oxide layers on barrier layer-forming metals e.g. aluminum of substrate, comprises anodically degreasing the substrate in galvanic electrolysis and then anodizing in electrolytes
    DE102008026557A1 (en) * 2008-06-03 2009-12-17 Königsee Implantate und Instrumente zur Osteosynthese GmbH Electrochemically produced, biodegradation-stable, ductile and adherent titanium oxide surface layer on titanium or titanium-based alloys
    KR101015462B1 (en) * 2008-07-01 2011-02-22 한국산업기술대학교산학협력단 Titanium dioxide ceramics for implant and fabricating method thereof
    IT1390847B1 (en) 2008-07-29 2011-10-19 Milano Politecnico BIOMIMETIC TREATMENT WITH SILICON BASE FOR THE OSTEOINTEGRATION OF METAL SUBSTRATES.
    DE202008010896U1 (en) 2008-08-05 2008-10-23 AHC Oberflächentechnik GmbH Material, in particular components, with improved wear protection layers
    US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
    EP2273181B1 (en) * 2009-07-07 2014-05-07 Siteco Beleuchtungstechnik GmbH Indoor or outdoor luminaire
    CA2769305A1 (en) * 2009-07-14 2011-01-20 Felix Boettcher Gmbh & Co. Kg Rollers for dampening units
    NL2003250C2 (en) * 2009-07-20 2011-01-24 Metal Membranes Com B V Method for producing a membrane and such membrane.
    KR101642832B1 (en) * 2009-09-14 2016-07-27 삼성전자주식회사 Pellicle frame, pellicle, lithographic apparatus and method of fabricating pellicle frame
    CN102071448A (en) * 2009-11-20 2011-05-25 莱尔德电子材料(深圳)有限公司 PVD (Physical Vapor Deposition) and coloring of cold anodic oxidized metal
    US9267218B2 (en) 2011-09-02 2016-02-23 General Electric Company Protective coating for titanium last stage buckets
    AU2012335990B2 (en) * 2011-11-07 2016-03-24 Synthes Gmbh Lean electrolyte for biocompatible plasmaelectrolytic coatings on magnesium implant material
    US9353453B2 (en) 2012-07-19 2016-05-31 Politecnico Di Milano Metal substrate modified with silicon based biomimetic treatment having antibacterial property for the osteointegration thereof
    DE102013110660A1 (en) 2013-09-26 2015-03-26 AHC Oberflächentechnik GmbH Plasma-based process for producing black oxide ceramic layers and correspondingly coated article
    CN103556204B (en) * 2013-11-04 2016-01-13 佳木斯大学 Magnesium surface ultrasonic microarc oxidation-HF-silane coupling agent multistage composite bioactive coating preparation method
    DE102014219819A1 (en) * 2014-09-30 2016-03-31 Volkswagen Aktiengesellschaft Method for the thermal insulation of a combustion chamber and / or an exhaust system of an internal combustion engine
    KR20150092778A (en) * 2014-02-05 2015-08-17 연세대학교 산학협력단 Metal material having protective coating and method for manufacturing the same
    DE112015005466A5 (en) * 2014-12-04 2017-08-31 Meotec GmbH & Co. KG Component of a turbo device, internal combustion engine with a turbo device and method for producing a turbo device component
    CN104532324B (en) * 2014-12-25 2017-06-20 哈尔滨工业大学 A kind of method that utilization differential arc oxidation prepares low sunlight absorptivity high emissivity coating in Mg alloy surface
    DE102015212330A1 (en) * 2015-07-01 2017-01-19 Bosch Mahle Turbo Systems Gmbh & Co. Kg Process for coating an impeller, in particular a turbine wheel and / or compressor wheel, of an exhaust gas turbocharger
    DE102015212325A1 (en) * 2015-07-01 2017-01-05 Bosch Mahle Turbo Systems Gmbh & Co. Kg Method for producing a housing part for a turbine of an exhaust gas turbocharger
    CN109097808B (en) * 2017-06-20 2020-07-28 佳木斯大学 Preparation method of nitrogenous magnesium oxide coating with biological activity
    EP3421645A1 (en) 2017-06-28 2019-01-02 Pratt & Whitney Rzeszow S.A. Method of forming corrosion resistant coating and related apparatus
    CN114016108B (en) * 2021-12-20 2022-11-25 哈尔滨三泳金属表面技术有限公司 Surface oxidation film of high-silicon high-copper die-casting aluminum alloy and preparation process thereof

    Family Cites Families (28)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB828953A (en) * 1956-06-27 1960-02-24 Exxon Research Engineering Co Polymerization process
    CH497891A (en) * 1968-09-03 1970-10-31 Straumann Inst Ag Implant made of titanium or a titanium-based alloy, used for surgical bone treatment
    CH505210A (en) * 1968-12-13 1971-03-31 Matsushita Electric Ind Co Ltd Electrical insulation film for aluminium
    DE1905896C3 (en) * 1969-02-06 1974-08-01 Behrens, Albert, 2081 Hasloh Process for the electrolytic production of hard-to-melt, abrasion-resistant and bend-insensitive layers of alpha-aluminum oxide on metallic workpieces in an aqueous bath with spark discharge
    US3834999A (en) * 1971-04-15 1974-09-10 Atlas Technology Corp Electrolytic production of glassy layers on metals
    AT309942B (en) * 1971-05-18 1973-09-10 Isovolta Process for anodic oxidation of objects made of aluminum or its alloys
    DE2203445A1 (en) * 1972-01-25 1973-08-02 Max Planck Gesellschaft MOLDED ALUMINUM OBJECT WITH OXIDE SURFACE
    US3954512A (en) * 1972-08-11 1976-05-04 Kanter Jerome J Protective coating of ferrous base metal articles
    US3956080A (en) * 1973-03-01 1976-05-11 D & M Technologies Coated valve metal article formed by spark anodizing
    US4111763A (en) * 1977-07-18 1978-09-05 Swiss Aluminium Ltd. Process for improving corrosion resistant characteristics of chrome plated aluminum and aluminum alloys
    DD156003A1 (en) * 1980-09-23 1982-07-21 Peter Kurze PROCESS FOR SURFACE TREATMENT OF TITANIUM AND ALLOYS
    DD160749A3 (en) * 1981-04-22 1984-02-29 Peter Kurze METHOD FOR THE ANODIC OXIDATION OF TANTAL AND ALLOYS
    JPS5928637B2 (en) * 1981-06-24 1984-07-14 デイツプソ−ル株式会社 Method of forming a protective film on the surface of magnesium material
    DD203079A1 (en) * 1982-01-27 1983-10-12 Peter Kurze PROCESS FOR SURFACE TREATMENT OF ZIRCONIUM OR ALLOYS
    US4481083A (en) * 1983-08-31 1984-11-06 Sprague Electric Company Process for anodizing aluminum foil
    JPS60181295A (en) * 1984-02-27 1985-09-14 Pentel Kk Manufacture of aluminum or aluminum alloy substrate having oxide film
    JPS61149472A (en) * 1984-12-25 1986-07-08 Kyocera Corp Film
    DD257274B1 (en) * 1987-02-02 1991-05-29 Karl Marx Stadt Tech Hochschul METHOD FOR PRODUCING DECORATIVE SURFACES ON METALS
    EP0280886B1 (en) * 1987-02-02 1992-05-13 AHC-Oberflächentechnik Friebe &amp; Reininghaus GmbH Process for the production of decorative coatings on metals
    US4898651A (en) * 1988-01-15 1990-02-06 International Business Machines Corporation Anodic coatings on aluminum for circuit packaging
    DE3808610A1 (en) * 1988-03-15 1989-09-28 Electro Chem Eng Gmbh PROCESS FOR SURFACE FINISHING OF MAGNESIUM AND MAGNESIUM ALLOYS
    DD278850A1 (en) * 1988-12-28 1990-05-16 Komplette Chemieanlaen Dresden METHOD FOR PRODUCING CAPILLARY POROUS SURFACE LAYERS ON HEAT TRANSFER LAYERS
    US5035781A (en) * 1989-07-19 1991-07-30 Jenoptik Jena Gmbh Electrolyte for the production of black surface layers on light metals
    DD289065A5 (en) * 1989-08-09 1991-04-18 Carl Zeiss Gmbh Werk Entwicklung Wiss.-Techn. Ausruestungen Patentbuero,De METHOD FOR PRODUCING A DIELECTRIC LAYER ON LIGHT METALS OR ITS ALLOYS
    DE4037393A1 (en) * 1990-11-22 1992-07-30 Jenoptik Jena Gmbh Electrolyte for anodising light metal or alloy to oxide ceramic coating - contg. ammonium di:hydrogen phosphate and ammonium acetate in aq. soln.
    DE4116910A1 (en) * 1991-05-21 1992-11-26 Jenoptik Jena Gmbh METHOD FOR PRODUCING OXIDE-CERAMIC SURFACE LAYERS ON LIGHT METAL CAST ALLOYS
    US5266412A (en) * 1991-07-15 1993-11-30 Technology Applications Group, Inc. Coated magnesium alloys
    DE4139006C3 (en) * 1991-11-27 2003-07-10 Electro Chem Eng Gmbh Process for producing oxide ceramic layers on barrier layer-forming metals and objects produced in this way from aluminum, magnesium, titanium or their alloys with an oxide ceramic layer

    Also Published As

    Publication number Publication date
    ATE124472T1 (en) 1995-07-15
    EP0545230B1 (en) 1995-06-28
    DE4139006C2 (en) 1996-10-24
    DE4139006C3 (en) 2003-07-10
    JPH05239692A (en) 1993-09-17
    US5811194A (en) 1998-09-22
    DE4139006A1 (en) 1993-06-03
    JP2912101B2 (en) 1999-06-28
    EP0545230A1 (en) 1993-06-09
    DE59202722D1 (en) 1995-08-03
    US5385662A (en) 1995-01-31

    Similar Documents

    Publication Publication Date Title
    EP0545230B2 (en) Process for preparing modified oxide ceramic coatings on barrier-layer metals.
    EP0333048B1 (en) Method for producing corrosion and wear resistant protective coatings on magnesium and magnesium alloys
    EP2260127B1 (en) Structured chrome solid particle layer and method for the production thereof
    DE69722680T2 (en) METHOD FOR PRODUCING HARD PROTECTIVE COATINGS ON ARTICLES MADE FROM ALUMINUM ALLOYS
    EP0333049A1 (en) Method for finishing magnesium and magnesium alloys
    DE102005039614B4 (en) Anodization process and anodic oxide layer produced thereby, and an aluminum or aluminum alloy element
    EP2857560B1 (en) Plasma chemical method for producing black oxide ceramic coatings and coated article
    DE60012597T2 (en) Surface treatment of aluminum bodies with anodic oxidation under spark discharge
    EP0089508B1 (en) Process for the electrolytic roughening of aluminium and its application as a support for offset printing plates
    EP0837956B1 (en) Method of compacting anodized metals with lithium and fluoride-containing solutions without using heavy metals
    EP0288853B1 (en) Process for the preparation of work pieces from titanium or titanium alloys
    EP1700934A2 (en) Process for the preparation of oxide coatings and silicate coatings on metal surfaces
    EP1565596A1 (en) Production of structured hard chrome layers
    DE4209733A1 (en) Process for the electrolytic coating of substrates and the like
    DE69303525T2 (en) Process for producing a film by chemical conversion
    DE3734596A1 (en) METHOD FOR PRODUCING PHOSPHATO
    EP0648863B2 (en) Enamellable oxide layer
    DE102011055644B4 (en) Process for producing a black oxide ceramic surface layer on a light metal alloy component
    EP0462073B1 (en) Electrolyte for producing thin black conversion layers on light metals
    EP1273679A1 (en) Metallic component with outer function layer and method of production
    DE2432044B2 (en) Process for the electrolytic post-treatment of chromated or metallic chrome-plated sheet steel surfaces
    DE2216432C3 (en) Workpiece made of titanium or a titanium alloy with a titanium oxide top layer, bath and method for producing and using the same
    DE654473C (en) Process for increasing the corrosion resistance of workpieces made of light metals and their alloys by anodic fluorination
    DE3331857A1 (en) METHOD FOR ELECTROLYTIC YELLOW TO ORANGE COLORING OF ALUMINUM OR ALUMINUM ALLOYS
    DE19538777A1 (en) Anodic oxide coating sealing process

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    17P Request for examination filed

    Effective date: 19930930

    17Q First examination report despatched

    Effective date: 19941031

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    REF Corresponds to:

    Ref document number: 124472

    Country of ref document: AT

    Date of ref document: 19950715

    Kind code of ref document: T

    REF Corresponds to:

    Ref document number: 59202722

    Country of ref document: DE

    Date of ref document: 19950803

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19950719

    ET Fr: translation filed
    ITF It: translation for a ep patent filed

    Owner name: ING. C. GREGORJ S.P.A.

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Effective date: 19950928

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: NUSSBAUM OBERFLAECHENTECHNIKGMBH

    Effective date: 19960327

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: NUSSBAUM OBERFLAECHENTECHNIKGMBH

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLAW Interlocutory decision in opposition

    Free format text: ORIGINAL CODE: EPIDOS IDOP

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    APAE Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOS REFNO

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    PLAW Interlocutory decision in opposition

    Free format text: ORIGINAL CODE: EPIDOS IDOP

    RTI2 Title (correction)

    Free format text: PROCESS FOR PREPARING MODIFIED OXIDE CERAMIC COATINGS ON BARRIER-LAYER METALS.

    PUAH Patent maintained in amended form

    Free format text: ORIGINAL CODE: 0009272

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT MAINTAINED AS AMENDED

    27A Patent maintained in amended form

    Effective date: 20030312

    AK Designated contracting states

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: AEN

    Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

    NLR2 Nl: decision of opposition

    Effective date: 20030312

    GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

    Effective date: 20030502

    NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
    ET3 Fr: translation filed ** decision concerning opposition
    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20081227

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20081127

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20100527

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20100527

    Year of fee payment: 18

    Ref country code: CH

    Payment date: 20100528

    Year of fee payment: 18

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091125

    BERE Be: lapsed

    Owner name: *ELECTRO CHEMICAL ENGINEERING G.M.B.H.

    Effective date: 20101130

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20110601

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: BK

    Free format text: ONTERECHT VERVALLEN OP 01.06.2011PUBLICATIE VERVAL I.E. 2011/24UITGEGEVEN 15.06.2011

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101130

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20110801

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110601

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101130

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20110531

    Year of fee payment: 19

    Ref country code: GB

    Payment date: 20110531

    Year of fee payment: 19

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101130

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20110702

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20120601

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20111125

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120601

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59202722

    Country of ref document: DE

    Effective date: 20110601

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111125

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 124472

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20111125

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111125

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110601