EP2857560B1 - Plasma chemical method for producing black oxide ceramic coatings and coated article - Google Patents

Plasma chemical method for producing black oxide ceramic coatings and coated article Download PDF

Info

Publication number
EP2857560B1
EP2857560B1 EP14184217.9A EP14184217A EP2857560B1 EP 2857560 B1 EP2857560 B1 EP 2857560B1 EP 14184217 A EP14184217 A EP 14184217A EP 2857560 B1 EP2857560 B1 EP 2857560B1
Authority
EP
European Patent Office
Prior art keywords
mol
electrolyte
oxide ceramic
iron
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14184217.9A
Other languages
German (de)
French (fr)
Other versions
EP2857560A1 (en
EP2857560B2 (en
Inventor
Dr. Kyriaki Dascoulidou-Gritner
Tamara SCHWARZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aalberts Surface Technologies GmbH Landsberg am Lech
Original Assignee
AHC Oberflaechenechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51492882&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2857560(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by AHC Oberflaechenechnik GmbH filed Critical AHC Oberflaechenechnik GmbH
Publication of EP2857560A1 publication Critical patent/EP2857560A1/en
Publication of EP2857560B1 publication Critical patent/EP2857560B1/en
Application granted granted Critical
Publication of EP2857560B2 publication Critical patent/EP2857560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/14Producing integrally coloured layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting

Definitions

  • the invention relates to a plasma-chemical process for producing black oxide ceramic layers on light metals, in particular aluminum, titanium, magnesium or their alloys, after the process of anodic oxidation with spark discharge in aqueous electrolytes.
  • ANOF anodic oxidation under spark discharge
  • PCO plasma chemical oxidation
  • PEO plasma electrolytic oxidation
  • ASD anodic sparc deposition
  • MAO micro arc oxidation
  • this anodic oxidation in aqueous electrolytes is a gas-solid state reaction under plasma conditions in which the high energy input at the base of the discharge column on the anode produces liquid metal which forms a short-time fused oxide with the activated oxygen.
  • the layer formation takes place via partial anodes.
  • the spark discharge is preceded by a forming area ( P. short; Dechema monographs Volume 121 - VCH Verlagsgesellschaft 1990, page 167-180 with further references).
  • the electrolytes have been combined to combine their positive properties to produce high quality anodic oxide ceramic layers on aluminum. By combining different salts, higher salt concentrations in the electrolyte bath and thus higher viscosities can be achieved.
  • Such high-viscosity electrolytes have a high heat capacity, stabilize the formed oxygen film on the anode and thus guarantee a uniform oxide layer formation (DD-WP 142 360).
  • SPK current density potential
  • On the metal or metal alloy is naturally a barrier layer. By increasing the voltage of the anodically poled metal, the barrier layer grows. Then, at the phase boundary metal / gas / electrolyte partially an oxygen plasma, through which forms the oxide ceramic layer.
  • the metal ion in the oxide ceramic layer is derived from the metal, the oxygen from the anodic reaction in the aqueous electrolyte used.
  • the oxide ceramic is in the determined plasma temperatures of about 7,000 Kelvin liquid.
  • the time is sufficient for the melt of the oxide ceramic to contract well, thus forming a sintered, low-porosity ceramic oxide layer.
  • the melt of the oxide ceramic is rapidly cooled by the electrolyte and the still migrating gases, in particular oxygen and water vapor leave an oxide ceramic layer with a marmaschig linked capillary system.
  • the DD 299 595 and DD 299 596 describe the preparation of black conversion coatings on light metals using electrolytes containing chromate.
  • DD 221 762 A1 and DD 257 275 A1 For example, it is known to add metal salts such as iron hexacyanoferrate, nickel, cobalt, or chromium salts to the electrolyte to produce dark colored oxide layers.
  • metal salts such as iron hexacyanoferrate, nickel, cobalt, or chromium salts
  • the known processes use substances of concern in the electrolytes, in particular carcinogenic chromium salts, or those metal salts which are on the ECHA list ( http://echa.europa.eu ), since they are classified as environmental and / or or hazardous to health.
  • black ceramic films can be prepared by microarc oxidation (MAO) with an electrolyte containing sodium fluoride (DATABASE WPI, Week 201163, Thomson Scientific, London, GB; AN 2011-L6540 & CN 102 154 673 A ).
  • MAO microarc oxidation
  • electrolytes containing molybdenum, cobalt, chromium or nickel or cyanide ions or other substances of concern should no longer be used in the future because they can lead to work safety or environmental problems.
  • the object of the invention is therefore to provide a process for producing black oxide ceramic layers on aluminum, magnesium, titanium or their alloys and special materials containing these materials after the process of anodic oxidation under spark discharge (ANOF), are used in the electrolytes, the low pollution and easy to handle.
  • the electrolytes should not contain molybdenum, cobalt, chromium and nickel ions as well as cyanide ions and borates.
  • Black and durable oxide ceramic layers can be produced with the invention whose layer thickness can be varied over a wide range.
  • Deep black in the sense of the invention is understood as meaning all layers which have values of L * less than or equal to 30 according to the CIE L * a * b * system.
  • aluminum and its alloys come pure aluminum and alloys with the main component aluminum, such as the aluminum wrought alloys of the series EN-AW 1000, 2000, 3000, 4000, 5000, 6000, 7000, or the aluminum casting alloys series EN-AC 21000, 21100 , 42000, 43000, 43200, 43400, 44300, 46000, 46200, 47000, 47100, 48000, 51000, 51100 in question.
  • Magnesium and its alloys include pure magnesium and the magnesium casting alloys of the ASTM designations AS41, AM60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, EZ33, HZ32 and the wrought alloys AZ31, AZ61, AZ 80, M1, ZK60, ZK40 in question.
  • pure titanium or titanium alloys such as TiAl6V4; Use TiAl5Fe2.5 and others.
  • special materials with aluminum, magnesium, titanium or their alloys are, for example, intermetallic compounds or phases, such as titanium aluminides, in question.
  • the electrolyte has a pH of 5.4 to 10.0 in the case of anodic oxidation.
  • the electrolyte may also contain inorganic or organic anions. Preference is given to 0.2 to 0.9 mol / L of a phosphate of an alkali metal, preferably a dihydrogen phosphate or pyrophosphate, in particular potassium dihydrogen phosphate or potassium pyrophosphate, and / or 0.15 to 0.5 mol / L of citric acid or its salts. Citrates are particularly preferred because they support a controlled spark process. Phosphates allow better layer growth.
  • the electrolyte contains 0.8 to 2.9 mol / L, preferably 0.8 to 2.1 mol / L of a stabilizer, in particular hexamethylenetetramine.
  • iron and vanadium salts are added to the electrolyte to obtain the desired black color of the oxide ceramic layer.
  • deep black and thick layers are obtained by the combination of iron and vanadium according to the invention.
  • the presence of both metal salts is imperative.
  • no deep black layers within the meaning of the invention are obtained with just one of the two metal salts.
  • ammonium iron (III) citrate and ammonium (mono) vanadate are used for this purpose in a concentration of 0.04 to 0.09 mol / L and 0.035 to 0.090 mol / L.
  • An electrolyte temperature of 15 to 60, preferably up to 40 degrees Celsius has proven to be particularly suitable.
  • the current density used is between 0.02 and 0.10 Acm -2 , preferably 0.04 to 0.08 Acm -2 , without having to compromise on the quality and layer thickness of the oxide ceramic layers.
  • the current density is kept constant until a final voltage below 1000 V, preferably 300 to 650 V is reached.
  • the oxide ceramic layers obtainable by means of the invention can have a layer thickness of 5 ⁇ m to 100 ⁇ m and consist of oxides, in particular spinels, of aluminum, iron and vanadium.
  • the electrolyte combinations according to the invention deep black (of L * less than or equal to 30, see above) and also adhesive layer thicknesses greater than 50 ⁇ m can be produced for the first time.
  • the electrolyte combination according to the invention allows the production of thin or thick deep black and also adhesive layers of up to 100 microns.
  • the electrolyte is low in pollutants and easy to handle, so no molybdenum, cobalt, chromium and nickel ions and Contains cyanide ions and borate ions.
  • the electrolyte solutions were freshly prepared and placed in conventional anodic oxidation equipment. Prior to oxidation, all sample plates were degreased with a commercially available cleaner and then immersed in the electrolyte baths and contacted. The voltage was applied with a rectifier of the company RGB (30A / 380V). After about 10 min. the voltages were in the range of 230 to 290 volts.
  • the sample plates were removed, cleaned by conventional methods and examined.
  • the samples were subjected to characterization of the layer according to the CIE L * a * b * system according to DIN EN ISO 11664-4, layer thickness measurements and cross-hatch tests in accordance with DIN 2499.
  • the layer thickness measurements were carried out with the specified measuring device from Helmut Fischer GmbH & Co. KG (see above). For each sample plate, 10 measurements of layer thickness were made and the mean reported.
  • Querschliffuntersuchungen show that in the comparison variant according to DD 221 762 A1 to EN-AW 6082 AlSi1MgMn there are large variations in layer thickness, in some cases the oxide layer is not closed ( Fig.1 and 2 ).
  • the layer thickness according to Embodiment 1 ( 3 and 4 ) is significantly higher and more homogeneous than that of the comparison variant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

Plasmachemisches Verfahren zur Herstellung schwarzer Oxidkeramikschichten Die Erfindung betrifft ein plasmachemisches Verfahren zur Herstellung schwarzer Oxidkeramikschichten auf Leichtmetallen, insbesondere Aluminium, Titan, Magnesium oder deren Legierungen nach dem Prozess der anodischen Oxidation unter Funkenentladung in wässrigen Elektrolyten.The invention relates to a plasma-chemical process for producing black oxide ceramic layers on light metals, in particular aluminum, titanium, magnesium or their alloys, after the process of anodic oxidation with spark discharge in aqueous electrolytes.

Es ist bekannt, Oxidkeramikschichten auf Leichtmetallen durch plasmachemische Prozesse in wässrigen Elektrolyten herzustellen. Diese Prozesse sind in der Literatur unter anderem unter den Namen anodische Oxidation unter Funkenentladung (ANOF), plasmachemische Oxidation (PCO), plasma electrolytic oxidation (PEO), anodic sparc deposition (ASD) sowie micro arc oxidation (MAO) bekannt.It is known to produce oxide ceramic layers on light metals by plasma chemical processes in aqueous electrolytes. These processes are known in the literature among others under the names of anodic oxidation under spark discharge (ANOF), plasma chemical oxidation (PCO), plasma electrolytic oxidation (PEO), anodic sparc deposition (ASD) and micro arc oxidation (MAO).

Wie aus EP 0 545 230 A1 bekannt, ist diese anodische Oxidation in wässrigen Elektrolyten eine Gas-Festkörper-Reaktion unter Plasmabedingungen, bei der der hohe Energieeintrag am Fußpunkt der Entladungssäule auf der Anode flüssiges Metall erzeugt, das mit dem aktivierten Sauerstoff ein kurzzeiterschmolzenes Oxid bildet. Die Schichtbildung erfolgt über Partialanoden. Der Funkenentladung ist ein Formierbereich vorgelagert ( P. Kurze; Dechema-Monographien Band 121 - VCH Verlagsgesellschaft 1990, Seite 167-180 mit weiteren Literaturhinweisen). Die Elektrolyte wurden so kombiniert, dass ihre positiven Eigenschaften vereint werden und qualitativ hochwertige anodisch erzeugte Oxidkeramikschichten auf Aluminium entstehen. Durch Kombination verschiedener Salze können höhere Salzkonzentrationen im Elektrolytbad und damit höhere Viskositäten erreicht werden. Solche hochviskosen Elektrolyte haben eine hohe Wärmekapazität, stabilisieren den ausgebildeten Sauerstoffilm auf der Anode und garantieren damit eine gleichmäßige Oxidschichtausbildung (DD-WP 142 360).
Aufgrund des Verlaufs der Stromdichte-Pötential-Kurven (SPK) für die anodische Funkenentladung lassen sich drei markante Bereiche unterscheiden, der Faraday-, Funkenentladungs-, und Bogenentladungsbereich (s. P. Kurze loc.cit). Auf dem Metall oder der Metalllegierung befindet sich natürlicherweise eine Sperrschicht. Durch Erhöhung der Spannung des anodisch gepolten Metalls wächst die Sperrschicht. Dann entsteht an der Phasengrenze Metall/Gas/Elektrolyt partiell ein Sauerstoffplasma, durch das sich die Oxidkeramikschicht bildet. Das Metallion in der Oxidkeramikschicht stammt aus dem Metall, der Sauerstoff aus der anodischen Reaktion in dem verwendeten wässrigen Elektrolyten. Die Oxidkeramik ist bei den ermittelten Plasmatemperaturen von etwa 7.000 Kelvin flüssig. Zur Seite des Metalls hin ist die Zeit ausreichend, damit sich die Schmelze der Oxidkeramik gut zusammenziehen kann und so eine aufgesinterte porenarme Oxidkeramikschicht bildet. Zur Seite des Elektrolyten hin wird die Schmelze der Oxidkeramik schnell durch den Elektrolyten abgekühlt und die noch abwandernden Gase, insbesondere Sauerstoff und Wasserdampf hinterlassen eine Oxidkeramikschicht mit einem weitmaschig verknüpften Kapillarsystem. Aus rasterelektronenmikroskopischen Untersuchungen wurden Porendurchmesser von 0,1 µm bis 30 µm bestimmt ( CERAMIC COATINGS BY ANODIC SPARK DEPOSITION G.P. Wirtz et al, MATERIALS & MANUFACTURING PROCESSES 6 (1), 87-115 (1991 ), insbesondere Figur 12).
How out EP 0 545 230 A1 As is known, this anodic oxidation in aqueous electrolytes is a gas-solid state reaction under plasma conditions in which the high energy input at the base of the discharge column on the anode produces liquid metal which forms a short-time fused oxide with the activated oxygen. The layer formation takes place via partial anodes. The spark discharge is preceded by a forming area ( P. short; Dechema monographs Volume 121 - VCH Verlagsgesellschaft 1990, page 167-180 with further references). The electrolytes have been combined to combine their positive properties to produce high quality anodic oxide ceramic layers on aluminum. By combining different salts, higher salt concentrations in the electrolyte bath and thus higher viscosities can be achieved. Such high-viscosity electrolytes have a high heat capacity, stabilize the formed oxygen film on the anode and thus guarantee a uniform oxide layer formation (DD-WP 142 360).
Due to the history of current density potential (SPK) anodic spark discharge curves, three distinct areas can be distinguished, the Faraday, spark discharge, and arc discharge areas (see P. Short loc.cit). On the metal or metal alloy is naturally a barrier layer. By increasing the voltage of the anodically poled metal, the barrier layer grows. Then, at the phase boundary metal / gas / electrolyte partially an oxygen plasma, through which forms the oxide ceramic layer. The metal ion in the oxide ceramic layer is derived from the metal, the oxygen from the anodic reaction in the aqueous electrolyte used. The oxide ceramic is in the determined plasma temperatures of about 7,000 Kelvin liquid. At the metal side, the time is sufficient for the melt of the oxide ceramic to contract well, thus forming a sintered, low-porosity ceramic oxide layer. Toward the side of the electrolyte, the melt of the oxide ceramic is rapidly cooled by the electrolyte and the still migrating gases, in particular oxygen and water vapor leave an oxide ceramic layer with a weitmaschig linked capillary system. From pore electron microscopic investigations, pore diameters of 0.1 μm to 30 μm were determined ( CERAMIC COATINGS BY ANODIC SPARK DEPOSITION GP Wirtz et al, Materials & Manufacturing Processes 6 (1), 87-115 (1991 ), in particular FIG. 12).

Mit solchen widerstandsfähigen Beschichtungen versehene Bauteile werden u. A. in der Automobil-, Luft- und Raumfahrt- sowie optischen Industrie und auch Medizintechnik eingesetzt.With such resistant coatings provided components u. A. used in the automotive, aerospace and optical industries and medical technology.

Die DD 299 595 und DD 299 596 beschreiben die Herstellung schwarzer Konversionsschichten auf Leichtmetallen unter Verwendung von Elektrolyten, welche Chromat enthalten.The DD 299 595 and DD 299 596 describe the preparation of black conversion coatings on light metals using electrolytes containing chromate.

Aus DD 221 762 A1 und DD 257 275 A1 ist es z.B. bekannt, dem Elektrolyten Metallsalze, wie Eisenhexacyanoferrat, Nickel-, Kobalt-, oder Chrom-Salze, zur Erzeugung dunkelgefärbter Oxidschichten zu zusetzten.Out DD 221 762 A1 and DD 257 275 A1 For example, it is known to add metal salts such as iron hexacyanoferrate, nickel, cobalt, or chromium salts to the electrolyte to produce dark colored oxide layers.

Aus US 4,659,440 ist der Einsatz von Elektrolyten bekannt, die neben Flusssäure und Peroxiden auch Vanadium-Verbindungen für eine Farbgebung enthalten können.Out US 4,659,440 the use of electrolytes is known, which may contain vanadium compounds in addition to hydrofluoric acid and peroxides for a coloring.

Einerseits werden in den bekannten Verfahren nach heutigem Kenntnisstand bedenkliche Stoffe in den Elektrolyten eingesetzt, insbesondere krebserregende Chromsalze, oder solche Metallsalze, die sich auf der ECHA Liste (http://echa.europa.eu) befinden, da sie als umwelt- und/oder arbeitssicherheitsgefährdend eingestuft sind.On the one hand, according to the current state of knowledge, the known processes use substances of concern in the electrolytes, in particular carcinogenic chromium salts, or those metal salts which are on the ECHA list ( http://echa.europa.eu ), since they are classified as environmental and / or or hazardous to health.

So ist aus der DE 10 2011 055 644 B4 bekannt, Elektrolyten einzusetzen, die Kobalt- und Nickel-Salze enthalten.So is out of the DE 10 2011 055 644 B4 known to use electrolytes containing cobalt and nickel salts.

Andererseits besteht nach wie vor der Wunsch nach schwarzen Oxidkeramikschichten mit chemischer Beständigkeit und Verschleißfestigkeit.On the other hand, there is still a desire for black oxide ceramic layers with chemical resistance and wear resistance.

Des Weiteren ist die Herstellung einer schwarzen Keramikschicht auf einer Aluminium-Legierung durch plasma-elektrolytische Oxidation (PEO) bekannt, bei der ein Elektrolyt auf Basis von Natriumwolframat verwendet wird ( Hwang et al., Materials Transactions 53(3), 559-564, 2012 ).Furthermore, the production of a black ceramic layer on an aluminum alloy by plasma electrolytic oxidation (PEO) is known, in which a sodium tungstate based electrolyte is used ( Hwang et al., Materials Transactions 53 (3), 559-564, 2012 ).

Auch ist eine Methode bekannt, mit welcher schwarze keramische Filme durch microarc oxidation (MAO) mit einem Elektrolyten, welcher Natriumfluorid enthält, hergestellt werden können (DATABASE WPI, Week 201163, Thomson Scientific, London, GB; AN 2011-L6540 & CN 102 154 673 A ).Also known is a method by which black ceramic films can be prepared by microarc oxidation (MAO) with an electrolyte containing sodium fluoride (DATABASE WPI, Week 201163, Thomson Scientific, London, GB; AN 2011-L6540 & CN 102 154 673 A ).

Daher sollten in Zukunft keine Elektrolyte mehr eingesetzt werden, die Molybdän-, Kobalt-, Chrom- oder Nickel- oder Cyanid-Ionen oder weitere besorgniserregende Stoffe enthalten, da diese zu arbeitssicherheits- oder umweltrelevanten Problemen führen können.Therefore, electrolytes containing molybdenum, cobalt, chromium or nickel or cyanide ions or other substances of concern should no longer be used in the future because they can lead to work safety or environmental problems.

Aufgabe der Erfindung ist es daher, ein Verfahren zur Erzeugung schwarzer Oxidkeramikschichten auf Aluminium, Magnesium, Titan oder deren Legierungen sowie diese Materialien enthaltende Sonderwerkstoffe nach dem Prozess der anodischen Oxidation unter Funkenentladung (ANOF) bereitzustellen, bei dem Elektrolyte eingesetzt werden, die schadstoffarm und einfach zu handhaben sind. Insbesondere sollen die Elektrolyte keine Molybdän-, Kobalt-, Chrom- und Nickel-Ionen sowie Cyanid-Ionen und Borate enthalten.The object of the invention is therefore to provide a process for producing black oxide ceramic layers on aluminum, magnesium, titanium or their alloys and special materials containing these materials after the process of anodic oxidation under spark discharge (ANOF), are used in the electrolytes, the low pollution and easy to handle. In particular, the electrolytes should not contain molybdenum, cobalt, chromium and nickel ions as well as cyanide ions and borates.

Diese Aufgabe wird durch das in Anspruch 1 wiedergegebene Verfahren gelöst.This object is achieved by the method given in claim 1.

Erfindungsgemäß ist erkannt worden, dass durch Einsatz eines Eisen- und Vanadium-haltigen Elektrolyten, schwarze Oxidkeramikschichten auf Aluminium, Magnesium, Titan oder deren Legierungen sowie diese Materialien enthaltende Sonderwerkstoffe nach dem Prozess der anodischen Oxidation herstellbar sind. Der Elektrolyt ist also Molybdän-, Kobalt-, Chrom- und Nickel-frei.According to the invention it has been recognized that by using an iron and vanadium-containing electrolyte, black oxide ceramic layers on aluminum, magnesium, titanium or their alloys as well as these materials containing special materials can be produced after the process of anodic oxidation. The electrolyte is therefore molybdenum, cobalt, chromium and nickel-free.

Mit der Erfindung können schwarze und beständige Oxidkeramikschichten erzeugt werden, deren Schichtdicke über einen breiten Bereich variiert werden kann.Black and durable oxide ceramic layers can be produced with the invention whose layer thickness can be varied over a wide range.

Als tiefschwarz im Sinne der Erfindung werden alle Schichten verstanden, die nach dem CIE L*a*b* System Werte von L* kleiner oder gleich 30 aufweisen.Deep black in the sense of the invention is understood as meaning all layers which have values of L * less than or equal to 30 according to the CIE L * a * b * system.

Als Aluminium und dessen Legierungen kommen Reinaluminium sowie Legierungen mit Hauptbestandteil Aluminium, wie die Aluminium-Knetlegierungen der Serien EN-AW 1000, 2000, 3000, 4000, 5000, 6000, 7000, oder die Aluminium-Gusslegierungen der Serien EN-AC 21000, 21100, 42000, 43000, 43200, 43400, 44300, 46000, 46200, 47000, 47100, 48000, 51000, 51100 in Frage.
Als Magnesium und dessen Legierungen kommen Reinmagnesium sowie die Magnesiumgusslegierungen der ASTM-Bezeichnungen AS41, AM60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, EZ33, HZ32 sowie die Knetlegierungen AZ31, AZ61, AZ 80, M1, ZK60, ZK40 in Frage.
Des Weiteren lassen sich Reintitan oder auch Titanlegierungen wie TiAl6V4; TiAl5Fe2,5 u.a. einsetzen.
Als Sonderwerkstoffe mit Aluminium, Magnesium, Titan oder deren Legierungen kommen z.B. intermetallische Verbindungen bzw. Phasen, wie Titanaluminide, in Frage.
As aluminum and its alloys come pure aluminum and alloys with the main component aluminum, such as the aluminum wrought alloys of the series EN-AW 1000, 2000, 3000, 4000, 5000, 6000, 7000, or the aluminum casting alloys series EN-AC 21000, 21100 , 42000, 43000, 43200, 43400, 44300, 46000, 46200, 47000, 47100, 48000, 51000, 51100 in question.
Magnesium and its alloys include pure magnesium and the magnesium casting alloys of the ASTM designations AS41, AM60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, EZ33, HZ32 and the wrought alloys AZ31, AZ61, AZ 80, M1, ZK60, ZK40 in question.
Furthermore, pure titanium or titanium alloys such as TiAl6V4; Use TiAl5Fe2.5 and others.
As special materials with aluminum, magnesium, titanium or their alloys are, for example, intermetallic compounds or phases, such as titanium aluminides, in question.

Ganz besonders bevorzugt ist der Einsatz von Aluminium und dessen Legierungen.Very particularly preferred is the use of aluminum and its alloys.

Als besonders vorteilhaft hat es sich im Rahmen der Erfindung erwiesen, wenn der Elektrolyt bei der anodischen Oxidation einen pH-Wert von 5,4 bis 10,0 aufweist.It has proven to be particularly advantageous in the context of the invention if the electrolyte has a pH of 5.4 to 10.0 in the case of anodic oxidation.

Der Elektrolyt kann ebenfalls anorganische oder organische Anionen enthalten. Bevorzugt enthalten sind 0,2 bis 0,9 Mol/L eines Phosphats eines Alkalimetalls, vorzugsweise ein Dihydrogenphosphat oder Pyrophosphat, insbesondere Kaliumdihydrogenphosphat oder Kaliumpyrophosphat, und/oder 0,15 bis 0,5 Mol/L Zitronensäure oder deren Salze. Zitrate sind besonders bevorzugt, da sie einen kontrollierten Funkenprozess unterstützten. Phosphate erlauben ein besseres Schichtenwachstum.The electrolyte may also contain inorganic or organic anions. Preference is given to 0.2 to 0.9 mol / L of a phosphate of an alkali metal, preferably a dihydrogen phosphate or pyrophosphate, in particular potassium dihydrogen phosphate or potassium pyrophosphate, and / or 0.15 to 0.5 mol / L of citric acid or its salts. Citrates are particularly preferred because they support a controlled spark process. Phosphates allow better layer growth.

Ebenfalls sinnvoll ist es, wenn der Elektrolyt 0,8 bis 2,9 Mol/L, vorzugsweise 0,8 bis 2,1 Mol/L eines Stabilisators, insbesondere Hexamethylentetramin, enthält.It is also useful if the electrolyte contains 0.8 to 2.9 mol / L, preferably 0.8 to 2.1 mol / L of a stabilizer, in particular hexamethylenetetramine.

Im Rahmen der Erfindung werden Eisen- und Vanadium-Salze dem Elektrolyten zugesetzt, um die gewünschte schwarze Farbe der Oxidkeramikschicht zu erhalten. Insbesondere werden durch die erfindungsgemäße Kombination von Eisen und Vanadium tiefschwarze und dicke Schichten (bis 100µm) erhalten. Für deren Erzeugung ist das Vorhandensein beider Metallsalze zwingend erforderlich. Wie aus den Vergleichsversuchen (siehe unten) hervor geht, werden mit lediglich einem der beiden Metallsalze keine tiefschwarzen Schichten im Sinne der Erfindung erhalten.In the invention, iron and vanadium salts are added to the electrolyte to obtain the desired black color of the oxide ceramic layer. In particular, deep black and thick layers (up to 100 μm) are obtained by the combination of iron and vanadium according to the invention. For their production, the presence of both metal salts is imperative. As can be seen from the comparative experiments (see below), no deep black layers within the meaning of the invention are obtained with just one of the two metal salts.

Erfindungsgemäß werden dazu Ammoniumeisen(III)citrat und Ammonium(mono)vanadat eingesetzt und zwar in einer Konzentration von 0,04 bis 0,09 Mol/L und 0,035 bis 0,090 Mol/L.According to the invention, ammonium iron (III) citrate and ammonium (mono) vanadate are used for this purpose in a concentration of 0.04 to 0.09 mol / L and 0.035 to 0.090 mol / L.

Als besonders geeignet haben sich eine Elektrolyt-Temperatur von 15 bis 60, vorzugsweise bis 40 Grad Celsius herausgestellt.An electrolyte temperature of 15 to 60, preferably up to 40 degrees Celsius has proven to be particularly suitable.

Vorzugsweise liegt die eingesetzte Stromdichte zwischen 0,02 und 0,10 Acm-2, vorzugsweise 0,04 bis 0,08 Acm-2, ohne das Abstriche bei der Qualität und Schichtdicke der Oxidkeramikschichten gemacht werden müssen.Preferably, the current density used is between 0.02 and 0.10 Acm -2 , preferably 0.04 to 0.08 Acm -2 , without having to compromise on the quality and layer thickness of the oxide ceramic layers.

Vorteilhafterweise wird die Stromdichte konstant gehalten, bis dass eine Endspannung unterhalb von 1000 V, vorzugsweise 300 bis 650 V erreicht wird.Advantageously, the current density is kept constant until a final voltage below 1000 V, preferably 300 to 650 V is reached.

Die mittels der Erfindung erhältlichen Oxidkeramikschichten können eine Schichtdicke von 5 µm bis 100 µm aufweisen und bestehen aus Oxiden, insbesondere Spinellen, von Aluminium, Eisen und Vanadium.The oxide ceramic layers obtainable by means of the invention can have a layer thickness of 5 μm to 100 μm and consist of oxides, in particular spinels, of aluminum, iron and vanadium.

Mit den erfindungsgemäßen Elektrolytkombinationen sind erstmals tiefschwarze (von L* kleiner oder gleich 30, vgl. oben) und auch haftfeste Schichtdicken größer 50 µm erzeugbar. Insbesondere erlaubt die erfindungsgemäße Elektrolytkombination die Erzeugung dünner oder dicker tiefschwarzer und auch haftfester Schichten von bis zu 100 µm.With the electrolyte combinations according to the invention deep black (of L * less than or equal to 30, see above) and also adhesive layer thicknesses greater than 50 μm can be produced for the first time. In particular, the electrolyte combination according to the invention allows the production of thin or thick deep black and also adhesive layers of up to 100 microns.

Besonders bevorzugt ist es ebenfalls, wenn der Elektrolyt schadstoffarm und einfach zu handhaben ist, also keine Molybdän-, Kobalt-, Chrom- und Nickel-Ionen sowie Cyanid-Ionen und Borat-Ionen enthält.It is also particularly preferred if the electrolyte is low in pollutants and easy to handle, so no molybdenum, cobalt, chromium and nickel ions and Contains cyanide ions and borate ions.

Weitere Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Beispielen.Further features and details of the invention will become apparent from the following description of examples.

Material und Messgeräte der VersucheMaterial and measuring devices of the experiments

  • Probenmaterial: a) EN-AW 6082 (EN-AW AlSi1MgMn, Wärmebehandlungszustand T6 und T4); b) EN-AC 46000 (GD-AlSi9Cu3(Fe)),Sample material: a) EN-AW 6082 (EN-AW AlSi1MgMn, heat treatment conditions T6 and T4); b) EN-AC 46000 (GD-AlSi9Cu3 (Fe)),
  • Gleichrichter: Fa. RGB Typ WER 21.877 (30A/380V),Rectifier: Fa. RGB type WER 21.877 (30A / 380V),
  • Gestellmaterial: Aluminium (isoliert),Frame material: aluminum (insulated),
  • Farbmessgerät: Fa. BYK-Gardner spectro-guide (Ser.Nr. 1020746), Lichtart/Beobachter D65/10°, Meßgeometrie 45°/0°,Colorimeter: BYK-Gardner spectro-guide (Ser. No. 1020746), illuminant / observer D65 / 10 °, measuring geometry 45 ° / 0 °,
  • Schichtdickenmessgerät: Fa. Helmut Fischer GmbH & Co.KG, DUALSCOPE® MP40E, Sonde ETA 3.3HCoating Thickness Gauge: Helmut Fischer GmbH & Co. KG, DUALSCOPE® MP40E, ETA 3.3H Probe
VersuchsdurchführungExperimental Procedure

Die Elektrolyt-Lösungen wurden frisch zubereitet und in übliche Vorrichtungen für die anodische Oxidation eingebracht. Vor der Oxidation wurden alle Probenplatten mit einem handelsüblichen Reiniger entfettet und anschließend in die Elektrolytbäder eingetaucht und kontaktiert. Die Spannung wurde mit einem Gleichrichter der Fa. RGB (30A/380V) angelegt. Nach etwa 10 min. lagen die Spannungen im Bereich 230 bis 290 Volt.The electrolyte solutions were freshly prepared and placed in conventional anodic oxidation equipment. Prior to oxidation, all sample plates were degreased with a commercially available cleaner and then immersed in the electrolyte baths and contacted. The voltage was applied with a rectifier of the company RGB (30A / 380V). After about 10 min. the voltages were in the range of 230 to 290 volts.

Nach Erreichen der angegebenen Dauer wurden die Probeplatten entnommen, nach üblichen Verfahren gesäubert und untersucht.After reaching the specified duration, the sample plates were removed, cleaned by conventional methods and examined.

An den Proben erfolgten zur Charakterisierung der Schicht nach dem CIE L*a*b*-System gemäß DIN EN ISO 11664-4, Schichtdickenmessungen sowie Gitterschnitt-Tests gemäß DIN 2499.The samples were subjected to characterization of the layer according to the CIE L * a * b * system according to DIN EN ISO 11664-4, layer thickness measurements and cross-hatch tests in accordance with DIN 2499.

Zur Charakterisierung einzelner Schichten wurden Querschliffe hergestellt und diese mittels REM (Rasterelektronenmikroskopie) bzw. EDX (Energiedispersive Röntgenspektroskopie) festkörperanalytisch untersucht und dokumentiert.For the characterization of individual layers cross sections were produced and these were analyzed and documented by means of SEM (Scanning Electron Microscopy) or EDX (Energy Dispersive X-Ray Spectroscopy).

Ausführungsbeispieleembodiments

Die Erfindung soll exemplarisch an nachfolgenden Beispielen erläutert werden:

  • Ausführungsbeispiel 1
    Eine alkalisch entfettete Aluminium Platte aus der Knetlegierung EN-AW 6082/ AlSi1 MgMn wird in einem wässrigen Elektrolyt mit 0,4 Mol/L Zitronensäure; 1,5 Mol/L Hexamethylentetramin; 0,7 Mol/L Kaliumdihydrogenphosphat; 0,05 Mol/L Ammoniumeisen(III)citrat; 0,075 Mol/L Ammonium(mono)vanadat mit einem pH-Wert von 6,1 eingetaucht und als Anode kontaktiert und bei einer Stromdichte von 0,035 Acm-2, bei 25°C für 15 min Laufzeit mittels Funkenentladung beschichtet.
    Es wurde eine tiefschwarze festhaftende Beschichtung erhalten mit einer Schichtdicke von 20 µm und einer Farbcharakteristik L* 28,68; a* -0,01; b* -0,33.
  • Ausführungsbeispiel 2
    Eine alkalisch entfettete Aluminium Platte aus der Knetlegierung EN-AW 6082/ AlSi1MgMn wird in einem wässrigen Elektrolyt umfassend 0,4 Mol/L Zitronensäure; 1,5 Mol/L Hexamethylentetramin; 0,7 Mol/L Kaliumdihydrogenphosphat; 0,05 Mol/L Ammoniumeisen(III)citrat; 0,075 Mol/L Ammonium(mono)vanadat mit einem pH-Wert von 6,1 als Anode kontaktiert und bei einer Stromdichte von 0,035 Acm-2, bei 25°C für 60 min Laufzeit mittels Funkenentladung beschichtet.
    Es wurde eine tiefschwarze festhaftende Beschichtung erhalten mit einer Schichtdicke von 80 µm und einer Farbcharakteristik L* 26,38; a* -0,15; b* -0,76.
  • Ausführungsbeispiel 3
    Eine alkalisch entfettete Aluminium Platte aus der Gußlegierung EN-AC 46000 / GD-AISi9Cu3(Fe) wird in einem wässrigen Elektrolyt umfassend 0,4 Mol/L Zitronensäure; 1,5 Mol/L Hexamethylentetramin; 0,7 Mol/L Kaliumdihydrogenphosphat; 0,05 mol/L Ammoniumeisen(III)citrat, 0,075 Mol/L Ammonium(mono)vanadat mit einem pH-Wert von 6,1 als Anode kontaktiert und bei einer Stromdichte von 0,05 Acm-2, bei 30°C für 40 min Laufzeit mittels Funkenentladung beschichtet.
    Es wurde eine tiefschwarze festhaftende Beschichtung erhalten mit einer Schichtdicke von 22 µm und einer Farbcharakteristik L* 25,97; a* 0,40; b* 0,20.
  • Ausführungsbeispiel 4
    Eine alkalisch entfettete Aluminium Platte aus der Knetlegierung EN-AW 6082/ AlSi1MgMn wird in einem wässrigen Elektrolyt umfassend 1,3 Mol/L Hexamethylenteträmin; 0,35 Mol/L Kaliumpyrophosphat; 0,05 mol/L Ammoniumeisen(III)citrat; 0,075 Mol/L Ammonium(mono)vanadat mit einem pH-Wert von 9,6 als Anode kontaktiert und bei einer Stromdichte von 0,032 Acm-2, bei 40°C für 30 min Laufzeit mittels Funkenentladung beschichtet.
    Es wurde eine tiefschwarze festhaftende Beschichtung erhalten mit einer Schichtdicke von 22 µm und einer Farbcharakteristik L* 26,60; a* 0,00; b* -0,60.
  • Ausführungsbeispiel 5
    Eine alkalisch entfettete und sauer gebeizte rein Titan Platte (Grad 2) wird in einem wässrigen Elektrolyt mit der Zusammensetzung 0,4 mol/l Zitronensäure; 1,5 mol/l Hexamethylentetramin; 0,7 mol/l Kaliumdihydrogenphosphat; 0,05 Ammoniumeisen(III)citrat; 0,075 mol/l Ammonium(mono)vanadat mit einem pH-Wert von 6,1 eingetaucht und als Anode kontaktiert und bei einer Stromdicht von 0,03 Acm-1, bei 20°C für 15 min Laufzeit mittels Funkenentladung beschichtet.
    Es wurde eine tiefschwarze festhaftende Beschichtung erhalten mit einer Schichtdicke von 26,5 µm und einer Farbcharakteristik L* 29,67; a* 3,91; b*4,01.
  • Ausführungsbeispiel 6
    Eine alkalisch entfettete Aluminium Platte aus der Knetlegierung EN-AW 6082/ AlSi1MgMn wird in einem wässrigen Elektrolyt umfassend 0,35 Mol/L Zitronensäure, 2,85 Mol/L Hexamethylentetramin, 0,5 Mol/L Kaliumdihydrogenphosphat, 0,05 Mol/L Ammoniumeisen(III)citrat und 0,07 Mol/L Ammonium(mono)vanadat mit einem pH-Wert von 6,6 eingetaucht und als Anode kontaktiert und bei einer Stromdichte von 0,035 Acm-2, bei 25°C für 15 min Laufzeit mittels Funkenentladung beschichtet.
    Es wurde eine tiefschwarze festhaftende Beschichtung erhalten mit einer Schichtdicke von 12,3 µm und einer Farbcharakteristik L* 27,91; a* 0,34; b* -0,16.
The invention will be explained by way of example with reference to the following examples:
  • Embodiment 1
    An alkaline degreased aluminum plate made of the wrought alloy EN-AW 6082 / AlSi1 MgMn is dissolved in an aqueous electrolyte containing 0.4 mol / L citric acid; 1.5 mol / L hexamethylenetetramine; 0.7 mol / L potassium dihydrogen phosphate; 0.05 mol / L ammonium iron (III) citrate; 0.075 mol / L ammonium (mono) vanadate immersed with a pH of 6.1 and contacted as an anode and coated at a current density of 0.035 Acm -2 , at 25 ° C for 15 min running time by spark discharge.
    A deep black adherent coating was obtained with a layer thickness of 20 μm and a color characteristic L * 28.68; a * -0.01; b * -0.33.
  • Embodiment 2
    An aluminum-degreased aluminum plate made of the wrought alloy EN-AW 6082 / AlSi1MgMn is dissolved in an aqueous electrolyte comprising 0.4 mol / L of citric acid; 1.5 mol / L hexamethylenetetramine; 0.7 mol / L potassium dihydrogen phosphate; 0.05 mol / L ammonium iron (III) citrate; 0.075 mol / L ammonium (mono) vanadate with a pH of 6.1 contacted as an anode and coated at a current density of 0.035 Acm -2 , at 25 ° C for 60 min run time by spark discharge.
    A deep black adherent coating was obtained with a layer thickness of 80 μm and a color characteristic L * 26.38; a * -0.15; b * -0.76.
  • Embodiment 3
    An aluminum-degreased aluminum plate made of the casting alloy EN-AC 46000 / GD-AISi9Cu3 (Fe) is dissolved in an aqueous electrolyte comprising 0.4 mol / L of citric acid; 1.5 mol / L hexamethylenetetramine; 0.7 mol / L potassium dihydrogen phosphate; 0.05 mol / L ammonium iron (III) citrate, 0.075 mol / L ammonium (mono) vanadate contacted with a pH of 6.1 as the anode and at a current density of 0.05 Acm -2 , at 30 ° C for 40 min runtime coated by spark discharge.
    A deep black adherent coating was obtained with a layer thickness of 22 μm and a color characteristic L * 25.97; a * 0.40; b * 0.20.
  • Embodiment 4
    An aluminum-degreased aluminum plate made of the wrought alloy EN-AW 6082 / AlSi1MgMn is dissolved in an aqueous electrolyte comprising 1.3 mol / L hexamethyleneteträmin; 0.35 mol / L potassium pyrophosphate; 0.05 mol / L ammonium iron (III) citrate; 0.075 mol / L ammonium (mono) vanadate with a pH of 9.6 contacted as the anode and at a current density of 0.032 Acm -2 , at 40 ° C for 30 min Running time coated by spark discharge.
    A deep black adherent coating was obtained with a layer thickness of 22 μm and a color characteristic L * 26.60; a * 0.00; b * -0.60.
  • Embodiment 5
    An alkaline degreased and acidified pure titanium plate (grade 2) is dissolved in an aqueous electrolyte having the composition 0.4 mol / l citric acid; 1.5 mol / l hexamethylenetetramine; 0.7 mol / l potassium dihydrogen phosphate; 0.05 ammonium iron (III) citrate; 0.075 mol / l ammonium (mono) vanadate immersed with a pH of 6.1 and contacted as an anode and coated at a current density of 0.03 Acm -1 , at 20 ° C for 15 min run time by spark discharge.
    A deep black adherent coating was obtained with a layer thickness of 26.5 μm and a color characteristic L * 29.67; a * 3.91; b * 4.01.
  • Embodiment 6
    An aluminum-degreased aluminum plate of the wrought alloy EN-AW 6082 / AlSi1MgMn is dissolved in an aqueous electrolyte comprising 0.35 mol / L citric acid, 2.85 mol / L hexamethylenetetramine, 0.5 mol / L potassium dihydrogen phosphate, 0.05 mol / L Immersed ammonium iron (III) citrate and 0.07 mol / L ammonium (mono) vanadate with a pH of 6.6 and contacted as the anode and at a current density of 0.035 Acm -2 , at 25 ° C for 15 min running time Spark discharge coated.
    A deep black adherent coating was obtained with a layer thickness of 12.3 μm and a color characteristic L * 27.91; a * 0.34; b * -0.16.

Die Farb-Messungen erfolgten mit dem angegebenen Farbmessgerät der Firma BYK-Gardner GmbH (siehe oben). Für jede Probenplatte wurde eine Farbmessung nach CIE L*a*b*-System durchgeführt.The color measurements were carried out with the specified colorimeter from BYK-Gardner GmbH (see above). For each sample plate, a CIE L * a * b * color measurement was performed.

Die Schichtdickenmessungen erfolgten mit dem angegebenen Messgerät der Firma Helmut Fischer GmbH & Co.KG (siehe oben). Für jede Probenplatte wurden 10 Messungen der Schichtdicke durchgeführt und der Mittelwert angegeben.The layer thickness measurements were carried out with the specified measuring device from Helmut Fischer GmbH & Co. KG (see above). For each sample plate, 10 measurements of layer thickness were made and the mean reported.

Schliffuntersuchungengrinding tests

Querschliffuntersuchungen zeigen, dass bei der Vergleichs-Variante gemäß DD 221 762 A1 auf EN-AW 6082 AlSi1MgMn starke Schichtdickenschwankungen vorliegen, teilweise ist die Oxidschicht nicht geschlossen (Fig.1 und 2). Die Schichtdicke gemäß Ausführungsbeispiel 1 (Fig. 3 und 4) ist deutlich höher und wirkt homogener als die der Vergleichs-Variante.Querschliffuntersuchungen show that in the comparison variant according to DD 221 762 A1 to EN-AW 6082 AlSi1MgMn there are large variations in layer thickness, in some cases the oxide layer is not closed ( Fig.1 and 2 ). The layer thickness according to Embodiment 1 ( 3 and 4 ) is significantly higher and more homogeneous than that of the comparison variant.

EDXEDX

Beim Vergleich der EDX Spektren (Fig.5 und 6) ist zusehen, dass bei der Vergleichs-Variante (Fig. 5) Kobalt, Nickel und Molybdän in der Schicht enthalten sind. Bei der Schicht gemäß der Erfindung (Ausführungsbeispiel 1, Fig. 6) sind dagegen lediglich die Atome Eisen und Vanadat nachweisbar (Fig. 6). Die Spuren von Nickel und Chrom sind materialbedingt.When comparing the EDX spectra ( Figure 5 and 6 ) it can be seen that in the comparative variant ( Fig. 5 ) Cobalt, nickel and molybdenum are contained in the layer. In the layer according to the invention (Embodiment 1, Fig. 6 ), however, only the atoms iron and vanadate are detectable ( Fig. 6 ). The traces of nickel and chromium are material-related.

VergleichsversucheComparative tests

  1. a) Als Vergleich zwischen der Erfindung und dem Stand der Technik dienen Werte von Beschichtungen gemäß DD 221 762 A1 , die ebenfalls analog vermessen wurden.
    Schwarze Beschichtungen nach DD 221 762 A1 weisen zwar Farbwerte nach CIE L*a*b*-System von L* kleiner oder gleich 30 auf. Solche Schichten weisen nach analoger Versuchsdurchführung Schichtdicken von ca. 12 µm auf. Höhere Schichtdicken wären hier zwar möglich, diese sind dann jedoch inhomogen in Farbe und Schichtdicke.
    a) As a comparison between the invention and the prior art are values of coatings according to DD 221 762 A1 , which were also measured analogously.
    Black coatings after DD 221 762 A1 have color values according to CIE L * a * b * system of L * less than or equal to 30. Such layers have layer thicknesses of about 12 .mu.m after an analogous experimental procedure. Higher layer thicknesses would be possible here, but these are then inhomogeneous in color and layer thickness.
  2. b) Verändert man beim Elektrolyten nach Ausführungsbeispiel 1 die Vanadiumkonzentration, d.h. enthält der Elektrolyt neben Eisen KEIN Vanadium (d.h. 0 g/L) so werden L* Werte mit 51,44 erreicht. Bei Erhöhung des Vanadium Anteils im selben Elektrolyten auf 3g/L erhält man mit L*=32,8; a*=1,87; b*=3,87 ebenfalls braune Schichten.b) When the electrolyte of Embodiment 1 is changed to the vanadium concentration, i. if the electrolyte contains NO vanadium (i.e., 0 g / L) in addition to iron, L * values of 51.44 are achieved. Increasing the vanadium content in the same electrolyte to 3 g / L gives L * = 32.8; a * = 1.87; b * = 3.87 also brown layers.
  3. c) Verändert man beim Elektrolyten nach Ausführungsbeispiel 1 die Eisenkonzentration, d.h. liegt als Metallsalz im Elektrolyten nur eine Vanadiumverbindung und KEIN Eisen vor (d.h. 0g/L Fe), so erhält man ebenso nur braune Schichten mit L*=37,23; a*=1,99; b*=7,24. Bei Erhöhung der Eisenkonzentration bei konstant Haltung der Vanadiumkonzentration auf 4g/L Fe erhält man ebenfalls braune Schichten mit L*=33,45; a*=1,48; b*=4,0c) If the electrolyte of Embodiment 1 is changed to the iron concentration, i. if the metal salt in the electrolyte is only one vanadium compound and NO iron (i.e. 0g / L Fe), then only brown layers with L * = 37.23 are obtained; a * = 1.99; b * = 7.24. Increasing the iron concentration while maintaining the vanadium concentration at 4 g / L Fe also gives brown layers with L * = 33.45; a * = 1.48; b * = 4.0

Claims (10)

  1. Plasma-chemical method for production of black oxide ceramic layers on aluminium, magnesium, titanium or alloys thereof and special substances containing these materials, which comprise intermetallic compounds of aluminium, magnesium, titanium or alloys thereof, according to the process of anodic oxidation in an aqueous electrolyte which contains iron and vanadium, characterised in that the electrolyte contains 0.04 to 0.09 Mol/L of ammonium iron(III) citrate and 0.035 to 0.090 Mol/L of ammonium (mono)vanadate.
  2. Method as claimed in claim 1, characterised in that the electrolyte has a pH value of 5.4 to 10.0.
  3. Method as claimed in claim 1 or 2, characterised in that the electrolyte contains 0.15 to 0.5 Mol/L citric acid or salts thereof.
  4. Method as claimed in any one of the preceding claims, characterised in that the electrolyte contains 0.8 to 2.9 Mol/L of a stabiliser, in particular hexamethylene tetramine.
  5. Method as claimed in any one of the preceding claims, characterised in that the electrolyte contains 0.2 to 0.9 Mol/L of a phosphate of an alkali metal, preferably a dihydrogen phosphate or pyrophosphate, in particular potassium dihydrogen phosphate or potassium pyrophosphate.
  6. Method as claimed in any one of the preceding claims, characterised in that the electrolyte bath is at a temperature of 15 to 60 degrees Celsius.
  7. Method as claimed in any one of the preceding claims, characterised in that the current density used is from 0.02 to 0.10 Acm-2, preferably 0.04 to 0.08 Acm-2.
  8. Method as claimed in claim 7, characterised in that a final voltage below 1000 V, preferably 300 to 650 V, is achieved.
  9. Method as claimed in any one of the preceding claims, characterised in that the oxide ceramic layers have a layer thickness in the range of 5 µm to 100 µm.
  10. Method as claimed in any one of the preceding claims, characterised in that the oxide ceramic layers produced consist of oxides, in particular spinels, of aluminium, iron and vanadium.
EP14184217.9A 2013-09-26 2014-09-10 Plasma chemical method for producing black oxide ceramic coatings and coated article Active EP2857560B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013110660.9A DE102013110660A1 (en) 2013-09-26 2013-09-26 Plasma-based process for producing black oxide ceramic layers and correspondingly coated article

Publications (3)

Publication Number Publication Date
EP2857560A1 EP2857560A1 (en) 2015-04-08
EP2857560B1 true EP2857560B1 (en) 2017-03-22
EP2857560B2 EP2857560B2 (en) 2020-04-22

Family

ID=51492882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14184217.9A Active EP2857560B2 (en) 2013-09-26 2014-09-10 Plasma chemical method for producing black oxide ceramic coatings and coated article

Country Status (3)

Country Link
US (1) US20150083598A1 (en)
EP (1) EP2857560B2 (en)
DE (1) DE102013110660A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022206126A1 (en) 2022-06-20 2023-03-09 Carl Zeiss Smt Gmbh Component for use in a projection exposure system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013110660A1 (en) 2013-09-26 2015-03-26 AHC Oberflächentechnik GmbH Plasma-based process for producing black oxide ceramic layers and correspondingly coated article
CN111344439A (en) * 2017-11-17 2020-06-26 株式会社东亚电化 Magnesium or aluminum metal part with black oxide coating and preparation method thereof
DE102018110905A1 (en) * 2018-05-07 2019-11-07 Lucas Automotive Gmbh Electrode for an anodizing process
US11032930B2 (en) * 2019-05-28 2021-06-08 Apple Inc. Titanium surfaces with improved color consistency and resistance to color change
EP3997386A1 (en) * 2019-07-09 2022-05-18 BSH Hausgeräte GmbH Method for manufacturing a component, component and gas hob
CN111058077B (en) * 2020-01-19 2022-03-22 常州大学 Electrolyte for micro-arc oxidation of black ceramic membrane, preparation method of electrolyte and micro-arc oxidation method
CN112663112B (en) * 2020-12-02 2022-10-04 斯特凯新材料(上海)有限公司 Preparation method of electrolyte and magnesium alloy composite black oxide ceramic membrane
CN114016108B (en) * 2021-12-20 2022-11-25 哈尔滨三泳金属表面技术有限公司 Surface oxidation film of high-silicon high-copper die-casting aluminum alloy and preparation process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021009A2 (en) 2001-08-03 2003-03-13 Elisha Holding Llc Process for treating a conductive surface and products formed thereby
US20070221508A1 (en) 2006-03-25 2007-09-27 Hon Hai Precision Industry Co., Ltd. Method for anodizing magnesium products
US20070246691A1 (en) 2006-04-19 2007-10-25 Hon Hai Precision Industry Co., Ltd. Electrolyte for anodizing magnesium products
EP2103718A1 (en) 2006-09-28 2009-09-23 Nihon Parkerizing Co., Ltd. Method for coating ceramic film on metal, electrolysis solution for use in the method, and ceramic film and metal material
EP2857560A1 (en) 2013-09-26 2015-04-08 AHC-Oberflächentechnik GmbH Plasma chemical method for producing black oxide ceramic coatings and coated article

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD221762A1 (en) 1983-12-28 1985-05-02 Karl Marx Stadt Tech Hochschul METHOD FOR GENERATING A RADIATION ABSORBENT SURFACE
US4659440A (en) 1985-10-24 1987-04-21 Rudolf Hradcovsky Method of coating articles of aluminum and an electrolytic bath therefor
US4668347A (en) * 1985-12-05 1987-05-26 The Dow Chemical Company Anticorrosive coated rectifier metals and their alloys
DD257275A1 (en) * 1987-02-02 1988-06-08 Karl Marx Stadt Tech Hochschul DECORATIVE TRANSFER TO METALS
DD299596A7 (en) 1989-07-19 1992-04-30 Jenoptik Carl Zeiss Jena Gmbh Werk Entw. Wiss.-Techn. Ausruestungen,De ELECTROLYTE FOR THE PRODUCTION OF BLACK CONVERSION LAYERS ON LIGHT METALS
DD299595A7 (en) 1989-07-19 1992-04-30 Jenoptik Carl Zeiss Jena Gmbh Werk Entw. Wiss.-Techn. Ausruestungen,De BLACK CONVERSION LAYERS ON TITANIUM MATERIALS
DE4139006C3 (en) 1991-11-27 2003-07-10 Electro Chem Eng Gmbh Process for producing oxide ceramic layers on barrier layer-forming metals and objects produced in this way from aluminum, magnesium, titanium or their alloys with an oxide ceramic layer
DE10127770A1 (en) * 2001-06-07 2002-12-12 Volkswagen Ag Production of anticorrosion coating on magnesium or alloy part, used in vehicle or aircraft construction, involves oxidation in aluminum phosphate electrolyte containing vanadium, molybdenum and/or manganese compound
DE102008043970A1 (en) * 2008-11-21 2010-05-27 Biotronik Vi Patent Ag A method for producing a corrosion-inhibiting coating on an implant of a biocorrodible magnesium alloy and implant produced by the method
CN102154673B (en) * 2011-04-12 2012-10-03 中国船舶重工集团公司第十二研究所 Method for preparing environment-friendly micro-arc oxidation black ceramic film on aluminum alloy surface
DE102011055644B4 (en) * 2011-11-23 2013-05-29 Verein zur Förderung von Innovationen durch Forschung, Entwicklung und Technologietransfer e.V. (Verein INNOVENT e.V.) Process for producing a black oxide ceramic surface layer on a light metal alloy component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021009A2 (en) 2001-08-03 2003-03-13 Elisha Holding Llc Process for treating a conductive surface and products formed thereby
US20070221508A1 (en) 2006-03-25 2007-09-27 Hon Hai Precision Industry Co., Ltd. Method for anodizing magnesium products
US20070246691A1 (en) 2006-04-19 2007-10-25 Hon Hai Precision Industry Co., Ltd. Electrolyte for anodizing magnesium products
EP2103718A1 (en) 2006-09-28 2009-09-23 Nihon Parkerizing Co., Ltd. Method for coating ceramic film on metal, electrolysis solution for use in the method, and ceramic film and metal material
EP2857560A1 (en) 2013-09-26 2015-04-08 AHC-Oberflächentechnik GmbH Plasma chemical method for producing black oxide ceramic coatings and coated article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022206126A1 (en) 2022-06-20 2023-03-09 Carl Zeiss Smt Gmbh Component for use in a projection exposure system

Also Published As

Publication number Publication date
DE102013110660A1 (en) 2015-03-26
EP2857560A1 (en) 2015-04-08
US20150083598A1 (en) 2015-03-26
EP2857560B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
EP2857560B1 (en) Plasma chemical method for producing black oxide ceramic coatings and coated article
EP0545230B1 (en) Process for preparing modified oxide ceramic coatings on barrier-layer metals and products obtained
EP1301656B1 (en) Method for treating the surfaces of aluminium or aluminium alloys by means of formulations containing alkane sulfonic acid
EP2260127B1 (en) Structured chrome solid particle layer and method for the production thereof
EP0333048A1 (en) Method for producing corrosion and wear resistant protective coatings on magnesium and magnesium alloys
Fachikov et al. Surface treatment of zinc coatings by molybdate solutions
DE102016205815A1 (en) Process for nickel-free phosphating of metallic surfaces
DE202008010896U1 (en) Material, in particular components, with improved wear protection layers
WO2021116318A1 (en) Method for producing a flat steel product having a zinc-based metal protective layer and a phosphating layer produced on a surface of the metal protective layer, and flat steel product of this type
KR20200089698A (en) Magnesium or aluminum metal member with black oxide film and method for manufacturing same
EP3259383B1 (en) Tin-nickel layer with high value of hardness
DE882168C (en) Bath and process for the electrolytic production of zinc coatings
DE102011055644B4 (en) Process for producing a black oxide ceramic surface layer on a light metal alloy component
WO2018192707A1 (en) Method for zinc phosphating metal components in series in a sludge-free manner so as to form layers
EP2723923B1 (en) Pieces of vacuum pumps free from conversion layer
EP0148439B1 (en) Activated metal anodes and process for their manufacture
DE3442591C2 (en)
EP1273679A1 (en) Metallic component with outer function layer and method of production
DE19858795C2 (en) Process for darkening a surface layer of a piece of material that contains zinc
Hussein Plasma Process Control for Improved PEO Coatings on Magnesium Alloys
EP3771749A1 (en) Method for passivating metallic substrates
DE2216432C3 (en) Workpiece made of titanium or a titanium alloy with a titanium oxide top layer, bath and method for producing and using the same
DE102017104654A1 (en) Light-resistant combination dyeing of anodized aluminum surfaces
EP4357472A1 (en) Hot-dip coated and skin-pass rolled sheet steel with an intact oxide layer on the metallic coating
EP3719181A2 (en) Oxide layer and method of forming a thermally relaxed oxide layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150810

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20151127

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 11/06 20060101ALI20160930BHEP

Ipc: C25D 11/14 20060101ALI20160930BHEP

Ipc: C25D 11/16 20060101ALN20160930BHEP

Ipc: C25D 11/02 20060101ALI20160930BHEP

Ipc: C25D 11/10 20060101AFI20160930BHEP

Ipc: C25D 11/26 20060101ALI20160930BHEP

Ipc: C25D 11/30 20060101ALI20160930BHEP

INTG Intention to grant announced

Effective date: 20161028

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 11/14 20060101ALI20161017BHEP

Ipc: C25D 11/10 20060101AFI20161017BHEP

Ipc: C25D 11/02 20060101ALI20161017BHEP

Ipc: C25D 11/16 20060101ALN20161017BHEP

Ipc: C25D 11/26 20060101ALI20161017BHEP

Ipc: C25D 11/06 20060101ALI20161017BHEP

Ipc: C25D 11/30 20060101ALI20161017BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 877873

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ALDO ROEMPLER PATENTANWALT, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003086

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014003086

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20171221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170910

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AALBERTS SURFACE TREATMENT GMBH

27A Patent maintained in amended form

Effective date: 20200422

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014003086

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 10

Ref country code: LU

Payment date: 20230918

Year of fee payment: 10

Ref country code: AT

Payment date: 20230915

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 10

Ref country code: DE

Payment date: 20230930

Year of fee payment: 10

Ref country code: BE

Payment date: 20230918

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 10