EP0333049A1 - Method for finishing magnesium and magnesium alloys - Google Patents
Method for finishing magnesium and magnesium alloys Download PDFInfo
- Publication number
- EP0333049A1 EP0333049A1 EP89104237A EP89104237A EP0333049A1 EP 0333049 A1 EP0333049 A1 EP 0333049A1 EP 89104237 A EP89104237 A EP 89104237A EP 89104237 A EP89104237 A EP 89104237A EP 0333049 A1 EP0333049 A1 EP 0333049A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnesium
- protective layer
- fluoride
- phosphate
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/30—Anodisation of magnesium or alloys based thereon
Definitions
- Various methods are known for increasing the corrosion resistance and wear resistance of the surface of magnesium and magnesium alloys. These processes include chemical and electrochemical processes such as chromating and anodizing.
- the degreased magnesium parts connected as anode are immersed in an electrolyte bath. If a current flows in this electrolyte, the negatively charged anions migrate to the anode and are discharged there. This creates atomic oxygen, which leads to the formation of magnesium oxide. This anodic coating is firmly anchored to the magnesium surface.
- the oxidizing agents or peroxy compounds used in the known processes for the anodic oxidation of magnesium or magnesium alloys contain transition metals such as e.g. Chromium, vanadium or manganese. This has proven to be disadvantageous because some of these transition metal compounds are built into the protective layer produced on the magnesium surface, which can be seen from the color. The installation of these transition metal compounds leads to a reduction in the corrosion and wear resistance of the protective layer.
- the object of the present invention is therefore to produce protective layers on magnesium or magnesium alloys with anodic oxidation without or with only very little intrinsic coloration, which are easy to color and give a good primer for paintwork or aftertreatments and at the same time have increased corrosion resistance and wear resistance award.
- a particularly corrosion-resistant and wear-resistant protective layer can be produced by anodic oxidation on magnesium or magnesium alloys if the conditions specified in the main claim are met at the same time.
- borate or sulfate anions are used according to the invention which form peroxides, which decompose easily, but which easily replicate due to the high current density in the pores of the protective layer formed. Borate and sulfate anions have proven to be particularly suitable here, since they only reach the cathode to a small extent as a result of the transfer and are reduced thereon.
- the electrolyte must contain such anions that form poorly soluble compounds with the magnesium to be oxidized.
- phosphate ions in combination with fluoride or chloride ions are suitable here. If, according to the invention, a magnesium-aluminum alloy is anodically oxidized, the existing aluminum illuminations are formed which, with magnesium ions, result in a poorly soluble magnesium aluminate.
- the protective layer that forms must also have pores or conductive points so that a sufficient current flow is ensured. This is achieved by the fluoride or chloride ions added to the electrolyte bath according to the invention.
- the bath is therefore adjusted to a pH of 8 to 12, preferably between 10.5 and 11.5, in particular by adding buffering substances.
- a constant direct current with superimposed alternating current with a frequency of two 10 and 100 Hz.
- the superimposition is carried out by connecting the direct current source and the sine current source in series, the alternating voltage component of which is 15-30% of the direct voltage component.
- Frequency adjustable frequency can be generated to superimpose the direct current with the help of frequency converters. These are e.g. Motor-generator units with adjustable speed, in which a change in speed leads to a proportional change in frequency.
- the AC voltage is adjusted to the desired percentage of the DC voltage by means of a regulating transformer in accordance with the DC voltage.
- the frequency with which the alternating current is available from the network is selected, e.g. in the Federal Republic of Germany with 50 Hz or in the USA with 60 Hz.
- the anodic oxidation can also be carried out with rectified alternating current, the frequency of which is 50 Hz or 60 Hz, with a ripple of 15 to 35%. Rectification can take place both through one-way circuit M1, preferably through center circuit M2 (according to DIN draft 41 761). The current generated in this way is smoothed by suitable inductances, which reduce the ripple to 15-35% (literature, for example: R. Jäger, Power Electronics Fundamentals and Applications, Berlin 1977,) page 75).
- a direct current pulsed at 30 to 70 Hz the switch-off time between two voltage pulses being equal to or twice as long as the duration of the voltage pulses.
- the pulsing of the direct current can take place both by electronic and mechanical switches which are controlled by a frequency generator. Suitable electronic switches are e.g. Switching thyristors.
- a similar current profile can also be generated by one-way rectification M1 (according to DIN Draft 41 761) of an alternating current from 30 to 70 Hz with leading edge.
- the length of the voltage pulses can be controlled by changing the phase gating angle (literature e.g.: O. Limann, Electronics without Ballast, Kunststoff 1973, page 347).
- the voltage is preferably increased to 100 volts.
- the current density is in particular 1 to 6 A / dm2.
- An alkali-rich aqueous electrolyte bath according to the invention is preferably to be understood as one which contains from 0.9 to 8.5 mol / l of alkali ions.
- Alkali ions are those of the alkali metals lithium, sodium, potassium etc.
- the ammonium ion is not considered an alkali ion here.
- the content of the borate or sulfate ions in the aqueous electrolyte bath is preferably 10 to 80 g / l.
- the content of phosphate ions calculated as H3PO4 is preferably between 10 and 70 g / l.
- the amount of the fluoride or chloride ions to be used in combination with the phosphate ions is calculated as HF or HCl 5 to 35 g / l.
- the workpieces made of magnesium or magnesium alloys are subjected to the usual chemical pretreatments for degreasing, in particular an alkaline cleaning with a strongly alkaline bath. This is usually followed by acid pickling e.g. with dilute aqueous solutions of phosphoric acid and sulfuric acid and, if necessary, also activation with hydrofluoric acid.
- the protective layers produced according to the invention on the surface of the magnesium alloys or the pure magnesium are preferably still painted or subjected to an aftertreatment.
- the protective layers produced according to the invention form a very good primer for paints, as are common for workpieces made of magnesium, aluminum or zinc.
- These include Two-component paints based on polyurethane, acrylic resin, epoxy resin and phenolic resin paints.
- Products 3, 4, 5 and 6 showed a clearly recognizable increase in the corrosion resistance of the layers.
- the layer treated in product 6 also resulted in a significant reduction in the coefficient of friction.
- an aftertreatment can also be carried out with a solid lubricant which can anchor itself in the existing pores.
- lubricants are e.g. fluorinated and / or chlorinated aliphatic and aromatic hydrocarbon compounds as well as molybdenum disulfide and graphite.
- a preferred aftertreatment of the protective layers according to the invention is carried out with the aqueous solution of an alkali silicate.
- the MgOH 2 present in the protective layer particularly in the pores, reacts with the alkali silicate to form sparingly soluble magnesium silicate and alkali hydroxide.
- the workpiece with the protective layer removed from the alkali silicate bath is preferably exposed to an atmosphere rich in carbon dioxide.
- the remaining "water glass” forms from the silicate treatment with the CO2 of the atmosphere SiO2 and alkali carbonate, since the stronger carbonic acid displaces the weaker silica from its compound.
- the pores of the protective layer are closed by the SiO2, this process being accelerated by the gassing with CO2.
- the present invention further relates to magnesium alloys with a protective layer containing magnesium phosphate, hydroxide and fluoride with a thickness of 15 to 30 ⁇ m and a wear resistance measured with the Taber abraser (CS 10, 10 N) of less than 40 mg mass loss 10,000 revs are covered.
- a protective layer containing magnesium phosphate, hydroxide and fluoride with a thickness of 15 to 30 ⁇ m and a wear resistance measured with the Taber abraser (CS 10, 10 N) of less than 40 mg mass loss 10,000 revs are covered.
- the corrosion resistance of the magnesium alloys according to the invention is preferably less than 15 corrosion points / dm 2 after a sample of the alloy has been exposed to an exposure time of 240 h in the salt spray test in accordance with DIN 50021 SS.
- the magnesium casting alloys of the ASTM designations AS41, AM 60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, are particularly suitable for the process according to the invention for producing corrosion-resistant and wear-resistant protective layers.
- the protective layer preferably additionally contains borate, aluminate, phenolate or silicate ions.
- the protective layer preferably contains, in particular in the pores, silicon dioxide, which can be obtained by the after-treatment of the protective layer described above with an aqueous solution of an alkali silicate.
- the color of the protective layer applied to the magnesium alloys according to the invention is preferably white to whitish-gray or beige.
- the surfaces to be treated of objects made of the magnesium alloy GD-MG Al 9 Zn 2 were first pretreated in an alkaline cleaning bath.
- This cleaning bath had the following composition: Sodium hydroxide 50 g / l Trisodium phosphate 10 g / l Wetting agent / synthetic soap 1 g / l
- the pickling was carried out at a temperature of 20 ° C., the treatment time being about 30 seconds. After pickling, the surface sample was activated in hydrofluoric acid.
- a 25 ⁇ m thick, white layer was obtained which could be dyed particularly well with commercially available dyes.
- the protective layers were treated with commercially available water glass at a concentration of 50 g / l at a temperature of 95 ° C. for 15 minutes, dried and then exposed to a CO2 atmosphere in a desiccator. Here, the water glass and the water glass present in the depth of the pores is slowly converted as SiO2. After this compaction, the layer shows 5 corrosion points after 500 hours in the corrosion test according to DIN 50 021 SS. The mass loss in the Taber Abraser test was 38 mg after 104 revolutions.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
Magnesium gewinnt als metallischer Leichtbauwerkstoff (Dichte 1,74 g/cm³) in vielen Industriezweigen, wie z.B. im Flugzeugbau, in der Raumfahrttechnik, im Feingerätebau, in der optischen Industrie und im Automobilbau zunehmend an Bedeutung. Magnesium hat jedoch als Konstruktionswerkstoff den Nachteil, daß seine Korrosionsbeständigkeit ohne vorhergehende Oberflächenbehandlung gering ist. Es sind verschiedene Methoden bekannt, um die Korrosionsbeständigkeit und Verschleißfestigkeit der Oberfläche von Magnesium und Magnesiumlegierungen zu erhöhen. Zu diesen Verfahren zählen chemische und elektrochemische Verfahren wie z.B. das Chromatieren und die anodische Oxidation.Magnesium wins as a metallic lightweight material (density 1.74 g / cm³) in many branches of industry, e.g. in aircraft construction, in aerospace technology, in the construction of fine devices, in the optical industry and in automobile construction. Magnesium, however, has the disadvantage as a construction material that its corrosion resistance is low without previous surface treatment. Various methods are known for increasing the corrosion resistance and wear resistance of the surface of magnesium and magnesium alloys. These processes include chemical and electrochemical processes such as chromating and anodizing.
Bei der anodischen Oxidation tauchen die als Anode geschalteten entfetteten Magnesiumteile in ein Elektrolytbad. Wenn in diesem Elektrolyt ein Strom fließt, wandern die negativ geladenen Anionen zur Anode und werden dort entladen. Hierbei entsteht atomarer Sauerstoff, der zur Bildung von Magnesiumoxid führt. Dieser anodische Überzug ist festhaftend auf der Magnesiumoberfläche verankert.In the case of anodic oxidation, the degreased magnesium parts connected as anode are immersed in an electrolyte bath. If a current flows in this electrolyte, the negatively charged anions migrate to the anode and are discharged there. This creates atomic oxygen, which leads to the formation of magnesium oxide. This anodic coating is firmly anchored to the magnesium surface.
Die bekannten elektrochemischen Verfahren zur Beschichtung von Magnesium durch anodische Oxidation arbeiten entweder mit starken Oxidationsmitteln oder aber mit Peroxiden oder Substanzen, die bei anodischer Polarisation in Peroxyverbindungen überführt werden (s. z.B. canadische Patentschrift Nr. 568 653). Es kann davon ausgegangen werden, daß der für die Oxidation verantwortliche atomare Sauerstoff durch Zerfall der Peroxyverbindungen gebildet wird, die dann bei hoher Stromdichte in den Poren der auf dem Magnesium befindlichen Isolierschicht wieder neu gebildet werden. Bei Verwendung starker Oxidationsmittel wie Chromat, Vanadat, Permanganat erfolgt die Bildung des atomaren Sauerstoffs durch Reduktion des jeweiligen in dem Oxidationsmittel in seiner höchsten Oxidationsstufe vorhandenen Elements, anschließend erfolgt die Rückoxidation.The known electrochemical processes for coating magnesium by anodic oxidation either work with strong oxidizing agents or with peroxides or substances which are converted into peroxy compounds by anodic polarization (see, for example, Canadian Patent No. 568 653). It can be assumed that the atomic oxygen responsible for the oxidation by decay of the Peroxy compounds is formed, which are then formed again at high current density in the pores of the insulating layer on the magnesium. If strong oxidizing agents such as chromate, vanadate or permanganate are used, the atomic oxygen is formed by reducing the respective element present in the oxidizing agent in its highest oxidation state, followed by reoxidation.
Die bei den bekannten Verfahren zur anodischen Oxidation von Magnesium oder Magnesiumlegierungen verwendeten Oxidationsmittel bzw. Peroxyverbindungen enthalten Übergangsmetalle wie z.B. Chrom, Vanadium oder Mangan. Dies hat sich deshalb als nachteilig erwiesen, weil ein Teil dieser Übergangsmetallverbindungen in die auf der Magnesiumoberfläche erzeugte Schutzschicht eingebaut wird, was sich an der Färbung erkennen läßt. Der Einbau dieser Übergangsmetallverbindungen führt zu einer Verringerung der Korrosions- und Verschleißbeständigkeit der Schutzschicht.The oxidizing agents or peroxy compounds used in the known processes for the anodic oxidation of magnesium or magnesium alloys contain transition metals such as e.g. Chromium, vanadium or manganese. This has proven to be disadvantageous because some of these transition metal compounds are built into the protective layer produced on the magnesium surface, which can be seen from the color. The installation of these transition metal compounds leads to a reduction in the corrosion and wear resistance of the protective layer.
Die Aufgabe der vorliegenden Erfindung besteht deshalb darin, durch anodische Oxidation Schutz schichten auf Magnesium oder Magnesiumlegierungen ohne bzw. mit nur sehr geringer Eigenfärbung zu erzeugen, die gut färbbar sind und einen guten Haftgrund für Lackierungen oder Nachbehandlungen abgeben und sich zugleich durch erhöhte Korrosionsbeständigkeit und Verschleißfestigkeit auszeichnen.The object of the present invention is therefore to produce protective layers on magnesium or magnesium alloys with anodic oxidation without or with only very little intrinsic coloration, which are easy to color and give a good primer for paintwork or aftertreatments and at the same time have increased corrosion resistance and wear resistance award.
Zur Lösung dieser Aufgabe dient ein Verfahren der anodischen Oxidation, bei dem man ein alkalireiches wässriges Bad verwendet, das
- a) Borat- oder Sulfatanionen, und
- b) Phosphat- und Fluorid- oder Chloridionen enthält, und auf einen pH-Wert von 8 bis 12, vorzugsweise 10,5 bis 11,5 eingestellt ist.
- a) borate or sulfate anions, and
- b) contains phosphate and fluoride or chloride ions, and is adjusted to a pH of 8 to 12, preferably 10.5 to 11.5.
Es hat sich überraschenderweise gezeigt, daß sich durch anodische Oxidation auf Magnesium oder Magnesiumlegierungen eine besonders korrosionsfeste und verschleißbeständige Schutzschicht erzeugen läßt, wenn gleichzeitig die im Hauptanspruch genannten Bedingungen eingehalten werden. Um den für die Oxidation des Magnesiums erforderlichen atomaren Sauerstoff anzubieten, verwendet man erfindungsgemäß Borat- oder Sulfatanionen, die Peroxyde bilden, die zwar leicht zerfallen, sich aber infolge der hohen Stromdichte in den Poren der gebildeten Schutzschicht leicht nachbilden. Borat- und Sulfatanionen haben sich hierbei als besonders geeignet erwiesen, da sie infolge der Überführung nur in geringem Maße zur Kathode gelangen und an dieser reduziert werden.It has surprisingly been found that a particularly corrosion-resistant and wear-resistant protective layer can be produced by anodic oxidation on magnesium or magnesium alloys if the conditions specified in the main claim are met at the same time. In order to offer the atomic oxygen required for the oxidation of magnesium, borate or sulfate anions are used according to the invention which form peroxides, which decompose easily, but which easily replicate due to the high current density in the pores of the protective layer formed. Borate and sulfate anions have proven to be particularly suitable here, since they only reach the cathode to a small extent as a result of the transfer and are reduced thereon.
Weiterhin wurde gefunden, daß der Elektrolyt solche Anionen enthalten muß, die mit dem zu oxidierenden Magnesium schwerlösliche Verbindungen bilden. Erfindungsgemäß kommen hier Phosphationen in Kombination mit Fluorid- oder Chloridionen in Frage. Wenn erf indungsgemäß eine Magnesium-Aluminium-Legierung anodisch oxidiert wird, bilden sich aus den vorhandenen Aluminium Aluminationen, die mit Magnesiumionen ein schwerlösliches Magnesiumaluminat ergeben.Furthermore, it was found that the electrolyte must contain such anions that form poorly soluble compounds with the magnesium to be oxidized. According to the invention, phosphate ions in combination with fluoride or chloride ions are suitable here. If, according to the invention, a magnesium-aluminum alloy is anodically oxidized, the existing aluminum illuminations are formed which, with magnesium ions, result in a poorly soluble magnesium aluminate.
Die sich bildende Schutzschicht muß außerdem noch Poren oder leitfähige Stellen aufweisen, damit ein ausreichender Stromfluß gewährleistet ist. Dies wird durch die erfindungsgemäß dem Elektrolytbad zugesetzten Fluorid- oder Chloridionen erreicht.The protective layer that forms must also have pores or conductive points so that a sufficient current flow is ensured. This is achieved by the fluoride or chloride ions added to the electrolyte bath according to the invention.
Weiterhin hat sich gezeigt, daß es wichtig ist, daß nahe der zu beschichtenden Magnesiumoberfläche das richtige Verhältnis von Anionen zu Kationen vorliegt, da nur so eine hinreichend stabile dichte Schutzschicht erzeugt wird. Bei Verwendung eines konstanten Gleichstroms würde es in Nähe der Anode zu einer Anreicherung der Anionen kommen. Inbesondere würden sich dort die eine hohe Beweglichkeit aufweisenden OH⊖-Ionen stark anreichern. Die Bildung von Mg(OH)₂ in der Schutzschicht ist wegen der guten Einfärbbarkeit und im Hinblick auf Nachbehandlungen insbesondere mit Alkalisilikat erwünscht.Furthermore, it has been shown that it is important that the correct ratio of anions to cations is present near the magnesium surface to be coated, since this is the only way to produce a sufficiently stable, dense protective layer. If a constant direct current were used, the anions would accumulate in the vicinity of the anode. In particular, the OH ⊖ ions, which have a high mobility, would strongly accumulate there. The formation of Mg (OH) ₂ in the protective layer is desirable because of the good colorability and with regard to post-treatments, especially with alkali silicate.
Erfindungsgemäß wird deshalb das Bad, insbesondere durch Zugabe von puf fernden Substanzen auf einen pH-Wert von 8 bis 12, vorzugsweise zwischen 10,5 und 11,5 eingestellt.According to the invention, the bath is therefore adjusted to a pH of 8 to 12, preferably between 10.5 and 11.5, in particular by adding buffering substances.
Man kann die in Nähe der zu beschichtenden Oberfläche gewünschte Konzentration an Anionen, die in die Schutzschicht eingebaut werden sollen, dadurch erzielen, daß man anstelle eines konstanten Gleichstroms einen kurzzeitig unterbrochenen Gleichstrom zuführt oder aber partiell gegenpolt, um so die Ausbildung von Magnesiumphosphat und Magnesiumfluorid oder -chlorid und - falls eine Aluminium enthaltende Magnesiumlegierung oxidiert wird - die Ausbildung von Magnesiumaluminat zu ermöglichen.You can achieve the desired concentration of anions to be built into the protective layer in the vicinity of the surface to be coated by supplying a briefly interrupted direct current instead of a constant direct current or partially reversing the polarity, so as to form magnesium phosphate and magnesium fluoride or -chloride and - if an aluminum-containing magnesium alloy is oxidized - to enable the formation of magnesium aluminate.
Vorzugsweise arbeitet man mit einem konstanten Gleichstrom mit überlagertem Wechselstrom einer Frequenz von zweichen 10 und 100 Hz. Die Überlagerung erfolgt durch Reihenschaltung von Gleichstromquelle und Sinusstromquelle, dessen Wechselspannungsanteil 15 - 30 % des Gleichspannungsanteils beträgt. Die Erzeugung von Wechselstrom einstellbarer Frequenz zur Überlagung des Gleichstromes kann mit Hilfe von Frequenzumformern erfolgen. Dies sind z.B. Motor-Generatoreinheiten mit regelbarer Drehzahl, bei denen eine Änderung der Drehzahl zu einer proportionalen Frequenzänderung führt. Hierbei wird die Wechselspannung durch einen Regeltransformator entsprechend der Gleichspannung auf den gewünschten %-Anteil der Gleichspannung eingestellt. Vorzugsweise wird die Frequenz gewählt, mit der der Wechselstrom aus dem Netz zur Verfügung steht, also z.B. in der Bundesrepublik Deutschland mit 50 Hz oder in den USA mit 60 Hz.It is preferable to work with a constant direct current with superimposed alternating current with a frequency of two 10 and 100 Hz. The superimposition is carried out by connecting the direct current source and the sine current source in series, the alternating voltage component of which is 15-30% of the direct voltage component. Frequency adjustable frequency can be generated to superimpose the direct current with the help of frequency converters. These are e.g. Motor-generator units with adjustable speed, in which a change in speed leads to a proportional change in frequency. Here, the AC voltage is adjusted to the desired percentage of the DC voltage by means of a regulating transformer in accordance with the DC voltage. Preferably, the frequency with which the alternating current is available from the network is selected, e.g. in the Federal Republic of Germany with 50 Hz or in the USA with 60 Hz.
Um den Aufwand für das geeignete Stromprofil zu mindern, kann erf indungsgemäß die anodische Oxidation auch mit gleichgerichtetem Wechselstrom, dessen Frequenz 50 Hz bzw. 60 Hz beträgt, mit einer Welligkeit von 15 bis 35 % durchgeführt werden. Die Gleichrichtung kann sowohl durch Einwegschaltung M1, vorzugsweise durch Mittelpunktschaltung M2 (nach DIN Entwurf 41 761) erfolgen. Die Glättung des so erzeugten Stromes erfolgt durch passende Induktivitäten, die die Welligkeit auf 15 - 35 % herabsetzen (Literatur z.B.: R. Jäger, Leistungselektronik Grundlagen und Anwendungen, Berlin 1977,) Seite 75).In order to reduce the effort for the suitable current profile, according to the invention, the anodic oxidation can also be carried out with rectified alternating current, the frequency of which is 50 Hz or 60 Hz, with a ripple of 15 to 35%. Rectification can take place both through one-way circuit M1, preferably through center circuit M2 (according to DIN draft 41 761). The current generated in this way is smoothed by suitable inductances, which reduce the ripple to 15-35% (literature, for example: R. Jäger, Power Electronics Fundamentals and Applications, Berlin 1977,) page 75).
Alternativ hierzu ist auch das Arbeiten mit einem mit 30 bis 70 Hz gepulsten Gleichstrom möglich, wobei die Ausschaltzeit zwischen zwei Spannungsimpulsen gleich bis doppelt so lang ist, wie die Dauer der Spannungsimpulse. Die Pulsung des Gleichstromes kann sowohl durch elektronische wie mechanische Schalter erfolgen, die mit einem Frequenzgenerator angesteuert werden. Als elektronische Schalter eignen sich z.B. Schalttyristoren. Ein ähnliches Stromprofil kann auch durch Einweggleichrichtung M1 (nach DIN Entwurf 41 761) eines Wechselstromes von 30 bis 70 Hz mit Phasenanschnitt erzeugt werden. Durch Änderung des Phasenanschnittwinkels läßt sich die Länge der Spannungsimpulse steuern (Literatur z.B.: O. Limann, Elektronik ohne Ballast, München 1973, Seite 347).Alternatively, it is also possible to work with a direct current pulsed at 30 to 70 Hz, the switch-off time between two voltage pulses being equal to or twice as long as the duration of the voltage pulses. The pulsing of the direct current can take place both by electronic and mechanical switches which are controlled by a frequency generator. Suitable electronic switches are e.g. Switching thyristors. A similar current profile can also be generated by one-way rectification M1 (according to DIN Draft 41 761) of an alternating current from 30 to 70 Hz with leading edge. The length of the voltage pulses can be controlled by changing the phase gating angle (literature e.g.: O. Limann, Electronics without Ballast, Munich 1973, page 347).
Erfindungsgemäß wird vorzugsweise bei einer bis 100 Volt ansteigenden Spannung gearbeitet. Die Stromdichte beträgt insbesondere 1 bis 6 A/dm².According to the invention, the voltage is preferably increased to 100 volts. The current density is in particular 1 to 6 A / dm².
Unter einem erfindungsgemäßen alkalireichen wässrigen Elektrolytbad ist vorzugsweise ein solches zu verstehen, das von 0,9 bis 8,5 Mol/l Alkaliionen enthält. Alkaliionen sind die der Alkalimetalle Lithium, Natrium, Kalium etc. Das Ammoniumion wird hier nicht als Alkaliion angesehen.An alkali-rich aqueous electrolyte bath according to the invention is preferably to be understood as one which contains from 0.9 to 8.5 mol / l of alkali ions. Alkali ions are those of the alkali metals lithium, sodium, potassium etc. The ammonium ion is not considered an alkali ion here.
Der Gehalt der Borat- oder Sulfationen in dem wässrigen Elektrolytbad beträgt vorzugsweise 10 bis 80 g/l. Der Gehalt an Phosphationen berechnet als H₃PO₄ liegt vorzugsweise zwischen 10 und 70 g/l. Die Menge der in Kombination mit den Phosphationen zu verwendenden Fluorid- oder Chloridionen beträgt berechnet als HF bzw. HCl 5 bis 35 g/l.The content of the borate or sulfate ions in the aqueous electrolyte bath is preferably 10 to 80 g / l. The content of phosphate ions calculated as H₃PO₄ is preferably between 10 and 70 g / l. The amount of the fluoride or chloride ions to be used in combination with the phosphate ions is calculated as HF or HCl 5 to 35 g / l.
Vor der anodischen Oxidation unter den erfindungsgemäßen Bedingungen werden die Werkstücke aus Magnesium- oder Magnesiumlegierungen den üblichen chemischen Vorbehandlungen zum Entfetten, insbesondere einer alkalischen Reinigung mit einem stark alkalischen Bad unterworfen. Anschließend folgt üblicherweise ein Säurebeizen z.B. mit verdünnten wässrigen Lösungen von Phosphorsäure und Schwefelsäure und erforderlichenfalls auch noch eine Aktivierung mit Flußsäure.Before the anodic oxidation under the conditions according to the invention, the workpieces made of magnesium or magnesium alloys are subjected to the usual chemical pretreatments for degreasing, in particular an alkaline cleaning with a strongly alkaline bath. This is usually followed by acid pickling e.g. with dilute aqueous solutions of phosphoric acid and sulfuric acid and, if necessary, also activation with hydrofluoric acid.
Die erfindungsgemäß erzeugten Schutz schichten auf der Oberfläche der Magnesiumlegierungen oder des Reinmagnesiums werden vorzugsweise noch lackiert oder einer Nachbehandlung unterzogen.The protective layers produced according to the invention on the surface of the magnesium alloys or the pure magnesium are preferably still painted or subjected to an aftertreatment.
Die erfindungsgemäß erzeugten Schutz schichten bilden einen sehr guten Haftgrund für Lacke, wie sie für Werkstücke aus Magnesium, Aluminium oder Zink üblich sind. Dazu gehören u.a. Zweikomponenten-Lacke auf Polyurethanbasis, Acrylharz-, Epoxydharz- und Phenolharzlacke.The protective layers produced according to the invention form a very good primer for paints, as are common for workpieces made of magnesium, aluminum or zinc. These include Two-component paints based on polyurethane, acrylic resin, epoxy resin and phenolic resin paints.
Erprobt wurden unter vielen anderen die folgenden handelsüblichen Produkte:
- 1.) Aqualac 8,
- 2.) VP 5140 (Degussa) Methacrylsäureester,
- 3.) VKS 20 (Phenolharz),
- 4.) Araldit 985 E,
- 5.) Wasserglas + CO₂
- 6.) PTFE-Dispersion
- 1.) Aqualac 8,
- 2.) VP 5140 (Degussa) methacrylic acid ester,
- 3.) VKS 20 (phenolic resin),
- 4.) Araldite 985 E,
- 5.) water glass + CO₂
- 6.) PTFE dispersion
Die Produkte 3, 4, 5 und 6 ergaben eine deutlich erkennbare Steigerung der Korrosionsbeständigkeit der Schichten. Die in Produkt 6 behandelte Schicht ergab zusätzlich eine erhebliche Verminderung des Reibungskoeffizienten.Products 3, 4, 5 and 6 showed a clearly recognizable increase in the corrosion resistance of the layers. The layer treated in product 6 also resulted in a significant reduction in the coefficient of friction.
Zur Verbesserung der tribologischen Eigenschaften (Gleitfähigkeit, Trockenschmiereigenschaften) einer derartig beschichteten Oberfläche kann auch eine Nachbehandlung mit einem Festschmierstoff erfolgen, der sich in den vorhandenen Poren verankern kann. Als solche Schmierstoffe eignen sich z.B. fluorierte und/oder chlorierte aliphatische und aromatische Kohlenwasserstoffverbindungen sowie Molybdändisulfid und Graphit.To improve the tribological properties (lubricity, dry lubrication properties) of such a coated surface, an aftertreatment can also be carried out with a solid lubricant which can anchor itself in the existing pores. Such lubricants are e.g. fluorinated and / or chlorinated aliphatic and aromatic hydrocarbon compounds as well as molybdenum disulfide and graphite.
Eine bevorzugte Nachbehandlung der erfindungsgemäßen Schutzschichten erfolgt mit der wässrigen Lösung eines Alkalisilikats. Durch diese Nachbehandlung reagiert das in der Schutzschicht besonders in den Poren vorhandene MgOH₂ mit dem Alkalisilikat zu schwerlöslichem Magnesiumsilikat und Alkalihydroxid. Vorzugsweise wird das dem Alkalisilikatbad entnommene Werkstück mit der Schutzschicht in einem zweiten Schritt einer kohlendioxidreichen Atmosphäre ausgesetzt. Dabei bildet das restliche "Wasserglas" aus der Silikatbehandlung mit dem CO₂ der Atmosphäre SiO₂ und Alkalicarbonat, da die stärkere Kohlensäure die schwächere Kieselsäure aus ihrer Verbindung verdrängt. Durch das SiO₂ werden die Poren der Schutzschicht geschlossen, wobei dieser Prozeß durch die Begasung mit CO₂ noch beschleunigt wird. Da bei Verwendung von stärkeren Säuren im äußeren Bereich der Poren eine rasche Fällung von SiO₂ erfolgt, kann das im Inneren der Poren befindliche Alkalisilikat dann nicht mehr reagieren. Die durchgehende Fällung von SiO₂ in den Poren durch die schwache Kohlensäure ergibt dagegen einen wesentlich besseren Korrosionsschutz.A preferred aftertreatment of the protective layers according to the invention is carried out with the aqueous solution of an alkali silicate. As a result of this aftertreatment, the MgOH 2 present in the protective layer, particularly in the pores, reacts with the alkali silicate to form sparingly soluble magnesium silicate and alkali hydroxide. In a second step, the workpiece with the protective layer removed from the alkali silicate bath is preferably exposed to an atmosphere rich in carbon dioxide. The remaining "water glass" forms from the silicate treatment with the CO₂ of the atmosphere SiO₂ and alkali carbonate, since the stronger carbonic acid displaces the weaker silica from its compound. The pores of the protective layer are closed by the SiO₂, this process being accelerated by the gassing with CO₂. Since a rapid precipitation of SiO₂ when using stronger acids in the outer region of the pores takes place, the alkali silicate located inside the pores can then no longer react. The continuous precipitation of SiO₂ in the pores by the weak carbonic acid, however, results in a much better protection against corrosion.
Die vorliegende Erfindung betrifft weiter Magnesiumlegierungen, die mit einer Magnesiumphosphat, -hydroxid und -fluorid enthaltenden Schutzschicht mit einer Dicke von 15 bis 30 µm und einer Verschleißbeständigkeit gemessen mit dem Taber-Abraser (CS 10, 10 N) von weniger als 40 mg Massenverlust nach 10 000 Umdrehungen überzogen sind.The present invention further relates to magnesium alloys with a protective layer containing magnesium phosphate, hydroxide and fluoride with a thickness of 15 to 30 μm and a wear resistance measured with the Taber abraser (CS 10, 10 N) of less than 40 mg mass loss 10,000 revs are covered.
Die Aufbringung einer Schutzschicht, die diesen Bedingungen genügt, kann z.B. mit Hilfe des oben geschilderten erfindungsgemäßen Verfahrens erfolgen. Die Korrosionsbeständigkeit der erfindungsgemäßen Magnesiumlegierungen beträgt nach Aufbringen der Schutzschicht vorzugsweise weniger als 15 Korrosionspunkte/dm² nachdem eine Probe der Legierung einer Expositionszeit von 240 h im Salzsprühtest gemäß DIN 50021 SS ausgesetzt wurde.The application of a protective layer which meets these conditions can e.g. using the method according to the invention described above. After the protective layer has been applied, the corrosion resistance of the magnesium alloys according to the invention is preferably less than 15 corrosion points / dm 2 after a sample of the alloy has been exposed to an exposure time of 240 h in the salt spray test in accordance with DIN 50021 SS.
Für das erfindungsgemäße Verfahren zur Erzeugung von korrosions- und verschleißbeständigen Schutzschichten eignen sich außer Reinmagnesium insbesondere die Magnesiumgußlegierungen der ASTM-Bezeichnungen AS41, AM 60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, EZ33, HZ32 sowie die Knetlegierungen AZ31, AZ61, AZ80, M1, ZK60, ZK40.In addition to pure magnesium, the magnesium casting alloys of the ASTM designations AS41, AM 60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, are particularly suitable for the process according to the invention for producing corrosion-resistant and wear-resistant protective layers. EZ33, HZ32 and wrought alloys AZ31, AZ61, AZ80, M1, ZK60, ZK40.
Vorzugsweise enthält bei den erfindungsgemäßen Magnesiumlegierungen die Schutzschicht zusätzlich Borat-, Aluminat-, Phenolat- oder Silikationen. Die Schutzschicht enthält vorzugsweise insbesondere in den Poren Siliciumdioxid, das durch die oben beschriebene Nachbehandlung der Schutzschicht, mit einer wässrigen Lösung eines Alkalisilikats erhalten werden kann. Die Farbe der auf die erfindungsgemäßen Magnesiumlegierungen aufgebrachten Schutzschicht ist vorzugsweise weiß bis weißlich-grau oder beige.In the magnesium alloys according to the invention, the protective layer preferably additionally contains borate, aluminate, phenolate or silicate ions. The protective layer preferably contains, in particular in the pores, silicon dioxide, which can be obtained by the after-treatment of the protective layer described above with an aqueous solution of an alkali silicate. The color of the protective layer applied to the magnesium alloys according to the invention is preferably white to whitish-gray or beige.
Im folgenden wird das erfindungsgemäße Verfahren anhand der Beispiele näher erläutert.The method according to the invention is explained in more detail below with the aid of the examples.
Die zu behandelnden Oberflächen von Gegenständen aus der Magnesiumlegierung GD-MG Al 9 Zn 2 wurden zunächst in einem alkalischen Reinigungsbad vorbehandelt. Dieses Reinigungsbad hatte die nachfolgende Zusammensetzung:
Auf diese Behandlung im alkalischen Reinigungsbad folgte eine Beizung in einem Bad der nachfolgenden Zusammensetzung:
Die Beizung wurde bei einer Temperatur von 20°C durchgeführt, wobei die Behandlungsdauer ca. 30 Sekunden betrug. Nach der Beizung wurde die Oberflächenprobe in Flußsäure aktiviert.The pickling was carried out at a temperature of 20 ° C., the treatment time being about 30 seconds. After pickling, the surface sample was activated in hydrofluoric acid.
Anschließend wurden die Proben in einem Elektrolyten nachfolgender Zusammensetzung unter den angegebenen Verfahrensparametern anodisiert:
Es wurde eine 25 µm dicke, weiße Schicht erhalten, die sich besonders gut mit handelsüblichen Farbstoffen einfärben ließ. Nach Einfärbung wurden die Schutzschichten mit handelsüblichem Wasserglas einer Konzentration von 50 g/l bei einer Temperatur von 95°C für die Dauer von 15 Minuten behandelt, getrocknet und anschließend in einem Exsikkator einer CO₂-Atmosphäre ausgesetzt. Hierbei wird das Wasserglas und auch das in der Tiefe der Poren vorhandene Wasserglas langsam umgewandelt als SiO₂. Nach dieser Verdichtung zeigt die Schicht im Korrosionstest nach DIN 50 021 SS nach 500 Stunden 5 Korrosionspunkte. Der Massenverlust im Taber-Abraser-Test betrug 38 mg nach 10⁴ Umdrehungen.A 25 μm thick, white layer was obtained which could be dyed particularly well with commercially available dyes. After coloring, the protective layers were treated with commercially available water glass at a concentration of 50 g / l at a temperature of 95 ° C. for 15 minutes, dried and then exposed to a CO₂ atmosphere in a desiccator. Here, the water glass and the water glass present in the depth of the pores is slowly converted as SiO₂. After this compaction, the layer shows 5 corrosion points after 500 hours in the corrosion test according to DIN 50 021 SS. The mass loss in the Taber Abraser test was 38 mg after 10⁴ revolutions.
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3808610 | 1988-03-15 | ||
DE3808610A DE3808610A1 (en) | 1988-03-15 | 1988-03-15 | PROCESS FOR SURFACE FINISHING OF MAGNESIUM AND MAGNESIUM ALLOYS |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0333049A1 true EP0333049A1 (en) | 1989-09-20 |
Family
ID=6349774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89104237A Withdrawn EP0333049A1 (en) | 1988-03-15 | 1989-03-10 | Method for finishing magnesium and magnesium alloys |
Country Status (4)
Country | Link |
---|---|
US (1) | US4976830A (en) |
EP (1) | EP0333049A1 (en) |
JP (1) | JPH01301889A (en) |
DE (1) | DE3808610A1 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5266412A (en) * | 1991-07-15 | 1993-11-30 | Technology Applications Group, Inc. | Coated magnesium alloys |
US5264113A (en) * | 1991-07-15 | 1993-11-23 | Technology Applications Group, Inc. | Two-step electrochemical process for coating magnesium alloys |
DE4143650C2 (en) * | 1991-07-25 | 2003-09-18 | Ahc Oberflaechentechnik Gmbh | Intercalation of fluorinated polymer particles |
DE4139006C3 (en) * | 1991-11-27 | 2003-07-10 | Electro Chem Eng Gmbh | Process for producing oxide ceramic layers on barrier layer-forming metals and objects produced in this way from aluminum, magnesium, titanium or their alloys with an oxide ceramic layer |
US5683522A (en) * | 1995-03-30 | 1997-11-04 | Sundstrand Corporation | Process for applying a coating to a magnesium alloy product |
PT842309E (en) * | 1995-07-28 | 2002-07-31 | Electro Chem Eng Gmbh | PROCESS FOR THE DEPOSITION OF SOLES IN MICROPOROUS COATING LAYERS |
JPH09176894A (en) * | 1995-12-21 | 1997-07-08 | Sony Corp | Surface treatment |
DE19882233T1 (en) * | 1997-03-24 | 2000-02-10 | Magnesium Technology Ltd | Coloring objects made of magnesium or magnesium alloy |
CA2233339A1 (en) * | 1997-03-26 | 1998-09-26 | Rong Yue | Coated subtrate and process for production thereof |
JPH11323571A (en) | 1998-03-17 | 1999-11-26 | Matsushita Electric Ind Co Ltd | Surface treated magnesium or magnesium alloy product, primary treatment for coating and coating method |
DE10022074A1 (en) * | 2000-05-06 | 2001-11-08 | Henkel Kgaa | Protective or priming layer for sheet metal, comprises inorganic compound of different metal with low phosphate ion content, electrodeposited from solution |
AU2002211114A1 (en) * | 2000-10-05 | 2002-04-15 | Magnesium Technology Limited | Magnesium anodisation system and methods |
WO2002031230A1 (en) * | 2000-10-11 | 2002-04-18 | Industrial Research Limited | Method for anodising magnesium and magnesium alloy components or elements |
TW553822B (en) * | 2000-11-22 | 2003-09-21 | Matsushita Electric Ind Co Ltd | Magnesium alloy moldings and method for manufacturing thereof |
WO2003016596A1 (en) * | 2001-08-14 | 2003-02-27 | Magnesium Technology Limited | Magnesium anodisation system and methods |
US7569132B2 (en) * | 2001-10-02 | 2009-08-04 | Henkel Kgaa | Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating |
US7578921B2 (en) * | 2001-10-02 | 2009-08-25 | Henkel Kgaa | Process for anodically coating aluminum and/or titanium with ceramic oxides |
US7452454B2 (en) * | 2001-10-02 | 2008-11-18 | Henkel Kgaa | Anodized coating over aluminum and aluminum alloy coated substrates |
US7820300B2 (en) | 2001-10-02 | 2010-10-26 | Henkel Ag & Co. Kgaa | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating |
US6916414B2 (en) * | 2001-10-02 | 2005-07-12 | Henkel Kommanditgesellschaft Auf Aktien | Light metal anodization |
US6495267B1 (en) * | 2001-10-04 | 2002-12-17 | Briggs & Stratton Corporation | Anodized magnesium or magnesium alloy piston and method for manufacturing the same |
DE10163106A1 (en) * | 2001-12-24 | 2003-07-10 | Univ Hannover | Medical implants, prostheses, prosthesis parts, medical instruments, devices and aids made of a halide-modified magnesium material |
DE10342426A1 (en) * | 2003-09-13 | 2005-04-07 | Daimlerchrysler Ag | Production of a microporous layer of magnesium alloys used in vehicle manufacture comprises inserting one ore more inhibitors into the microporous layer for corrosion protection during and after anodization |
TWI297041B (en) * | 2005-04-20 | 2008-05-21 | Chung Cheng Inst Of Technology | Method for treating the surface of magnesium or magnesium alloy |
CN101041904B (en) * | 2006-03-25 | 2010-11-10 | 鸿富锦精密工业(深圳)有限公司 | Magnesium product film plating method |
US20080047837A1 (en) * | 2006-08-28 | 2008-02-28 | Birss Viola I | Method for anodizing aluminum-copper alloy |
US9701177B2 (en) | 2009-04-02 | 2017-07-11 | Henkel Ag & Co. Kgaa | Ceramic coated automotive heat exchanger components |
DE102009039887A1 (en) | 2009-09-03 | 2011-03-17 | Innovent E.V. | Method for surface-treatment of magnesium-containing component, comprises applying a chemical passivating solution that consists of thixotropic agent, on a part of the surface and leaving the passivating solution on the surface |
CA2955317A1 (en) * | 2014-07-17 | 2016-01-21 | Henkel Ag & Co. Kgaa | Electroceramic coating for magnesium alloys |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3715663A1 (en) * | 1986-05-30 | 1987-12-03 | Ube Industries | ANDOSING SOLUTION FOR ANODIC OXIDATION OF MAGNESIUM OR MAGNESIUM ALLOYS |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR48802E (en) * | 1936-02-26 | 1938-07-12 | Protection of magnesium against corrosion by vitrification | |
DE747371C (en) * | 1937-03-26 | 1944-09-22 | Siemens Ag | Process for the electrolytic production of oxide-containing coatings on magnesium and magnesium alloys |
US2880148A (en) * | 1955-11-17 | 1959-03-31 | Harry A Evangelides | Method and bath for electrolytically coating magnesium |
-
1988
- 1988-03-15 DE DE3808610A patent/DE3808610A1/en not_active Withdrawn
-
1989
- 1989-03-09 US US07/321,253 patent/US4976830A/en not_active Expired - Fee Related
- 1989-03-10 EP EP89104237A patent/EP0333049A1/en not_active Withdrawn
- 1989-03-13 JP JP1060582A patent/JPH01301889A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3715663A1 (en) * | 1986-05-30 | 1987-12-03 | Ube Industries | ANDOSING SOLUTION FOR ANODIC OXIDATION OF MAGNESIUM OR MAGNESIUM ALLOYS |
Non-Patent Citations (2)
Title |
---|
CHEMICAL ABSTRACTS, Band 93, Nr. 10, 8. September 1980, Columbus, Ohio, USA SHOKOSHA K.K. "Surface Treatment of Magnesium and its Alloys" seite 457, Zusammenfassung-Nr. 227 514q & Jpn. Kokai Tokkyo Koho 80 76 094 * |
CHEMICAL ABSTRACTS, Band 93, Nr. 24, 15. Dezember 1980, Columbus, Ohio, USA TANAKA, KENJI "Anodization with Coloring of Magnesium and Magnesium Alloys" seiten 556, 557, Zusammenfassung-Nr. 103 804q & Jpn. Kokai Tokkyo Koho 80 54 594 * |
Also Published As
Publication number | Publication date |
---|---|
US4976830A (en) | 1990-12-11 |
DE3808610A1 (en) | 1989-09-28 |
JPH01301889A (en) | 1989-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0333048B1 (en) | Method for producing corrosion and wear resistant protective coatings on magnesium and magnesium alloys | |
EP0333049A1 (en) | Method for finishing magnesium and magnesium alloys | |
EP0545230B2 (en) | Process for preparing modified oxide ceramic coatings on barrier-layer metals. | |
DE19913242C2 (en) | Chemically passivated article made of magnesium or its alloys, method of manufacture and its use | |
DE69013993T2 (en) | Process for anodizing aluminum. | |
DE69732102T2 (en) | Surface treated metallic corrosion resistant material and surface treatment agent | |
EP1301656B1 (en) | Method for treating the surfaces of aluminium or aluminium alloys by means of formulations containing alkane sulfonic acid | |
DE69311376T2 (en) | TWO-STAGE ELECTROCHEMICAL METHOD FOR COATING MAGNESIUM | |
DE69008253T2 (en) | Process for coloring titanium and titanium alloys. | |
EP0514661A2 (en) | Process for manufacturing oxide-ceramic surface coatings on silicon containing light metal casting alloys | |
EP0578670A1 (en) | Process for phosphatizing metallic surfaces. | |
EP0410497B1 (en) | Process for the passivate rinsing of phosphate coatings | |
DE3211759A1 (en) | METHOD FOR ANODIZING ALUMINUM MATERIALS AND ALUMINUM PARTS | |
EP0675976B1 (en) | Method for the electrolytic inking of aluminium surfaces using a.c. | |
EP0264811B1 (en) | Process for producing phosphate coatings | |
DE69303525T2 (en) | Process for producing a film by chemical conversion | |
EP0815293B1 (en) | Chromium-free process for improving the adherence of paint applied by thin-film anodic oxidation | |
DE4232292A1 (en) | Process for phosphating galvanized steel surfaces | |
DE2432044C3 (en) | Process for the electrolytic post-treatment of chromated or metallic chrome-plated sheet steel surfaces | |
EP1141449B1 (en) | Method for darkening a zinciferous surface layer of a piece of material | |
EP0127774A2 (en) | Process for protecting anodised aluminium | |
EP1433879B1 (en) | Process for metal surface coating with an alkali phosphate solution, aqueous concentrate and use of such coated metal surfaces | |
EP0351680A1 (en) | Use of p-toluene sulfonic acid in the electrolytic colouring of anodically obtained aluminium surfaces | |
DE943152C (en) | Process for the production of corrosion protection layers on metals, in particular iron and steel | |
EP0213331A2 (en) | Element of aluminium or an aluminium alloy with a hard oxide layer, and process for the manufacture of such an element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19891104 |
|
17Q | First examination report despatched |
Effective date: 19920128 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19921001 |