EP0540736A1 - Gehäuse einer exzenterschneckenpumpe. - Google Patents

Gehäuse einer exzenterschneckenpumpe.

Info

Publication number
EP0540736A1
EP0540736A1 EP92923581A EP92923581A EP0540736A1 EP 0540736 A1 EP0540736 A1 EP 0540736A1 EP 92923581 A EP92923581 A EP 92923581A EP 92923581 A EP92923581 A EP 92923581A EP 0540736 A1 EP0540736 A1 EP 0540736A1
Authority
EP
European Patent Office
Prior art keywords
stator
casing
lining
pump
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92923581A
Other languages
English (en)
French (fr)
Other versions
EP0540736B1 (de
Inventor
Guenther Hantschk
Joerg Eitler
Johann Kreidl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netzsch Pumpen and Systeme GmbH
Original Assignee
Netzsch Pumpen and Systeme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4116697A external-priority patent/DE4116697C1/de
Application filed by Netzsch Pumpen and Systeme GmbH filed Critical Netzsch Pumpen and Systeme GmbH
Publication of EP0540736A1 publication Critical patent/EP0540736A1/de
Application granted granted Critical
Publication of EP0540736B1 publication Critical patent/EP0540736B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member

Definitions

  • the invention relates to a housing of an eccentric screw pump, with
  • stator jacket which has at least one separating region extending over its length
  • stator lining made of an elastomer, which forms a tubular pump stator together with the stator casing
  • an adjustable stator for eccentric screw pumps is known, one or the like made of metal.
  • the stator jacket is provided with a plurality of beads which are distributed over its circumference and extend in the longitudinal direction of the stator and which have a radially inwardly projecting cross section with a predetermined breaking point.
  • the diameter of this known stator can be reduced by retensioning a clamp acting on it from the outside in order to compensate for wear on the stator lining;
  • the beads in the stator sheath facilitate re-tensioning from the beginning and should enable a stronger re-tensioning by breaking at their predetermined breaking points, whereby the stator sheath is divided into mutually independent sheath segments, so that no further deformation work has to be applied to the beads during further re-tensioning.
  • Stators of eccentric screw pumps are usually arranged between two housing parts which are connected to one another by flanges screwed together or by tie rods and each have a connecting piece which extends over one end of the stator jacket.
  • Such arrangements are also known from DE 2331173 C3 and DE 2527141 C3 for adjustable stators.
  • Eccentric screw pumps are generally very good for pumping explosive emulsions. Nevertheless, operating errors or special circumstances can lead to pressure and temperature conditions occurring within such a pump which can initiate an explosion.
  • Such an explosion begins with an ignition process that is triggered by the supply of energy.
  • the ignited explosive develops gases which cause an increase in pressure which further accelerates the burning rate.
  • Modern explosives containing water - slurries or emulsions - do not burn under normal atmospheric pressure (1 bar).
  • the minimum pressure for automatic combustion is between 5 and 20 bar.
  • a closed vessel filled with emulsion explosive which is ignited under pressure by a short glowing wire (point ignition) does not detonates when the vessel is secured with a rupture disk.
  • a rupture disc will not be able to prevent a detonation if the ignition takes place at many points at the same time, since the rupture disc then cannot reduce the pressure increase quickly enough due to its relatively small cross section.
  • Simultaneous ignition at many points can occur in an eccentric screw pump if it works against a blocked or closed outlet for a while.
  • the full drive energy is converted into " thermal energy, which heats up the material in the pumping chambers between the rotor and the stator. If the temperature rises sufficiently high, auto-ignition starts at several points in the explosive.
  • the critical time frame for such Heating typically ranges from five to twenty minutes.
  • the transition time from rapid combustion (deflegration) to detonation in the delivery chambers depends on the amount of fuel which ignites at the same time and can be between milliseconds and seconds.
  • the invention is therefore based on the object of providing an eccentric screw pump before reaching a critical pressure potential, which can lead to the explosion of a conveyed explosive, for a pressure relief which takes place faster than the further pressure build-up possible with the given drive power and design of the pump.
  • the known adjustable stators for eccentric screw pumps are neither provided nor suitable for solving this problem.
  • the devices arranged for readjustment around the stator casing for example Clamping clamps oppose any diameter expansion of the stator even if predetermined breaking points provided on the stator jacket have already broken or the stator jacket is divided into several separately adjustable shell-like sections from the outset.
  • the stator lining radially within the separating areas provided in the stator jacket for re-tensioning is too thick for it to burst in time under the influence of a dangerous internal overpressure.
  • a piston pump for delivering low-stability, especially explosive, fluids in which a pump piston and a motor piston that can be driven with compressed air are arranged axially one behind the other and telescopically guided one inside the other in two cylinders arranged side by side.
  • a relative shift between the pump piston and the engine piston is prevented by radial shear pins. If, however, the pressure of the delivered fluid exceeds a certain limit, the shear pins between the pump piston concerned and the associated engine piston are sheared off, so that the pump piston partially shifts into the engine piston and thereby increases the volume of the cylinder space delimited by it and finally radial Releases outlets in the cylinder through which the medium can flow out.
  • the object is achieved in that at least one separating region of the stator casing and the region of the stator lining arranged radially within it and the connections of the are designed with the stator casing in such a way that the pump stator bursts in at least one separation area when a predetermined internal overpressure is exceeded.
  • the invention can be used with particular advantage in a housing for an eccentric screw pump in which the stator lining has a two-start internal thread surface with profile sections which are arcuate in cross-sectional profile and each include an apex.
  • at least one separation region of the stator casing extends along a vertex with a pitch that corresponds to the thread pitch of the internal thread surface of the stator lining.
  • the stator jacket is preferably divided into two essentially rigid jacket parts along two separating regions. This has the advantage that the bursting forces which arise when the pressure rises are concentrated in two separating areas, so that after the stator jacket has burst, the stator lining in the separating areas is also rapidly loaded beyond its tensile strength limit and is thereby caused to burst.
  • the two jacket parts can be held together by transverse tensioning elements, each of which has a predetermined breaking point.
  • the stator is preferably connected to the two associated housing parts in that the stator jacket has two annular ends with which it surrounds the connecting piece of one of the two housing parts.
  • This deviation from the usual connection between the ends of the stator casing and the associated connecting piece has the advantage that the stator casing can burst open up to its two ends without being hindered by the connecting piece by positive locking. So that the bursting of the stator sheath is prevented as little as possible by friction, it is furthermore expedient that the two housing parts are held at a certain distance from one another by studs and that the ends of the stator sheath are guided in an axially floating manner on the connecting piece.
  • the separation areas in the stator jacket and in the stator lining are preferably dimensioned such that the internal overpressure at which the pump stator bursts is 5 to 10 bar above the operating overpressure of the pump.
  • the stator jacket preferably consists of a material with an elongation at break of at most 1.0%.
  • materials are, for example, gray cast iron with a customary elongation at break of 0.3 to 0.8% and ceramic materials with an ordinary elongation at break of 0.1 to 0.2% and certain types of glass.
  • stator lining is to have a substantially constant thickness
  • stator jacket itself must form an inner thread surface. If such a stator sheath is circular-cylindrical on the outside, then it is rather stiff in the areas between two helical outer grooves, so that considerable internal pressure is required to cause the stator to burst along the helical grooves. Additionally from the outside Axially parallel grooves of constant depth incorporated into such a stator sheath can only insignificantly reduce the rigidity of the sections of the stator sheath delimited by two helical grooves and therefore do not contribute too much to the desired explosion safety.
  • the separation areas of the stator jacket are according to the invention bounded radially inwards by an inner, axially parallel groove, the depth of which, measured from the stator axis, is at least approximately constant.
  • Such inner axially parallel grooves can be produced with conventional manufacturing methods, for example by broaching or butting, without particular difficulties with very low depth tolerances. Therefore, the thickness of the separating areas of the stator sheath that remain radially outside the axially parallel inner grooves can be precisely adapted to the requirements, provided that the outer surface of the stator sheath has low diameter and roundness tolerances.
  • stator sheath has a particularly tough outer skin, it is expedient if the stator sheath has an outer axially parallel groove, radially opposite the inner axially parallel grooves.
  • the inner grooves have a sharp-edged groove base profile. This results in notch stresses which, in the event of a critical internal overpressure, cause the stator jacket to burst particularly quickly.
  • outer and inner axially parallel grooves can be further developed in that the outer axially parallel grooves have a profile tapering towards their groove base and the groove base profile of the inner axially parallel grooves is rectangular and symmetrical with respect to the associated outer groove.
  • the inner axially parallel grooves can be filled with the elastomer forming the stator lining. This improves the anchoring of the stator lining in the stator jacket. However, it is expedient if the elastomer of the stator lining is not vulcanized onto the walls of the inner axially parallel grooves. This can easily be achieved by refraining from introducing the adhesion promoter required for vulcanizing the stator lining onto the stator jacket in the axially parallel internal grooves.
  • FIG. 1 shows a pump stator and adjacent housing parts of an eccentric screw pump in an axial section; the cross section II-II in Fig. 3; up to 6 modified cross-sectional shapes; a further pump stator of an eccentric screw pump; the cross section VIII-VIII in Fig. 7; the enlarged section in the area IX-IX in FIG. 8, a side view of a pump stator drawn in half as an axial section, the section XI from FIG. 10 on a larger scale, the cross section XII-XII in FIGS. 10 and the cross section XIII-XIII in Fig. 10th
  • the eccentric screw pump partially shown in FIG. 1 is designed for an operating pressure (compared to the ambient pressure) of 20 bar. It has a pump stator 10 with a stator jacket 12 made of gray cast iron, which has predetermined breaking points designed as helical separating areas 14 and as axially parallel separating areas 16. In the separation areas 14 and 16, the radial thickness of the stator jacket 12 by an externally worked-in, for example cast-in or milled groove in such a way reduced that the stator jacket bursts into a plurality of jacket parts 18 at an internal overpressure of the order of 5 to 10 bar above the operating overpressure.
  • the stator jacket 12 has two annular ends 20 which also burst at such an internal excess pressure.
  • a rubber-elastic stator lining 22 is fastened, preferably vulcanized, in the stator jacket 12.
  • the stator lining 22 forms a two-start thread, the cross section of which is composed over the entire length of the stator lining from two arcuate profile sections 24, each with an apex 26 and two straight profile sections 28 lying between them.
  • the stator lining 22 has two flange-like end regions 30 which protrude into one of the annular ends 20 of the stator casing 12.
  • the pump stator 10 designed in this way is arranged between two rigid housing parts 32 and 34, each of which has a connecting piece 36.
  • the two connecting pieces 36 each engage in one of the annular ends 20 of the stator shell 12, and are therefore enclosed by the latter.
  • An annular seal 38 is embedded in the outer lateral surface of each connecting piece 36 and seals against the inner lateral surface of the associated annular end 20 of the stator jacket 12.
  • the two housing parts 32 and 34 are connected to one another by a plurality of stud bolts 40 parallel to the axis A of the pump stator 10 and are held at such a distance from one another that the stator casing 12 has a small axial play, that is to say not between the housing parts 32 and 34 is clamped.
  • the two connecting pieces 36 should, if at all, only lie loosely on one of the flange-like end regions 30 of the stator lining 22.
  • a radial pin 42 is fastened, which engages in an axially parallel slot 44 of the upper end 20 of the stator jacket 12 and thus prevents it from rotating.
  • the stator sheath 12 has a circular outer contour in cross section, which is particularly suitable for the production of the stator sheath by casting.
  • the stator jacket can also be cast with the oval cross section shown in FIG. 3.
  • Elliptical cross-sectional shapes that lie between the circular shape and the oval shape are also possible.
  • the helical separating regions 14 of the stator casing which follow the apexes 26 of the stator lining 22, can also be formed by flattenings, as shown in FIG. 4 are shown.
  • the stator lining 22 has a constant thickness over its entire circumference and essentially also over its entire length, which is dimensioned so small that the stator lining in the areas radially within the Separation areas 14 and possibly also 16 formed in the stator casing 12 burst when the stator casing 12 bursts even in these separation areas due to internal excess pressure.
  • the stator lining 22 is also weakened in its zones radially within the separating regions 14 by the fact that it has a reduced thickness in these zones.
  • 5 may have a constant course or may be formed in accordance with FIG. 6 in that the stator casing 12 projects radially inwards in the region of the apex 26.
  • a reduction in thickness with a constant course can also be achieved, as is known per se from DE 3525529 Cl, by virtue of the fact that the inner and outer contours of the stator lining 22 are geometrically similar, but rotated relative to one another by a small angle of, for example, 5 ° to 15 °.
  • the separation areas 14 and, if present, also the separation areas 16, are areas in which the stator sheath 12 has a reduced thickness and is thereby weakened
  • the separation areas 14 can also, as in FIGS. 7 to 9 shown, be areas in which, from the outset, separate halves of the stator sheath 12 lie against one another and are held together by tensioning devices.
  • the clamping devices are formed by clamping clips 46 with flanges 48 and associated clamping screws 50.
  • the tensioning screws 50 each have a predetermined breaking point 52.
  • the flanges 48 can also be formed directly on the two halves of the stator casing 12, for example cast on.
  • the pump stator 10 shown in FIGS. 10 to 13 belongs to an eccentric screw pump which is designed for an operating excess pressure of, for example, 20 bar. If this pressure is exceeded, the pump stator 10 should burst.
  • the pump stator 10 has a stator jacket 12 which is circular-cylindrical on the outside so that it defines a stator axis A and which has the shape of a double-start spiral on the inside.
  • inner axially parallel grooves 15 Four inner grooves 15 of constant width b and constant depth c measured from the stator axis A are machined into the stator jacket 12, each with a central plane D containing the stator axis A and two for each have parallel side walls and are referred to as inner axially parallel grooves. These grooves 15 are offset from one another by 90 ° and are thus arranged diametrically opposite one another in pairs.
  • the depth c of the inner axially parallel grooves 15 is dimensioned such that these grooves define separation regions 16, in which the stator sheath 12 bursts along at least one of these grooves at a critical internal overpressure and deforms at least in such a way along the other inner axially parallel grooves that the internal overpressure is suddenly reduced.
  • an outer, axially parallel groove 17 is additionally provided in each separation region 16.
  • the outer axially parallel grooves 17 have a triangular profile, the apex of which lies in the central plane D of the associated inner axially parallel groove 15.
  • stator sheath 12 disintegrates into four identical sheath parts 18 as soon as possible when the critical internal overpressure is exceeded, when the outer axially parallel grooves 17 are incorporated, their depth and the depth c of the inner axially parallel grooves 15 are related to the stator axis A and not approximately on the outer surface of the stator shell. In this way it is ensured that each individual separation area 16 has a radial thickness which is constant with high accuracy over its entire length and which is equally large in all four separation areas 16 with likewise high accuracy.
  • the stator casing 12 can additionally have one or more outer annular grooves 19 have, so that in the event of rupture of the jacket parts 18 separating from one another into smaller pieces and thus harmless to the environment, or at least consuming a certain additional energy as deformation work.
  • stator sheath 12 has two annular ends 20 which each enclose a connecting piece in the installed state in such a way that they can easily separate radially outwards from them in the event of bursting.
  • the connecting pieces belong to housing parts, not shown, between which the pump stator 10 is arranged. For details of this arrangement, reference is made to FIG. 1.
  • a rubber-elastic stator lining 22 is fastened, preferably vulcanized, in the stator jacket 12.
  • the stator lining 22 has a constant thickness in all cross sections through the pump stator 10, and thus, like the inner surface of the stator casing 12, forms a two-start internal thread, to which a single-start rotor (not shown) is assigned, as is customary in eccentric screw pumps.
  • the rubber or elastomer material from which the stator lining 22 is made has filled the inner axially parallel grooves 15 during vulcanization and thus forms ribs 23 of the same rectangular cross section as these grooves.
  • the ribs 23 themselves should not adhere to the stator jacket 12 or only with negligibly little force.
  • the grooves 15, in contrast to the surface of the stator sheath 12 lying against the actual stator lining 22, have not been coated with an adhesion promoter before the rubber or elastomer material is introduced.
  • Separation areas 16 of the type described above can be provided in eccentric screw machines of any type, for example also in pumps or motors, the stator of which forms a three-thread or multi-thread internal thread surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

Gehäuse einer Exzenterschneckenpumpe
Die Erfindung betrifft ein Gehäuse einer Exzenter¬ schneckenpumpe, mit
- einem Statormantel, der mindestens einen sich über seine Länge erstreckenden Trennbereich aufweist,
- einer Statorauskleidung aus einem Elastomer, die zusam¬ men mit dem Statormantel einen rohrförmigen Pumpenstator bildet, und
- zwei Gehäuseteilen, die über je einen an ihnen ausgebilde¬ ten Anschlußstutzen mit je einem Ende des Statormantels verbunden sind.
Aus der DE 3218714 C2 ist ein nachstellbarer Stator für Exzenterschneckenpumpen bekannt, der einen aus Metall o.dgl. bestehenden Statormantel und eine elastisch verformbare Statorauskleidung aufweist. Der Statormantel ist mit mehreren über seinen Umfang verteilt angeordneten, in Längsrichtung des Stators verlaufenden Sicken versehen, die einen radial nach innen vorspringenden Querschnitt mit einer Sollbruchstelle aufweisen. Der Durchmesser dieses bekannten Stators läßt sich durch Nachspannen einer von außen auf ihn einwirkenden Schelle verringern, um Verschleiß der Statorauskleidung auszugleichen; Die Sicken im Statormantel erleichtern das Nachspannen von Anfang an und sollen ein stärkeres Nachspannen dadurch ermöglichen, daß sie an ihren Sollbruchstellen brechen, wodurch der Statormantel in voneinander unabhängige Mantelsegmente unterteilt wird, so daß beim weiteren Nachspannen keine Verformungsarbeit an den Sicken mehr aufgebracht werden muß.
Statoren von Exzenterschneckenpumpen sind üblicherweise zwischen zwei Gehäuseteilen angeordnet, die durch mit¬ einander verschraubte Flansche oder durch Zuganker mit¬ einander verbunden sind und je einen Anschlußstutzen auf¬ weisen, der über je ein Ende des Statormantels greift. Solche Anordnungen sind aus der DE 2331173 C3 und der DE 2527141 C3 auch bei nachstellbaren Statoren bekannt.
Exzenterschneckenpumpen eignen sich zum Fördern von Sprengstoffemulsionen prinzipiell sehr gut. Trotzdem kann es durch Bedienungsfehler oder besondere Umstände dazu kommen, daß innerhalb einer solchen Pumpe Druck- und Temperaturbedingungen auftreten, die eine Explosion ein¬ leiten können.
Eine solche Explosion beginnt mit einem Zündvorgang, der durch Energiezufuhr ausgelöst wird. Der entzündete Spreng¬ stoff entwickelt Gase, welche einen Druckanstieg bewirken, der die Brenngeschwindigkeit weiter beschleunigt. Moderne, Wasser enthaltende Sprengstoffe - Slurries oder Emulsionen - brennen nicht unter normalem atmosphärischem Druck (1 bar) . Der Minimaldruck zum selbsttätigen Verbrennen liegt, je nach Zusammensetzung eines typischen wasser¬ basierten Sprengstoffes, zwischen 5 und 20 bar. Versuche haben gezeigt, daß ein geschlossenes, mit Emulsionsspreng¬ stoff gefülltes Gefäß, das unter Druck von einem kurzen glühenden Draht entzündet wird (Punktzündung) nicht detoniert, wenn das Gefäß mit einer Berstscheibe abge¬ sichert ist. Eine solche Berstscheibe wird eine Detonation jedoch nicht verhindern können, wenn die Zündung in vielen Punkten gleichzeitig stattfindet, da die Berstscheibe dann den Druckanstieg, infolge ihres relativ kleinen Quer¬ schnittes, nicht schnell genug abbauen kann.
Gleichzeitige Zündung an vielen Punkten kann in einer Ex¬ zenterschneckenpumpe auftreten, wenn diese eine Zeitlang gegen einen verstopften oder verschlossenen Auslaß arbei¬ tet. Dabei wird die volle Antriebsenergie in "Wärmeenergie umgewandelt, die den Werkstoff in den Fδrderkammern der Pumpe zwischen Rotor und Stator aufheizt. Wenn die Tempe¬ ratur genügend hoch ansteigt, setzt Selbstzündung an meh¬ reren Stellen im Sprengstoff ein. Der kritische Zeitrahmen für eine solche Aufheizung reicht typisch von fünf bis zwanzig Minuten. Die Übergangszeit von einer schnellen Verbrennung (Deflegration) zu einer Detonation in den Förderkammern hängt ab von der Sprennstoffmenge, die sich gleichzeitig selbstentzündet, und kann zwischen Milli¬ sekunden und Sekunden liegen.
Der Erfindung liegt deshalb die Aufgabe zugrunde, bei ei¬ ner Exzenterschneckenpumpe vor Erreichen eines kritischen Druckpotentials, das zur Explosion eines geförderten Sprengstoffes führen kann, für eine Druckentlastung zu sorgen, die schneller stattfindet als der bei gegebener Antriebsleistung und Gestaltung der Pumpe mögliche weitere Druckaufbau.
Zur Lösung dieser Aufgabe sind die bekannten nachstell¬ baren Statoren für Exzenterschneckenpumpen weder vorge¬ sehen noch geeignet. Die zum Nachstellen rings um den Statormantel angeordneten Vorrichtungen, beispielsweise Spannschellen, widersetzen sich jeder Durchmessererwei¬ terung des Stators selbst dann, wenn am Statormantel vor¬ gesehene Sollbruchstellen schon gebrochen sind oder der Statormantel von vorneherein in mehrere getrennt nach¬ stellbare schalenartige Abschnitte unterteilt ist. Im all¬ gemeinen ist auch die Statorauskleidung radial innerhalb der im Statormantel zum Nachspannen vorgesehenen Trenn¬ bereiche viel zu dick, als daß sie unter dem Einfluß eines gefährlichen inneren Überdruckes rechtzeitig platzen könn¬ te. Aus dem diskutierten Stand der Technik der nachstell¬ baren Statoren für Exzenterschneckenpumpen ergibt sich somit kein Ansatzpunkt zur Lösung der genannten Aufgabe.
Aus der DE 2718120 AI ist eine Kolbenpumpe zum Fördern geringstabiler, insbes. explosiver, Fluide bekannt, bei der in zwei nebeneinander angeordneten Zylindern je ein Pumpkolben und ein mit Druckluft antreibbarer Motorkolben axial hintereinander angeordnet und teleskopartig ineinan¬ der geführt sind. Im normalen Betrieb ist eine Relativver- schiebung zwischen Pumpkolben und Motorkolben durch radia¬ le Scherstifte verhindert. Wenn jedoch der Druck des geförderten Fluids eine bestimmte Grenze überschreitet, werden die Scherstifte zwischen dem betroffenen Pumpkolben und dem zugehörigen Motorkolben abgeschert, so daß der Pumpkolben sich teilweise in den Motorkolben hineinver¬ schiebt und dadurch das Volumen des von ihm begrenzten Zylinderraums vergrößert und schließlich radiale Auslässe im Zylinder freigibt, durch die das Fördermedium ausströ¬ men kann.
Erfindungsgemäß ist die Aufgabe, ausgehend von einem Gehäuse der eingangs beschriebenen Gattung, dadurch gelöst, daß mindestens ein Trennbereich des Statormantels und der radial innerhalb davon angeordnete Bereich der Statorauskleidung sowie die Verbindungen der Anschluß- stutzen mit dem Statormantel derart gestaltet sind, daß der Pumpenstator bei Überschreitung eines vorgegebenen inneren Überdrucks in mindestens einem Trennbereich aufplatzt.
Mit besonderem Vorteil läßt sich die Erfindung bei einem Gehäuse für eine Exzenterschneckenpumpe anwenden, bei dem die Statorauskleidung eine zweigängige Innengewindefläche mit im Querschnittsprofil bogenförmigen, je einen Scheitel einschließenden Profilabschnitten aufweist. Dabei er¬ streckt sich erfindungsgemäß mindestens ein Trennbereich des Statormantels mit einer Steigung, die der Gewinde¬ steigung der Innengewindefläche der Statorauskleidung ent¬ spricht, entlang einem Scheitel.
Vorzugsweise ist der Statormantel längs zweier Trennbe¬ reiche in zwei im wesentlichen starre Mantelteile unter¬ teilt. Dies hat den Vorteil, daß die bei Druckanstieg entstehenden Berstkräfte sich in zwei Trennbereichen kon¬ zentrieren, so daß nach dem Bersten des Statormantels auch die Statorauskleidung in den Trennbereichen rasch über ihre Zugfestigkeitsgrenze hinaus belastet und dadurch zum Bersten gebracht wird.
Die beiden Mantelteile können durch querliegende Spann¬ elemente zusammengehalten sein, die je eine Sollbruch¬ stelle aufweisen.
Der Stator ist mit den beiden zugehörigen Gehäuseteilen vorzugsweise dadurch verbunden, daß der Statormantel zwei ringförmige Enden aufweist, mit denen er den Anschluß- stutzen je eines der beiden Gehäuseteile umschließt. Diese Abweichung von der üblichen Verbindung zwischen den Enden des Statormantels und den zugehörigen Anschlußstutzen hat den Vorteil, daß der Statormantel bis zu seinen beiden Enden hin aufplatzen kann, ohne dabei von den Anschlu߬ stutzen durch Formschluß behindert zu werden. Damit das Aufplatzen des Statormantels bis zu seinen Enden hin auch durch Reibschluß möglichst wenig behindert wird, ist es ferner zweckmäßig, daß die beiden Gehäuseteile durch Stehbolzen in einem bestimmten Abstand voneinander gehalten sind und die Enden des Statormantels auf den Anschlußstutzen axial schwimmend geführt sind.
Die Trennbereiche im Statormantel und in der Statoraus¬ kleidung sind vorzugsweise so bemessen, daß der innere Überdruck, bei dem der Pumpenstator aufplatzt, 5 bis 10 bar über dem Betriebsüberdruck der Pumpe liegt.
Vorzugsweise besteht der Statormantel aus einem Werkstoff mit einer Bruchdehnung von höchstens 1,0 %. Solche Werk¬ stoffe sind beispielsweise Grauguß mit einer üblichen Bruchdehnung von 0,3 bis 0,8 % sowie keramische Werkstoffe mit einer üblichen Bruchdehnung von 0,1 bis 0,2 % und bestimmte Glassorten.
Wenn die Statorauskleidung eine im wesentlichen konstante Dicke haben soll, muß der Statormantel selbst eine Innenge¬ windefläche bilden. Wenn ein solcher Statormantel außen kreiszylindrisch ist, dann ist er in den Bereichen zwi¬ schen je zwei wendeiförmigen äußeren Nuten ziemlich steif, so daß ein erheblicher Innendruck erforderlich ist, um den Stator längs der wendelförmigen Nuten zum Platzen zu brin¬ gen. Zusätzlich von außen in einen solchen Statormantel eingearbeitete achsparallele Nuten konstanter Tiefe können die Steifigkeit der von je zwei wendeiförmigen Nuten be¬ grenzten Abschnitte des Statormantels nur unwesentlich vermindern und deshalb zur angestrebten Explosionssicher¬ heit nicht allzuviel beitragen.
Um bei einer Exzenterschneckenpumpe mit einem solchen Sta¬ tormantel die Explosionssicherheit noch weiter zu erhöhen, sind erfindungsgemäß die Trennbereiche des Statormantels radial nach innen durch je eine innere achsparallele Nut begrenzt, deren Tiefe, von der Statorachse aus gemessen, mindestens annähernd konstant ist.
Solche inneren achsparallelen Nuten lassen sich mit her¬ kömmlichen Fertigungsmethoden, beispielsweise durch Räumen oder Stoßen, ohne besondere Schwierigkeiten mit sehr geringen Tiefentoleranzen herstellen. Deshalb läßt sich die Dicke der radial außerhalb der achsparallelen inneren Nuten stehenbleibenden Trennbereiche des Statormantels den Erfordernissen genau anpassen, vorausgesetzt, daß die Außenfläche des Statormantels geringe Durchmesser- und Rundheitstoleranzen aufweist.
Falls diese Vorausetzung nicht gegeben sein sollte, oder falls der Statormantel eine besonders zähe Außenhaut auf¬ weisen sollte, ist es zweckmäßig, wenn der Statormantel, den inneren achsparallelen Nuten radial gegenüberliegend, je eine äußere achsparallele Nut aufweist.
In jedem Fall ist es vorteilhaft, wenn die inneren Nuten ein scharfkantiges Nutgrundprofil haben. Dadurch ergeben sich Kerbspannungen, die im Falle eines kritischen inneren Überdruckes den Statormantel besonders rasch bersten las¬ sen.
Die Ausführungsform mit äußeren und inneren achsparallelen Nuten kann dadurch weitergebildet sein, daß die äußeren achsparallelen Nuten ein zu ihrem Nutgrund spitz zulaufen¬ des Profil aufweisen und das Nutgrundprofil der inneren achsparallelen Nuten rechteckig und in bezug auf die zuge¬ hörige äußere Nut symmetrisch ist.
Die inneren achsparallelen Nuten können mit dem die Sta¬ torauskleidung bildenden Elastomer ausgefüllt sein. Da¬ durch verbessert sich die Verankerung der Statorausklei¬ dung im Statormantel. Es ist allerdings zweckmäßig, wenn das Elastomer der Sta¬ torauskleidung an die Wände der inneren achsparallelen Nuten nicht anvulkanisiert ist. Dies läßt sich ohne wei¬ teres dadurch erreichen, daß man davon absieht, den zum Anvulkanisieren der Statorauskleidung an den Statormantel erforderlichen Haftvermittler in die achsparallelen inne¬ ren Nuten einzubringen.
Ausführungsbeispiele der Erfindung werden im folgenden anhand schematischer Zeichnungen mit weiteren Einzelheiten erläutert. Es zeigen:
Fig. 1 einen Pumpenstator und angrenzende Gehäuse¬ teile einer Exzenterschneckenpumpe in einem axialen Schnitt; den Querschnitt II-II in Fig. 3; bis 6 abgewandelte QuerSchnittsformen; einen weiteren Pumpenstator einer Exzenter¬ schneckenpumpe; den Querschnitt VIII-VIII in Fig. 7; den vergrößerten Ausschnitt im Bereich IX-IX in Fig. 8, eine zur Hälfte als Axialschnitt gezeichnete Seitenansicht eines Pumpenstators, den Ausschnitt XI aus Fig. 10 in größerem Maßstab, den Querschnitt XII-XII in Fig. 10 und den Querschnitt XIII-XIII in Fig. 10.
Die in Fig. 1 teilweise dargestellte Exzenterschnecken¬ pumpe ist für einen Betriebsüberdruck (gegenüber dem Umge¬ bungsdruck) von 20 bar ausgelegt. Sie hat einen Pumpensta¬ tor 10 mit einem Statormantel 12 aus Grauguß, der als wen- delfδrmige Trennbereiche 14 sowie als achsparallele Trenn¬ bereiche 16 ausgebildete Sollbruchstellen aufweist. In den Trennbereichen 14 und 16 ist die radiale Dicke des Stator- mantels 12 durch je eine von außen eingearbeitete, bei¬ spielsweise eingegossene oder eingefräste Nut derart ver¬ mindert, daß der Statormantel bei einem inneren Überdruck in der Größenordnung von 5 bis 10 bar oberhalb des Be¬ triebsüberdruckes in mehrere Mantelteile 18 zerbirst. Der Statormantel 12 hat zwei ringförmige Enden 20, die bei einem solchen inneren Überdruck ebenfalls bersten.
Im Statormantel 12 ist eine gummielastische Statorausklei¬ dung 22 befestigt, vorzugsweise einvulkanisiert. Die Sta¬ torauskleidung 22 bildet ein zweigängiges Gewinde, dessen Querschnitt sich auf der gesamten Länge der Statorausklei¬ dung aus zwei bogenförmigen Profilabschnitten 24 mit je einem Scheitel 26 und zwei dazwischenliegenden geraden Profilabschnitten 28 zusammensetzt. Die Statorauskleidung 22 hat zwei flanschartige Endbereiche 30, die in eines der ringförmigen Enden 20 des Statormantels 12 hineinragen.
Der so gestaltete Pumpenstator 10 ist zwischen zwei star¬ ren Gehäuseteilen 32 und 34 angeordnet, die je einen Anschlußstutzen 36 aufweisen. Die beiden Anschlußstutzen 36 greifen in je eines der ringförmigen Enden 20 des Sta¬ tormantels 12 ein, sind also von diesem umschlossen. In die äußere Mantelfläche jedes AnschlußStutzens 36 ist eine Ringdichtung 38 eingebettet, die gegen die innere Mantel¬ fläche des zugehörigen ringförmigen Endes 20 des Stator¬ mantels 12 abdichtet.
Die beiden Gehäuseteile 32 und 34 sind miteinander durch mehrere zur Achse A des Pumpenstators 10 parallele Steh¬ bolzen 40 verbunden und in einem solchen Abstand voneinan¬ der gehalten, daß der Statormantel 12 ein kleines axiales Spiel hat, also zwischen den Gehäuseteilen 32 und 34 nicht festgeklemmt ist. Dabei sollen die beiden Anschlußstutzen 36, wenn überhaupt, nur lose an je einem der flanscharti¬ gen Endbereiche 30 der Statorauskleidung 22 anliegen. Am Anschlußstutzen 36 des in Fig. 1 oberen Gehäuseteils 32 ist ein radialer Stift 42 befestigt, der in einen achs¬ parallelen Schlitz 44 des oberen Endes 20 des Statorman¬ tels 12 eingreift und diesen somit daran hindert, sich zu verdrehen.
Gemäß Fig. 2 hat der Statormantel 12 im Querschnitt einen kreisförmigen äußeren Umriß, der sich besonders für die Herstellung des Statormantels durch Gießen eignet. Statt¬ dessen läßt sich der Statormantel aber auch mit dem in Fig. 3 abgebildeten ovalen Querschnitt gießen. Es sind auch elliptische Querschnittsformen möglich, die zwischen der Kreisform und der ovalen Form liegen.
Die wendeiförmigen Trennbereiche 14 des Statormantels, die den Scheiteln 26 der Statorauskleidung 22 folgen, können als Alternative zu den in Fig. 1 bis 3 sowie in Fig. 5 und 6 abgebildeten nutenartigen Gestaltungen auch von Abfla¬ chungen gebildet sein, wie sie in Fig. 4 dargestellt sind.
Die Statorauskleidung 22 hat gemäß Fig. 1 bis 4 sowie gemäß Fig. 7 und 8 auf ihrem gesamten Umfang und im wesentlichen auch auf ihrer gesamten Länge eine konstante Dicke, die so gering bemessen ist, daß die Statorausklei¬ dung in den Bereichen radial innerhalb der im Statormantel 12 ausgebildeten Trennbereiche 14 und ggf. auch 16 platzt, wenn der Statormantel 12 selbst in diesen Trennbereichen infolge inneren Überdruckes birst.
Hingegen ist gemäß Fig.. 5 und 6 auch die Statorauskleidung 22 in ihren Zonen radial innerhalb der Trennbereiche 14 dadurch geschwächt, daß sie in diesen Zonen eine vermin¬ derte Dicke aufweist. Die Dickenverminderung kann gemäß Fig. 5 einen stetigen Verlauf haben oder gemäß Fig. 6 dadurch gebildet sein, daß der Statormantel 12 im Bereich der Scheitel 26 radial nach innen vorspringt. Eine Dickenverminderung mit stetigem Verlauf läßt sich auch, wie aus der DE 3525529 Cl an sich bekannt, dadurch erzielen, daß Innen- und Außenkontur der Statorauskleidung 22 geometrisch ähnliche, jedoch um einen kleinen Winkel von beispielsweise 5° bis 15° gegeneinander verdrehte Ovale sind.
Während gemäß Fig. 1 bis 6 die Trennbereiche 14, und soweit vorhanden, auch die Trennbereiche 16, Bereiche sind, in denen der Statormantel 12 eine verminderte Dicke hat und dadurch geschwächt ist, können die Trennbereiche 14 auch, wie in Fig. 7 bis 9 dargestellt, Bereiche sein, in denen von vorneherein getrennte Hälften des Statorman¬ tels 12 aneinanderliegen und durch Spannvorrichtungen zusammengehalten sind. Bei dem in Fig. 7 bis 9 dargestell¬ ten Ausführungsbeispiel sind die Spannvorrichtungen von Spannschellen 46 mit Flanschen 48 und zugehörigen Spann¬ schrauben 50 gebildet. Die Spannschrauben 50 haben je eine Sollbruchstelle 52. Die Flansche 48 können, anstatt an Spannschellen 46 ausgebildet zu sein, auch unmittelbar an den beiden Hälften des Statormantels 12 ausgebildet, bei¬ spielsweise angegossen, sein.
Der in Fig. 10 bis 13 dargestellte Pumpenstator 10 gehört zu einer Exzenterschneckenpumpe, die für einen Betriebs- Überdruck von beispielsweise 20 bar ausgelegt ist. Bei Überschreitung dieses Druckes soll der Pumpenstator 10 bersten. Der Pumpenstator 10 hat einen Statormantel 12, der außen kreiszylindrisch ist, so daß er eine Statorachse A definiert, und der innen die Form einer zweigängigen Wendel aufweist.
In den Statormantel 12 sind vier innere Nuten 15 von kon¬ stanter Breite b und konstanter, von der Statorachse A aus gemessener Tiefe c eingearbeitet, die je eine die Stator¬ achse A enthaltende Mittelebene D sowie je zwei dazu parallele Seitenwände aufweisen und als innere achsparal¬ lele Nuten bezeichnet werden. Diese Nuten 15 sind um 90° gegeneinander versetzt und somit einander paarweise diametral gegenüberliegend angeordnet. Die Tiefe c der inneren achsparallelen Nuten 15 ist so bemessen, daß diese Nuten Trennbereiche 16 definieren, in denen der Stator¬ mantel 12 bei einem kritischen inneren Überdruck längs mindestens einer dieser Nuten aufplatzt und sich längs der übrigen inneren achsparallelen Nuten mindestens derart verformt, daß der innere Überdruck schlagartig abgebaut wird.
Um die möglicherweise zähe Außenhaut des Statormantels 12 zu unterbrechen und etwaige Ungenauigkeiten der Außenmaße des Statormantels unschädlich zu machen, ist in jedem Trennbereich 16 zusätzlich eine äußere achsparallele Nut 17 vorgesehen. Im dargestellten Beispiel haben die äußeren achsparallelen Nuten 17 ein dreieckiges Profil, dessen Scheitel in der Mittelebene D der zugehörigen inneren achsparallelen Nut 15 liegt.
Damit der Statormantel 12 bei Überschreitung des kriti¬ schen inneren Überdruckes möglichst sofort in vier gleiche Mantelteile 18 zerfällt, wird beim Einarbeiten der äußeren achsparallelen Nuten 17 deren Tiefe, ebenso wie die Tiefe c der inneren achsparallelen Nuten 15, auf die Statorachse A bezogen und nicht etwa auf die Außenfläche des Stator¬ mantels. Auf diese Weise wird sichergestellt, daß jeder einzelne Trennbereich 16 auf seiner gesamten Länge eine mit hoher Genauigkeit konstante radiale Dicke aufweist, die in allen vier Trennbereichen 16 mit ebenfalls hoher Genauigkeit gleichgroß ist.
Der Statormantel 12 kann, wie in Fig. 10 dargestellt, zu¬ sätzlich eine oder mehrere äußere ringförmige Nuten 19 aufweisen, damit die sich im Falle des Berstens voneinan¬ der trennenden Mantelteile 18 in kleinere und für die Umgebung somit ungefährliche Stücke unterteilt werden oder zumindest eine gewisse zusätzliche Energie als Verfor¬ mungsarbeit aufzehren.
Schließlich hat der Statormantel 12 zwei ringförmige Enden 20, die im Einbauzustand je einen Anschlußstutzen derart umschließen, daß sie sich von diesen im Falle des Berstens leicht radial nach außen trennen können. Die Anschluß- stutzen gehören zu nicht dargestellten Gehäuseteilen, zwischen denen der Pumpenstator 10 angeordnet ist. Wegen Einzelheiten dieser Anordnung sei auf Fig. 1 verwiesen.
Im Statormantel 12 ist eine gummielastische Statorausklei¬ dung 22 befestigt, vorzugsweise einvulkanisiert. Die Sta¬ torauskleidung 22 hat eine in allen Querschnitten durch den Pumpenstator 10 konstante Dicke, bildet also ebenso wie die Innenfläche des Statormantels 12 ein zweigängiges Innengewinde, dem ein nicht dargestellter eingängiger Rotor zugeordnet ist, wie dies bei Exzenterschneckenpumpen üblich ist.
Der Gummi- oder Elastomerwerkstoff, aus dem die Statoraus¬ kleidung 22 besteht, hat beim Einvulkanisieren die inneren achsparallelen Nuten 15 ausgefüllt und bildet somit Rippen 23 von gleichem Rechteckquerschnitt wie diese Nuten. Die Rippen 23 sollen allerdings im Gegensatz zur Statoraus¬ kleidung 22 selbst nicht oder nur mit vernachlässigbar geringer Kraft am Statormantel 12 haften. Aus diesem Grund sind die Nuten 15 im Gegensatz zu der an der eigentlichen Statorauskleidung 22 anliegenden Fläche des Statormantels 12 vor dem Einbringen des Gummi- oder Elastomerwerkstoffs nicht mit einem Haftvermittler beschichtet worden. Trennbereiche 16 der im Vorstehenden beschriebenen Art können bei Exzenterschneckenmaschinen beliebiger Art vorgesehen sein, beispielsweise auch bei Pumpen oder Motoren, deren Stator eine drei- oder mehrgängige Innengewindefläche bildet.

Claims

P a t e n t a n s p r ü c h e
1. Gehäuse einer Exzenterschneckenpumpe, mit
- einem Statormantel (12) , der mindestens einen sich über seine Länge erstreckenden Trennbereich (14) aufweist,
- einer Statorauskleidung (22) aus einem Elastomer, die zusammen mit dem Statormantel (12) einen rohrförmigen Pumpenstator (10) bildet, und
- zwei Gehäuseteilen (32, 34), die über je einen an ihnen ausgebildeten Anschlußstutzen (36) mit je einem Ende (20) des Statormantels (12) verbunden sind, dadurch g e k e n n z e i c h n e t , daß mindestens ein Trennbereich (14, 16) des Statormantels (12) und der radial innerhalb davon angeordnete Bereich der Statoraus¬ kleidung (22) sowie die Verbindungen der Anschlußstutzen (36) mit dem Statormantel (12) derart gestaltet sind, daß der Pumpenstator (10) bei Überschreitung eines vorgegebe¬ nen inneren Überdrucks in mindestens einem Trennbereich (14, 16) aufplatzt.
2. Gehäuse nach Anspruch 1, dadurch g e k e n n z e i c h n e t , daß
- die Statorauskleidung (22) eine zweigängige Innen¬ gewindefläche mit im Querschnittsprofil bogenförmigen, je einen Scheitel (26) einschließenden Profilabschnitten (24) aufweist, und
- mindestens ein Trennbereich (14) des Statormantels (12) sich mit einer Steigung, die der Gewindesteigung der Innengewindeflache der Statorauskleidung (22) entspricht, entlang einem der Scheitel (26) erstreckt.
3. Gehäuse nach Anspruch 2 , dadurch g e k e n n z e i c h n e t , daß
- der Statormantel (12) längs zweier Trennbereiche (16) in zwei im wesentlichen starre Mantelteile (18) unterteilt ist, und
- die beiden Mantelteile (18) durch querliegende Spann¬ elemente (46, 50) zusammengehalten sind, die je eine Sollbruchstelle aufweisen.
4. Gehäuse nach einem der Ansprüche 1 bis 3, dadurch g e k e n n z e i c h n e t , daß der Stator¬ mantel (12) zwei ringförmige Enden (20) aufweist, mit denen er den Anschlußstutzen (36) je eines der beiden Gehäuseteile (32, 34) umschließt.
5. Gehäuse nach Anspruch 4, dadurch g e k e n n z e i c h n e t , daß die beiden Gehäuseteile (32, 34) durch Stehbolzen (40) in einem bestimmten Abstand voneinander gehalten sind und die Enden (20) des Statormantels (12) auf den Anschlußstutzen (36) axial schwimmend geführt sind.
6. Gehäuse einer Exzenterschneckenpumpe mit
- einem Statormantel (12) , der außen im wesentlichen kreiszylindrisch, und innen wendeiförmig ist, und an dem durch achsparalelle Nuten (15) Trennbereiche (16) aus¬ gebildet sind,
- einer Statorauskleidung (20) aus einem Elastomer, die zusammen mit dem Statormantel (12) einen rohrförmigen Pumpenstator (10) bildet, und
- zwei Gehäuseteilen, die mit je einem Ende (20) des Sta¬ tormantels (12) verbunden sind,
- wobei die Trennbereiche (16) des Statormanteis (12) und der radial innerhalb davon angeordnete Bereich der Sta¬ torauskleidung (22) sowie die Verbindungen der Gehäuse¬ teile mit dem Statormantel (12) derart gestaltet sind, daß der Pumpenstator (10) bei Überschreitung eines vorgegebe¬ nen inneren Überdrucks in mindestens einem Trennbereich (16) aufplatzt, dadurch g e k e n n z e i c h n e t , daß die Trenn¬ bereiche (16) des Statormantels (12) radial nach innen durch je eine innere achsparalle Nut (15) begrenzt sind, deren Tiefe (c) , von der Statorachse (A) aus gemessen, mindestens annähernd konstant ist.
7. Gehäuse nach Anspruch 6, dadurch g e k e n n z e i c h n e t , daß der Stator¬ mantel (12) , den inneren achsparalleln Nuten (15) radial gegenüberliegend, je eine äußere achsparallele Nut (17) aufweist.
8. Gehäuse nach Anspruch 7, dadurch g e k e n n z e i c h n e t , daß - die äußeren achsparellelen Nuten (17) ein zu ihrem Nutgrund spitz zulaufendes Profil aufweisen und das Nutgrundprofil der inneren aσhsparallelen Nuten (15) rechteckig und in bezug auf die zugehörige äußere Nut (17) symmetrisch ist.
9. Gehäuse nach einem der Ansprüche 6 bis 8, dadurch g e k e n n z e i c h n e t , daß die inneren achsparallelen Nuten (15) mit dem die Statorauskleidung (22) bildenden Elastomer ausgefüllt sind.
10. Gehäuse nach Anspruch 9, dadurch g e k e n n z e i c h n e t , daß das Elastomer der Statorauskleidung (22) an die Wände der inneren achs¬ parallelen Nuten (15) nicht anvulkanisiert ist.
EP92923581A 1991-05-22 1992-05-21 Gehäuse einer exzenterschneckenpumpe Expired - Lifetime EP0540736B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4116697 1991-05-22
DE4116697A DE4116697C1 (en) 1991-05-22 1991-05-22 Casing for eccentric worm pump with split stator jacket - has stator arranged to burst on excess of preset inner overpressure in split region
DE4134853 1991-10-22
DE4134853A DE4134853C1 (de) 1991-05-22 1991-10-22
PCT/EP1992/001139 WO1992020923A1 (de) 1991-05-22 1992-05-21 Gehäuse einer exzenterschneckenpumpe

Publications (2)

Publication Number Publication Date
EP0540736A1 true EP0540736A1 (de) 1993-05-12
EP0540736B1 EP0540736B1 (de) 1995-08-09

Family

ID=25903807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92923581A Expired - Lifetime EP0540736B1 (de) 1991-05-22 1992-05-21 Gehäuse einer exzenterschneckenpumpe

Country Status (6)

Country Link
US (1) US5318416A (de)
EP (1) EP0540736B1 (de)
JP (1) JPH06500615A (de)
AU (1) AU643621B2 (de)
DE (2) DE4134853C1 (de)
WO (1) WO1992020923A1 (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183226B1 (en) 1986-04-24 2001-02-06 Steven M. Wood Progressive cavity motors using composite materials
US5611397A (en) * 1994-02-14 1997-03-18 Wood; Steven M. Reverse Moineau motor and centrifugal pump assembly for producing fluids from a well
US5759019A (en) * 1994-02-14 1998-06-02 Steven M. Wood Progressive cavity pumps using composite materials
US5603608A (en) * 1995-04-19 1997-02-18 Ici Canada, Inc. Methods and apparatus for monitoring progressive cavity pumps
DE19754818A1 (de) * 1997-12-10 1999-06-17 Artemis Kautschuk Kunststoff Verfahren zur Herstellung von Elastomerstatoren für Exzenterschneckenpumpen
AU1928599A (en) * 1997-12-18 1999-07-05 Baker Hughes Incorporated Methods of making stators for moineau pumps
DE19804259A1 (de) * 1998-02-04 1999-08-12 Artemis Kautschuk Kunststoff Elastomerstator für Exzenterschneckenpumpen
DE19821867A1 (de) * 1998-05-15 1999-11-18 Artemis Kautschuk Kunststoff Nach dem Moineau-Prinzip arbeitende Maschine, insbesondere Bohrmotor für Tiefbohrungen
GB2341423B (en) * 1998-09-09 2002-04-24 Mono Pumps Ltd Progressing cavity pump
DE19950258A1 (de) * 1999-10-18 2001-04-26 Wilhelm Kaechele Gmbh Elastome Stator mit stabilen Stirnring
US6220838B1 (en) * 1999-11-03 2001-04-24 Dyno Nobel Inc. Progressive cavity pump with meltable stator
US6604921B1 (en) 2002-01-24 2003-08-12 Schlumberger Technology Corporation Optimized liner thickness for positive displacement drilling motors
US6604922B1 (en) * 2002-03-14 2003-08-12 Schlumberger Technology Corporation Optimized fiber reinforced liner material for positive displacement drilling motors
AU2003902582A0 (en) 2003-05-23 2003-06-12 Weir Warman Ltd Pressure relief arrangement for a pump
US7316548B2 (en) * 2003-11-17 2008-01-08 Artemis Kautschuk-Und Kunststoff-Technik Gmbh Stator for an eccentric screw pump or an eccentric worm motor operating on the Moineau principle
US7407372B2 (en) * 2004-05-14 2008-08-05 Robbins & Myers Energy Systems L.P. Progressing cavity pump or motor
DE102005042559A1 (de) * 2005-09-08 2007-03-15 Netzsch-Mohnopumpen Gmbh Statorsystem
US8182252B2 (en) * 2007-10-30 2012-05-22 Moyno, Inc. Progressing cavity pump with split stator
US8215014B2 (en) 2007-10-31 2012-07-10 Moyno, Inc. Method for making a stator
GB2455597B (en) * 2008-07-28 2009-12-09 Mono Pumps Ltd Pump
US8523545B2 (en) * 2009-12-21 2013-09-03 Baker Hughes Incorporated Stator to housing lock in a progressing cavity pump
JP5605776B2 (ja) * 2010-06-07 2014-10-15 兵神装備株式会社 一軸偏心ねじポンプ
DE202010015439U1 (de) * 2010-11-16 2012-02-17 Hugo Vogelsang Maschinenbau Gmbh Drehkolbenpumpe und Gehäuse-Halbschale für selbige
GB201019614D0 (en) 2010-11-19 2010-12-29 Eatec Ltd Apparatus and method for controlling or limiting rotor orbit in moving cavity motors and pumps
US9482223B2 (en) 2010-11-19 2016-11-01 Smith International, Inc. Apparatus and method for controlling or limiting rotor orbit in moving cavity motors and pumps
JP5889553B2 (ja) * 2011-06-28 2016-03-22 古河産機システムズ株式会社 一軸偏心ねじポンプ
US8888474B2 (en) 2011-09-08 2014-11-18 Baker Hughes Incorporated Downhole motors and pumps with asymmetric lobes
FR2991402B1 (fr) * 2012-05-29 2014-08-15 Christian Bratu Pompe a cavites progressives
US8967985B2 (en) * 2012-11-13 2015-03-03 Roper Pump Company Metal disk stacked stator with circular rigid support rings
DE102013003833A1 (de) 2013-03-07 2014-09-11 Wilo Se Pumpe mit Überdruckschutz
US9610611B2 (en) 2014-02-12 2017-04-04 Baker Hughes Incorporated Method of lining an inner surface of a tubular and system for doing same
US11148327B2 (en) 2018-03-29 2021-10-19 Baker Hughes, A Ge Company, Llc Method for forming a mud motor stator
JP7138382B1 (ja) * 2022-01-18 2022-09-16 兵神装備株式会社 一軸偏心ねじポンプ
JP7138383B1 (ja) * 2022-01-18 2022-09-16 兵神装備株式会社 一軸偏心ねじポンプ
JP7199128B1 (ja) * 2022-01-18 2023-01-05 兵神装備株式会社 一軸偏心ねじポンプ
DE202022104701U1 (de) * 2022-08-19 2023-11-22 Vogelsang Gmbh & Co. Kg Verdrängerkörper und Pumpengehäuse für eine Verdrängerpumpe

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084631A (en) * 1962-01-17 1963-04-09 Robbins & Myers Helical gear pump with stator compression
DE2311770C3 (de) * 1973-03-09 1983-05-05 Kreissparkasse Recklinghausen, 4350 Recklinghausen Temperaturüberwachungseinrichtung für Exzenterschneckenpumpen
DE2527141C3 (de) * 1974-06-19 1982-02-11 Netzsch-Mohnopumpen Gmbh, 8672 Selb Stator für Exzenterschneckenpumpe
US4116364A (en) * 1976-02-02 1978-09-26 Binks Manufacturing Company Dispensing system for low stability fluids
DE2618038A1 (de) * 1976-04-24 1977-11-10 Pft Putz & Foerdertech Exzenter-schneckenpumpe
US4084512A (en) * 1976-10-18 1978-04-18 The United States Of America As Represented By The Secretary Of The Navy Pressure relief construction for controlled combustion of ordnance items
DE2817280A1 (de) * 1978-04-20 1979-10-25 Streicher Foerdertech Stator fuer exzenterschneckenpumpen
EP0083829A1 (de) * 1982-01-11 1983-07-20 Eugene F. Kopecky Strangpresspumpe mit regelbarem Druck
US4458482A (en) * 1982-05-17 1984-07-10 The United States Of America As Represented By The Secretary Of The Navy Rocket motor
DE3218714C2 (de) * 1982-05-18 1986-02-27 Kurt-Joachim 3000 Hannover Ganz Stator für Exzenterschneckenpumpen
US5035180A (en) * 1984-03-28 1991-07-30 The United States Of America As Represented By The Secretary Of The Navy Shearing type ordnance venting device
DE3438379A1 (de) * 1984-10-19 1986-04-24 Kunststofftechnik Rodenberg GmbH & Co KG, 3054 Rodenberg Stator fuer exzenterschneckenpumpen
NZ220313A (en) * 1986-07-29 1988-06-30 Canadian Ind Progressing cavity pump with fusible coupling between drive and rotor
DE3641855A1 (de) * 1986-12-08 1988-06-16 Allweiler Ag Werk Bottrop Verstellbarer stator fuer exzenterschneckenpumpen
HU204116B (en) * 1989-01-23 1991-11-28 Hidromechanika Szivattyu Es An Arrangement for the standing part of eccentric worm pump
DE4116697C1 (en) * 1991-05-22 1992-03-12 Netzsch-Mohnopumpen Gmbh, 8264 Waldkraiburg, De Casing for eccentric worm pump with split stator jacket - has stator arranged to burst on excess of preset inner overpressure in split region

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9220923A1 *

Also Published As

Publication number Publication date
DE59203216D1 (de) 1995-09-14
JPH06500615A (ja) 1994-01-20
DE4134853C1 (de) 1992-11-12
AU1878692A (en) 1992-12-30
AU643621B2 (en) 1993-11-18
WO1992020923A1 (de) 1992-11-26
EP0540736B1 (de) 1995-08-09
US5318416A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
EP0540736B1 (de) Gehäuse einer exzenterschneckenpumpe
DE69206342T2 (de) Schleuderradverriegelung in einer Antriebsanordnung.
DE60127894T2 (de) Verminderung der Rissneigung bei Flanschverbindungen
DE2424262A1 (de) Gewindelose spannvorrichtung
CH686739A5 (de) Verfahren zum Befestigen eines Schlauches an einem Nippel und eine Schlauchverbindung, hergestellt nach diesem Verfahren.
EP0344224B1 (de) Splittermantel für metallische explosivkörper sowie verfahren zu seiner herstellung
EP2818721B1 (de) Kreiselpumpe
EP0690254A1 (de) Schlauchquetschventil
DE4116697C1 (en) Casing for eccentric worm pump with split stator jacket - has stator arranged to burst on excess of preset inner overpressure in split region
WO2001029423A1 (de) Exzenterschneckenpumpe mit vollausgekleidetem stator
EP1498635A1 (de) Verstellelement mit einem Zylinder
EP1489263B1 (de) Wellen-/Nabenverbindung eines Turboladers
CH679649A5 (de)
DE1912905B2 (de) Korrosionsbeständiger Kegelhahn
DE19950258A1 (de) Stator mit stabilen Stirnring
DE2558816C3 (de) Reaktor für die Nachverbrennung der Abgase einer Brennkraftmaschine
EP0731284B1 (de) Klemmvorrichtung für zylindrische Teile
DE69800278T2 (de) Festtreibstoff-Motor geringer Anfälligkeit
DE2140337A1 (de) Gasturbinentriebwerk
DE3800355C2 (de) Kompressor
DE102017100540B4 (de) Exzenterschneckenpumpe
DE3521184C2 (de)
DE3540085A1 (de) Kolben fuer brennkraftmaschinen
DE2952348A1 (de) Zylinderstueckverbindung, insbesondere fuer doppelschneckenextruder
DE4211033C2 (de) Kreiselpumpenaggregat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19940502

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59203216

Country of ref document: DE

Date of ref document: 19950914

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950822

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990419

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990518

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000521

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010528

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203